Universidad De Los Andes Facultad De Ciencias

Total Page:16

File Type:pdf, Size:1020Kb

Universidad De Los Andes Facultad De Ciencias UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS, DEPARTAMENTO DE CIENCIAS BIOLÓGICAS TRACING BACK THE POLLEN FOSSIL RECORD OF HEDYOSMUM (C HLORANTHACEAE ), A BASAL ANGIOSPERM CAMILA MARTÍNEZ AGUILLÓN Trabajo de grado para optar al título de Biólogo Director: Carlos Jaramillo, STRI Co-director: Santiago Madriñán, Universidad de los Andes Bogotá D.C., 2009 TRACING BACK THE POLLEN FOSSIL RECORD OF HEDYOSMUM (C HLORANTHACEAE ), A BASAL ANGIOSPERM ABSTRACT The Chloranthaceae family has been described as one of the oldest lineages within the angiosperms. Hedyosmum is the only Neotropical genus and is composed of approximately 45 species. The fossil record shows that the first apparition of the genus was in the Early Cretaceous (~120 Ma), followed by a time gap of 70 Ma during the Paleogene, where no fossil records of Hedyosmum were found. It is only until the Early Miocene when a new record associated with Hedyosmum: Clavainaperturites microclavatus is found. The association was established using only transmitted light microscopy. The aim of this study was to determinate the relationship between the fossil Clavainaperturites microclavatus from the Miocene and the extant genus Hedyosmum using transmitted light microscopy, scanning and transmitted electron microscopy. The quantitative characters were evaluated with a non-metric multidimensional scaling. Given the high morphological affinity of the pollen fossil with the extant Hedyosmum it is concluded that C. microclavatus belongs to Hedyosmum, and that the radiation of the genus could have occurred in Central and South America in the Early Miocene, before to the emergence of the Panamanian Isthmus and the rising of the Andean cordillera. Two hypotheses were suggested to explain the gap in the fossil record of the genus, a change in the pollination syndrome or/and a dramatic population decrease after the K/T event. Finally as a consequence of the last hypothesis, the divergence point of the Hedyosmum could have occurred ~ 30 Ma, instead of ~ 45 Ma as was suggested before. INTRODUCTION Evidence from the fossil record indicates that angiosperms could have appeared first approximately 140 Ma in the Early Cretaceous (Brenner 1996, Wills & MacElwain 2002, Zavada 2007). Some of the earliest known fossil flowers were found approximately 127– 120 Ma in deposits from Portugal, Australia and China (Taylor & Hickey 1990, Friis et al. 1999, Sun et al. 2002). Chloranthaceae has been suggested as one of the extant families that can be related to these flowers (Walker & Walker 1984, Crane et al. 1989, Herendeen et al. 1993, Eklund et al. 1997, 2004, Friis et al. 1999:). Additionally, Clavatipollenites , a fossil-pollen genus from the early Cretaceous has close similarity to pollen of Chloranthaceae, specifically the genus Ascarina (Doyle 1969, Chapman 1987, Pedersen et al. 1991, Traverse 2007). Chloranthaceae has 75 extant species with a disjunct Old and New World tropical distribution. It is composed by four genera: Sarcandra, Chloranthus, Ascarina and Hedyosmum (Todzia 1988). The phylogenetic position of Chloranthaceae within the angiosperms is uncertain. Early studies related the family to Piperales and Laurales (Takhtajan 1980), and then separated it on a monotypic order called Chloranthales (Dahlgren, 1983). Recent analyses based on morphological homologies and molecular data, suggest that Chloranthaceae could have diverged in different positions together with Ceratophyllum, the eudicots and monocots, above the ANITA grade, and below the eumagnoliids (Graham & Olmstead 2000, Mathews & Donoghue 2000, Soltis et al. 2000, Zanis et al. 2002, Eklund et al. 2004, Qiu et al. 2006). Chloranthaceae is a monophyletic family. Molecular and morphological studies show the genus Hedyosmum to be monophyletic and sister to other Chloranthaceae, and Ascarina to be sister to Sarcandra and Chloranthus (Ekund et al. 2004) . Todzia (1988) divided the genus Hedyosmum in two subgenera: Hedyosmum Solms–Laubach and Tafalla (Ruiz & Pavón) Solms–Laubach, and five sections. New molecular studies indicate that the infrageneric classification must be recircumscribed in order to become monophyletic (Antonelli 2008). Hedyosmum comprises 44 species of shrubs and small trees (Todzia 1993) . Most species have a fairly broad distribution range, only 14 species are local endemics, and more than 50% of the species occur in the northern Andes (Todzia 1988). Hedyosmum ranges from central Mexico to central Bolivia, east to Guyana, the West Indies and has a single species in Southeast Asia ( H. orientale ). The genus is mainly located in wet habitats of cool montane cloud forest between 600 and 3,000 m (Todzia 1988). The vast majority of pollen grains of Chloranthaceae have a relatively constant reticulate sculpture, whereas, the aperture configuration displays considerable variation (Eklund et al. 2004). Hedyosmum has a star-shaped monosulcate aperture with four to six branches (Eklund et al. 2004). Ascarina has a monosulcate aperture with trichotomosulcate variants (Eklund et al. 2004). Chloranthus has polycolpate and polyforate pollen grains, and Sarcandra has polyforate pollen with scattered pores (Eklund et al. 2004). Asteropollis, a pollen genus from the Early Cretaceous was related to Hedyosmum because it was found attached to Hedyosmum -like flower from the Portuguese Flora (Friis 1994, 1999). Asteropollis is a reticulate pollen grain, with a star-shaped aperture, that was originally described in Oklahoma and was later found in central Atlantic North America, Portugal and Australia (Walker & Walker 1984, Friis 1999). After the Campanian (~73 Ma), Asteropollis has not been reported. It is only until the Miocene, Pliocene and Quaternary that fossil pollen grains referred to Clavainaperturites microclavatus are assumed to be related to extant Hedyosmum, they are reported in South America and Panama (e.g. Hoorn 1994, van der Hammen & Hooghimiestra 2000). Clavainaperturites microclavatus was described by Hoorn (1994) as a pollen grain with polar, asymmetric, inaperturate, microclavate, with medium size and subespheroidal shape. Nevertheless, the description was done using only transmitted light microscopy. A deeper evaluation of pollen characters requires scanning electron and transmitted electron microscopes to reveal minute characters and firmly establish affinities with extant species (Ferguson et al. 2007). Li-Bing Zhang and Susanne Renner (2003) used the extensive fossil record of Chloranthaceae to determinate multiple calibration points of genetic distances for the tree of the family. Hedyosmum -like flower bearing Asteropollis pollen from the Barremian- Aptian (120 Ma) and Chloranthus -like androecia from the Turonian (90 Ma) were the fossils used as alternative calibration points to reconstruct the phylogeny. The ages of the topology of the tree vary greatly depending on the calibration point used. The midpoint of these ages indicates that the initial divergence among species in the crown group of Hedyosmum started 45 Ma, whereas the crown group of Chloranthus diverged 17 Ma, and the crown group of Ascarina had its initial divergence 14 Ma. The pollination syndrome of Hedyosmum has been another matter of discussion. Given the stamen and floral morphology of the Hedyosmum -like flower from the Barremian– Aptian, wind pollination has been suggested (Friis et al. 2000). Furthermore, Asteropollis pollen occurs abundantly in dispersed palynofloras suggesting high pollen production and high dispersal pollen potential of the plant, this is often seen in wind-pollinated taxa. Nectaries or specialized food bodies were not observed in this flower (Friis et al. 2000). Extant Hedyosmum also has been described as wind pollinated (Todzia 1988) although fieldwork to test this hypothesis has not been carried out. The temporal and spatial pattern of distribution of Hedyosmum suggest that the genus could have a Laurasian and Gondwanan origin in the Early Cretaceous (Eklund et al. 2004), then spreading to North America and finally to South America in the Late Neogene (Raven & Axelrod 1974, Todzia 1988). Its radiation in South America could have been a consequence of Panama’s land bridge and/or the uplift of the Andes cordillera (Todzia 1988). The Chloranthaceae fossil record indicates that today’s genera represent the survivors of a group that during the Early Cretaceous was much more widespread and diverse in both Laurasia and Gondwana (Todzia 1988, Doyle & Donogue 1993, Kong et al. 2002, Zhang & Renner 2003, Eklund et al. 2004). This may have contributed to the incredible morphological diversity among the four extant genera, and may have made difficult to resolve the phylogenetic placement of Chloranthaceae (Zhang & Renner 200, Hansen et al. 2007). The main goal in this study is to test if Clavainaperturites microclavatus is related to extant Hedyosmum. Six extant species of Hedyosmum will be compared to the grains from Clavainaperturites microclavatus using SEM, TEM and light microscopy. Another 22 species of Hedyosmum will be analyzed using only light microscopy. The morphological variation within and among species will be quantified to assess the degree of similarity of the fossil taxa versus the putative living relatives. METHODS Pollen of 47 individuals of 28 extant species of Hedyosmum was examined for the study. A pollen-fossil, Clavainaperturites microclavatus, from three different locations was analyzed (Table 1). All the specimens were observed first using transmitted light microscopy (LM); around 30 pollen grains were measured
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Ascarina Lucida Var. Lanceolata
    Ascarina lucida var. lanceolata COMMON NAME Kermadec Islands Hutu SYNONYMS Ascarina lanceolata Hook.f. FAMILY Chloranthaceae AUTHORITY Ascarina lucida var. lanceolata (Hook.f.) Allan FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No Hutu. Photographer: Bec Stanley ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ASCLVL CHROMOSOME NUMBER 2n = 26 CURRENT CONSERVATION STATUS Hutu. Photographer: Bec Stanley 2012 | At Risk – Naturally Uncommon | Qualifiers: IE, OL PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: IE, OL 2004 | Not Threatened BRIEF DESCRIPTION Small bushy tree of upland Kermadec Islands. Leaves narrow and tapering to a narrow tip and with coarse black- tipped teeth on margins. Flowers in clusters of spikes. Fruit small, white. DISTRIBUTION Endemic. Kermadec Islands, Raoul Island only. HABITAT One of the characteristic trees of the wet forests of Raoul Island which are mostly found above 245m. However, in the ravines this tree may extend down to almost sea level. In the wet forest it is mostly a subcanopy tree which co- associates with Coprosma acutifolia, Pseudopanax kermadecensis, Melicytus aff. ramiflorus and on occasion Boehmeria australis subsp. dealbata. Occasionally, such as on the ridge lines and crater rim it may form part of the forest canopy. FEATURES Glabrous gynodioecious tree up to 15 m tall. Trunk up to 500 mm diameter. Bark greyish-white. Branchlets slender, striate, initially pale green maturing dark green to emerald green. Interpetiolar stipules conspicuous, comprising 3 1.2-2.6 mm long pale pink to red, filaments; these connate near base, behind which are 3-6 smaller hyaline filaments. Petioles up to 15-20 mm long, lamina subcoriacous, somewhat fleshy, 50-100 × 10-30 mm, green, emerald green to dark green above, paler beneath, serrations weakly pigmented, pink to pale maroon often fading into pale pink spotting, narrowly lanceolate, lanceolate, lanceolate- oblong to narrowly elliptic, acuminate to acute.
    [Show full text]
  • Wood Anatomy of Ascarina (Chloranthaceae) and the Tracheid-Vessel Element Transition
    ALISO 12(4), 1990, pp. 667-684 WOOD ANATOMY OF ASCARINA (CHLORANTHACEAE) AND THE TRACHEID-VESSEL ELEMENT TRANSITION SHERWTN CARLQUIST Rancho Santa Ana Botanic Garden and Department of Biology, Pomona College Claremont, California 91711 ABSTRACT Quantitative and qualitative features are presented for 13 collections of 8 species of Ascarina. Wood anatomy is maximally primitive in most respects; moderate exception occurs in the imperforate tracheary elements, which range from tracheidlike (A. solmsiana) to fiber-tracheids (septate in two species). Perforation plates are scalariform, average more than 100 bars per plate, and have bordered bars. Even more significantly, portions of the primary walls in perforations characteristically fail to dissolve; these pit membrane portions range from nearly intact (much like the pit membranes in pits on end walls of tracheids of vesselless dicotyledons) to remnant strands or flakes. Dissolution of pit membranes in perforations is apparently inhibited by deposition of resinlike substances in some species; the rugose surfaces formed by these deposits may account for a report of vesturing on vessel walls of Ascarina. Axial parenchyma is diffuse, with only very small expressions of diversification; apotracheal banded parenchyma is, however, present in A. swamyana. Wood of Ascarina is highly mesomorphic. With age of plant, vessels increase in diameter, vessel elements and fiber-tracheids increase in length, and rays become wider and have a higher proportion of procumbent cells; uniseriate rays decrease in abundance. The implications of wood anatomy data on generic distinctions within the family and on the systematic position of Chloranthaceae will be examined when monographs on woods of the other genera have been completed.
    [Show full text]
  • Resumen …………………..……………………………………….…………..V Lista De Cuadros ………………………………………………………………Xi Lista De Figuras ………………………………………………………………..Xiii
    UNIVERSIDAD MAYOR DE SAN ANDRÉS. FACULTAD DE AGRONOMÍA. CARRERA DE INGENIERIA AGRONÓMICA. TESIS DE GRADO COMPOSICIÓN FLORÍSTICA Y ESTRUCTURA DE UN BOSQUE MONTANO PLUVIAL EN DOS RANGOS ALTITUDINALES DE LAS SERRANÍAS DE PEÑALITO-NORESTE DE APOLO, ÁREA NATURAL DE MANEJO INTEGRADO MADIDI. (ANMI-MADIDI) Freddy Canqui Magne La Paz - Bolivia 2006 UNIVERSIDAD MAYOR DE SAN ANDRÉS. FACULTAD DE AGRONOMÍA. CARRERA DE INGENIERIA AGRONÓMICA. COMPOSICIÓN FLORÍSTICA Y ESTRUCTURA DE UN BOSQUE MONTANO PLUVIAL EN DOS RANGOS ALTITUDINALES DE LAS SERRANÍAS DE PEÑALITO-NORESTE DE APOLO, ÁREA NATURAL DE MANEJO INTEGRADO MADIDI. (ANMI-MADIDI) Tesis de Grado presentado como requisito parcial para optar el Título de Ingeniero Agrónomo. Freddy Canqui Magne Tutor: Ing. For. Luis Goitia Arze. .......................................................... Asesor: Ing. For. Alejandro Araujo Murakami. .......................................................... Comite Revisor: Ing. M. Sc. Félix Rojas Ponce. .......................................................... Ing. M. Sc. Wilfredo Peñafiel Rodríguez. .......................................................... Ing. Ramiro Mendoza Nogales. .......................................................... Decano: Ing. M. Sc. Jorge Pascuali Cabrera. ……………………………………….... DEDICATORIA: Dedicado al amor de mi abnegada madre Eugenia Magne Quispe y padre Francisco Canqui Aruni como a mis queridas hermanas Maria y Yola. AGRADECIMIENTOS Agradecer al supremo creador por darnos la vida y la naturaleza que nos cobija. Al Herbario Nacional de
    [Show full text]
  • Diversidad De Plantas Y Vegetación Del Páramo Andino
    Plant diversity and vegetation of the Andean Páramo Diversidad de plantas y vegetación del Páramo Andino By Gwendolyn Peyre A thesis submitted for the degree of Doctor from the University of Barcelona and Aarhus University University of Barcelona, Faculty of Biology, PhD Program Biodiversity Aarhus University, Institute of Bioscience, PhD Program Bioscience Supervisors: Dr. Xavier Font, Dr. Henrik Balslev Tutor: Dr. Xavier Font March, 2015 Aux peuples andins Summary The páramo is a high mountain ecosystem that includes all natural habitats located between the montane treeline and the permanent snowline in the humid northern Andes. Given its recent origin and continental insularity among tropical lowlands, the páramo evolved as a biodiversity hotspot, with a vascular flora of more than 3400 species and high endemism. Moreover, the páramo provides many ecosystem services for human populations, essentially water supply and carbon storage. Anthropogenic activities, mostly agriculture and burning- grazing practices, as well as climate change are major threats for the páramo’s integrity. Consequently, further scientific research and conservation strategies must be oriented towards this unique region. Botanical and ecological knowledge on the páramo is extensive but geographically heterogeneous. Moreover, most research studies and management strategies are carried out at local to national scale and given the vast extension of the páramo, regional studies are also needed. The principal limitation for regional páramo studies is the lack of a substantial source of good quality botanical data covering the entire region and freely accessible. To meet the needs for a regional data source, we created VegPáramo, a floristic and vegetation database containing 3000 vegetation plots sampled with the phytosociological method throughout the páramo region and proceeding from the existing literature and our fieldwork (Chapter 1).
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 05:18:19AM Via Free Access 4 IAWA Bulletin N.S., Vol
    IAWA Bulletin n.s., Vol. 13 (I), 1992: 3-16 WOOD ANATOMY AND STEM OF CHLORANTHUS; SUMMARY OF WOOD ANATOMY OF CHLORANTHACEAE, WITH COMMENTS ON RELATIONSHIPS, VESSELLESSNESS, AND THE ORIGIN OF MONOCOTYLEDONS by Sherwin Carlquist Rancho Santa Ana Botanic Garden and Department ofBiology, Pomona College, Claremont,Califomia 91711 , U.S.A. Summary In contrast to the monopodial Ascarina and dicotyledons. While these cases are theoreti­ Hedyosmwn, Ch/oranthus and Sarcandra are cally possible, the histological and ecological sympodial. Sarcandra and Coerectus have seenarios that must be hypothesised for these woody canes of finite duration, whereas other events are ignored by cladists; most of these species of Ch/oranthus have shoots of one seenarios are unlikely for reasons explored year's duration ; these latter species have sec­ here, although a few are still worthy of con­ ond year wood only on rhizome s, not on up­ sideration. Stern endodermis is reported for right shoots. Rhizome portions transitional to three species of Ch/oranthus . upright sterns were selected for study. Chlo­ Key words: Ascarina, Chloranthaceae, Chlo­ ranthus erectus has abundant septate fibre­ ranthus , endodermis in sterns, Hedyos­ tracheids, C. jap onicus none, and two other mum, monocotyledon origins, Piperales, species a few. Ch/oranthus (and Sar candrai Sarcandra , vessel evolution, wood anat­ have rays of two distinct sizes in wood: rays omy . that are extensions of primary rays, and uni­ seriate and biseriate rays in fascicular areas. Introduction Wood anatomy of each of the four genera can be characterised, and is summarised in the The present study offers new data on wood form of a key.
    [Show full text]
  • Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and Their Evolutionary Implications
    UC Davis UC Davis Previously Published Works Title Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and their Evolutionary Implications Permalink https://escholarship.org/uc/item/0d58r5r0 Journal Botanical Review, 84(2) ISSN 0006-8101 Authors Doyle, JA Endress, PK Publication Date 2018-06-01 DOI 10.1007/s12229-018-9197-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and their Evolutionary Implications James A. Doyle & Peter K. Endress The Botanical Review ISSN 0006-8101 Volume 84 Number 2 Bot. Rev. (2018) 84:156-202 DOI 10.1007/s12229-018-9197-6 1 23 Your article is protected by copyright and all rights are held exclusively by The New York Botanical Garden. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Bot. Rev. (2018) 84:156–202 https://doi.org/10.1007/s12229-018-9197-6 Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and their Evolutionary Implications James A.
    [Show full text]
  • Wood Anatomy of Ascarina (Chloranthaceae) and the Tracheid-Vessel Element Transition Sherwin Carlquist Pomona College; Rancho Santa Ana Botanic Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 12 | Issue 4 Article 3 1990 Wood Anatomy of Ascarina (Chloranthaceae) and the Tracheid-vessel Element Transition Sherwin Carlquist Pomona College; Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1990) "Wood Anatomy of Ascarina (Chloranthaceae) and the Tracheid-vessel Element Transition," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 12: Iss. 4, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol12/iss4/3 ALISO ALISO 12(4), 1990, pp. 667-684 WOOD ANATOMY OF ASCARINA (CHLORANTHACEAE) AND THE TRACHEID-VESSEL ELEMENT TRANSITION SHERWIN CARLQUIST Rancho Santa Ana Botanic Garden and Department of Biology, Pomona College Claremont, California 91711 ABSTRACT Quantitative and qualitative features are presented for 13 collections of 8 species ofAscarina. Wood anatomy is maximally primitive in most respects; moderate exception occurs in the imperforate tracheary elements, which range from tracheidlike (A. solmsiana) to fiber-tracheids (septate in two species). Perforation plates are scalariform, average more than 100 bars per plate, and have bordered bars. Even more significantly, portions of the primary walls in perforations characteristically fail to dissolve; these pit membrane portions range from nearly intact (much like the pit membranes in pits on end walls of tracheids of vesselless dicotyledons) to remnant strands or flakes. Dissolution of pit membranes in perforations is apparently inhibited by deposition ofresinlike substances in some species; the rugose surfaces formed by these deposits may account for a report of vesturing on vessel walls of Ascarina.
    [Show full text]
  • <I>Ascarina Lucida</I>
    MARTIN,Available on-line OGDEN: at: http://www.nzes.org.nz/nzjeENVIRONMENTAL TOLERANCE OF ASCARINA LUCIDA 53 Experimental studies on the drought, waterlogging, and frost tolerance of Ascarina lucida Hook. f (Chloranthaceae) seedlings Timothy J. Martin* and John Ogden School of Geography and Environmental Science, University of Auckland, Private Bag 92019, Auckland, New Zealand. * Author for correspondence (Email: [email protected]) ____________________________________________________________________________________________________________________________________ Abstract: Ascarina lucida Hook.f. (Chloranthaceae) is a small tree species endemic to New Zealand. The distribution of A. lucida suggests an inability to survive severe frosts or droughts. Therefore, peaks in the abundance of A. lucida in pollen records have usually been interpreted as indicating periods of mild, moist climates. The environmental tolerance of A. lucida seedlings to climatic extremes was experimentally tested by exposing seedlings to frost, drought, and waterlogged soil conditions. This research confirms the sensitivity of A. lucida to climatic extremes. Ascarina lucida has a similar drought tolerance to Coprosma grandifolia, a species known to be drought intolerant; seedlings had considerable tolerance of waterlogged soils, but exhibited reduced root weights when severely waterlogged; and a frost of -2°C resulted in complete mortality for seedlings sourced from lowland and submontane populations. Peaks in the abundance of A. lucida can be attributed, at least in part, to periods of warm, wet climate. However, the early successional nature of this species also suggests that disturbance regime plays an important role in regulating its distribution and abundance. ____________________________________________________________________________________________________________________________________ Keywords: Ascarina lucida; Chloranthaceae; Coprosma grandifolia; frost; drought; waterlogging; climate change Introduction less frost tolerant. Pollen records indicate A.
    [Show full text]
  • Wood Anatomy of Hedyosmum (Chloranthaceae) and the Tracheid-Vessel Element Transition Sherwin Carlquist Rancho Santa Ana Botanic Garden; Pomona College
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 13 | Issue 3 Article 4 1992 Wood Anatomy of Hedyosmum (Chloranthaceae) and the Tracheid-vessel Element Transition Sherwin Carlquist Rancho Santa Ana Botanic Garden; Pomona College Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1992) "Wood Anatomy of Hedyosmum (Chloranthaceae) and the Tracheid-vessel Element Transition," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 13: Iss. 3, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol13/iss3/4 ALISO ALISO 13(3), 1992, pp. 447-462 ~)from Spain. Mycotaxon WOOD ANATOMY OF HEDYOSMUM (CHLORANTHACEAE) AND THE TRACHEID-VESSEL ELEMENT TRANSITION ~tophagidae, Lathridiidae, emoir No.9. The My- SHERWIN CARLQUIST 7 p. niales (Ascomycetes) on Rancho Santa Ana Botanic Garden ~ and Part I. Mem. Amer. Department of Biology, Pomona College Claremont, California 91711, USA ABSTRACT Qualitative and quantitative data are presented for 22 collections of 14 species of Hedyosmum . Acad. Arts 48:153- Wood of the genus is primitive in its notably long scalariform perforation plates; scalariform lateral wall pitting of vessel elements; and the low ratio of length between imperforate tracheary elements and vessel elements. Pit membrane remnants are characteristically present to various degrees in perforations of vessel elements; this is considered a primitive feature that is related to other primitive recharacterization vessel features. Specialized features of Hedyosmum wood include septate fiber-tracheids with much Bull. 36:381-389. reduced borders on pits; vasicentric axial parenchyma; and absence of uniseriate rays (in wood of larger stems). Ray structure (predominance of upright cells) and ontogenetic change in tracheary element length are paedomorphic, suggesting the possibility of secondary woodiness in the genus.
    [Show full text]
  • Canrightiopsis, a New Early Cretaceous Fossil with Clavatipollenites-Type Pollen Bridge the Gap Between Extinct Canrightia and Extant Chloranthaceae
    Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 Canrightiopsis, a new Early Cretaceous fossil with Clavatipollenites-type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae Else Marie Friis, Guido W. Grimm, Mário Miguel Mendes & Kaj Raunsgaard Pedersen To cite this article: Else Marie Friis, Guido W. Grimm, Mário Miguel Mendes & Kaj Raunsgaard Pedersen (2015) Canrightiopsis, a new Early Cretaceous fossil with Clavatipollenites-type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae, Grana, 54:3, 184-212, DOI: 10.1080/00173134.2015.1060750 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1060750 © 2015 The Author(s). Published by Taylor & View supplementary material Francis. Published online: 15 Jul 2015. Submit your article to this journal Article views: 298 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [Statsbiblioteket Tidsskriftafdeling] Date: 18 January 2016, At: 04:18 Grana, 2015 Vol. 54, No. 3, 184–212, http://dx.doi.org/10.1080/00173134.2015.1060750 Canrightiopsis, a new Early Cretaceous fossil with Clavatipollenites- type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae ELSE MARIE FRIIS1, GUIDO W. GRIMM2, MÁRIO MIGUEL MENDES3 & KAJ RAUNSGAARD PEDERSEN4 1Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden, 2Department of Palaeontology, University of Vienna, Vienna, Austria, 3CIMA – Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal, 4Department of Geoscience, University of Aarhus, Aarhus, Denmark Abstract Canrightiopsis with three species (C.
    [Show full text]
  • Seedling Ecology and Evolution
    P1: SFK 9780521873053pre CUUK205/Leck et al. 978 0 521 87305 5 June 26,2008 16:55 Seedling Ecology and Evolution Editors Mary Allessio Leck Emeritus Professor of Biology,Rider University,USA V. Thomas Parker Professor of Biology,San Francisco State University,USA Robert L. Simpson Professor of Biology and Environmental Science,University of Michigan -- Dearborn,USA iii P1: SFK 9780521873053pre CUUK205/Leck et al. 978 0 521 87305 5 June 26,2008 16:55 CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S˜ao Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521873055 c Cambridge University Press 2008 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2008 Printed in the United Kingdom at the University Press, Cambridge A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data ISBN 978-0-521-87305-5 hardback ISBN 978-0-521-69466-7 paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. iv P1: SFK 9780521873053c04 CUUK205/Leck et al.
    [Show full text]