Înformâtiün I?J Ilshius

Total Page:16

File Type:pdf, Size:1020Kb

Înformâtiün I?J Ilshius îNFORMÂTiüN i?J ilsHiUS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms international A Bell & Howell Information Company 300 Nortti Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9201729 Comparative ultrastructure of fossil gyrtmosperm pollen and implications regarding the origin of angiosperms Osborn, Jeffrey Mark, Ph.D. The Ohio State University, 1991 U’M'I 300 N. Zeeb Rd. Ann Arbor, MI 48106 COMPARATIVE ULTRASTRUCTURE OF FOSSIL GYMNOSPERM POLLEN AND IMPLICATIONS REGARDING THE ORIGIN OF ANGIOSPERMS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jeffrey Mark Osborn, B. S., M. S. ***** The Ohio State University 1991 Dissertation Committee: Approved by Thomas N. Taylor Valayamghat Raghavan Fred D. Sack \ Adviser Edith L. Taylor Department of Plant Biology To Dr. Alfred S. Osborn, Sr. ACKNOWLEDGEMENTS This research was financially supported by several institutions and agencies. These include: the National Science Foundation (Dissertation Improvement Award; BSR- 9016397), the American Association of Stratigraphie Palynologists (Student Scholarship), Sigma-Xi, The Scientinc Research Society (Grant-in-aid of Research), the Graduate School, The Ohio State University (Graduate Student Alumni Research Award and Presidential Fellowship), and the Department of Plant Biology, The Ohio State University (Graduate Teaching and Research Associateships). The outcome of this investigation was significantly aided by their assistance and it is gratefully acknowledged. Numerous individuals have also contributed in variety of ways to both this investigation as well as my other scholarly endeavors. I would like to thank the paleobotany group (Dr. L. J. Hickey, Dr. D. W. Taylor, L. Klise, and A. Muller) at the Peabody Museum of Natural History, Yale University for providing much assistance and a generous loan of Cycadeoidea material. Several members of both the Paleobotany and Botany Departments (Drs. F. M. Hueber, S. H. Mamay, W. A. DiMichele, S. L. Wing, and R. A. Faden), National Museum of Natural History, Smithsonian Institution were also especially helpful during a my visit there. I am also grateful to Dr. T. Rich and the staff of the National Museum of Victoria for loaning the specimen of Sahnia laxiphora, and Dr. M. R. de Lima for providing Cretaceous sediments fi*om the Santana Formation. I am especially appreciative of the following individuals, who gave of their time in order to write supporting letters of my various grant, fellowship, and employment proposals/applications: Drs. T. N. Taylor, T. Delevoryas, E. L. Schneider, J. R. Rowley, ni G. Piayford, D. L. Diicher, R. A. Stockey, W. L. Crepet, E. L. Taylor, V. Raghavan, D. J. Crawford, and R. E. J. Boemer. î would also like to acknowledge the assistance of Dr. W. A. Taylor, who was helpful in the early stages of this research in sharing his technical expertise on electron microscopy. Drs. E. L. Taylor, F. D. Sack, and V. Raghavan deserve much recognition and thanks. They graciously donated significant amounts of their time and effort by serving on my Advisory, General Examination, and Dissertation Reading Committees, and further contributed by providing helpful comments on this manuscript. Î am especially grateful to Dr. T. N. Taylor for the role he has played as my adviser. He has provided unrelenting guidance and encouragement at both professional and personal levels. As a student I have learned a great deal from him, and I am quite certain that as a colleague, he will remain to be a source of much knowledge and inspiration for me. Finally, I am deeply indebted to my wife, Yolanda, as well as my family for their loving support, without which this investigation would not have been possible. Yolanda has been especially understanding during the final months of preparation of this document, and I love her dearly for it IV VTTA 29 November 1963 ........................................ ...... Bora - Houston, Texas 1982-1985 ............................................................... Undergraduate Laboratory Instructor, Undergraduate Research Assistant, Southwest Texas State University, San Marcos, Texas 1985 ......................................................................... B. S. in Marine Biology, Southwest Texas State University, graduated cum laude 1985-1986 ............................................................... Graduate Laboratoiy Instructor, Graduate Research Assistant, Southwest Texas State University 1986-1987 ............................................................... Assistant Instructor, Southwest Texas State University 1987 ......................................................................... M. S. in Botany, Southwest Texas State University 1987-1990 ............................................................... Graduate Teaching Associate, Graduate Research Associate, The Ohio State University, Columbus, Ohio 1990-1991 ............................................................... Presidential Fellow, The Ohio State University 1991- .................................................................... Assistant Professor, Northeast Missouri State University, Kirksville, Missouri 1992 ......................................................................... International Fellow, Department of Botany, University of Alberta, Edmonton, Alberta, Canada PUBLICATIONS (Refereed Papers) Osborn, J. M. and E. L. Schneider. 1988. Morphological studies of the Nympheaeceae sensu iato. XVI. The floral biology of Brasenia schreberi. Annals of the Missouri Botanical Garden 75:778-794. Osborn, J. M., T. N. Taylor, and J. F. White, Jr. 1989. Falaeofibulus, gen. nov., a clamp-bearing fungus from the Triassic of Antarcdca. Mycologia 81: 622-626. Osborn, J. M. and T. N. Taylor. 1989. Structurally preserved sphenophytes from the Triassic of Antarctica: Vegetative remains of Spaciinodum, gen. nov. American Journal of Botany 16:1594-1601. Osborn, J. M. and T. N. Taylor. 1990. Morphological and ultrastructural studies of plant cuticular membranes. I. Sun and shade leaves of Quercus velutina (Fagaceae). Botanical Gazette 151:465-476. Taylor, T. N. and J. M. Osborn. 1991. The role of wood in understanding saprophytism in the fossil record. CFS-Courier Forschungsinstitut Senckenberg. (in press) Osborn, J. M., T. N. Taylor, and E. L. Schneider. 1991. Pollen morphology and ultrastructure of the Cabombaceae: Correlations with pollination biology. American Journal of Botany 78(9). (in press) Osborn, J. M., T. N. Taylor, and P. R. Crane. 1991. The ultrastructure of Sahnia pollen (Pentoxylales). American Journal of Botany, (in press) (Abstracts) Osbom, J. M. and E. L. Schneider. 1987. The reproductive biology of Brasenia schreberi J. F. Gmelin (Nymphaeaceae). Texas Academy of Science, March Program Abstr. 90: 49. Osbom, J. M. and E. L. Schneider. 1987. Wind pollination in Brasenia schreberi (Nymohaeaceae). Southwestern Association of Naturalists, April Program Abstr. 1987:72 Osbom, J. M. and E. L. Schneider. 1987. Morphological studies of the Nymphaeaceae. XVI. The floral biology of Brasenia schreberi J. F. Gmelin. IBC-87, XIV Intemational Botanic^ Congress, Berlin (West), Germany. Abstracts, 4-20-7: 224. Osbom, J. M. and E. L, Schneider. 1987. Anemophily in Brasenia (Nymphaeaceae). American Journal of Botany 74 (5): 622-623. Schneider, E. L. and J. M. Osbom. 1987. Morphological studies of the Nymphaeaceae. American Journal of Botany 74 (5): 721. VI Osbom, J. M. and T. N. Tayior. 1988. Mesozoic sphenophytes from Antarctica. American Journal of Botany 75 (6, supplement): 113. Osbom, J. M. and T. N. Taylor. 1989. Cuticle ultrastmcture and micromorphology from sun and shade leaves of Quercus velutina Lam. ^lack Oak). Ohio Journal of Science (April Program Abst.) 1989: 7. Osbom, J. M., T. N. Taylor, and J. F. White, Jr. 1989. A fossil fungus possessing clamp connections from the Triassic of Antarctica. Ohio Journal of Science (April Program Abst.) 1989: 7. Osbom, J. M. and T. N. Taylor. 1989. Morphological and ultrastructural studies of plant cuticle: Sun and shade leaves of Quercus velutina Lam. American Journal of Botany 76 (6, supplement): 50.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Ascarina Lucida Var. Lanceolata
    Ascarina lucida var. lanceolata COMMON NAME Kermadec Islands Hutu SYNONYMS Ascarina lanceolata Hook.f. FAMILY Chloranthaceae AUTHORITY Ascarina lucida var. lanceolata (Hook.f.) Allan FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No Hutu. Photographer: Bec Stanley ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ASCLVL CHROMOSOME NUMBER 2n = 26 CURRENT CONSERVATION STATUS Hutu. Photographer: Bec Stanley 2012 | At Risk – Naturally Uncommon | Qualifiers: IE, OL PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: IE, OL 2004 | Not Threatened BRIEF DESCRIPTION Small bushy tree of upland Kermadec Islands. Leaves narrow and tapering to a narrow tip and with coarse black- tipped teeth on margins. Flowers in clusters of spikes. Fruit small, white. DISTRIBUTION Endemic. Kermadec Islands, Raoul Island only. HABITAT One of the characteristic trees of the wet forests of Raoul Island which are mostly found above 245m. However, in the ravines this tree may extend down to almost sea level. In the wet forest it is mostly a subcanopy tree which co- associates with Coprosma acutifolia, Pseudopanax kermadecensis, Melicytus aff. ramiflorus and on occasion Boehmeria australis subsp. dealbata. Occasionally, such as on the ridge lines and crater rim it may form part of the forest canopy. FEATURES Glabrous gynodioecious tree up to 15 m tall. Trunk up to 500 mm diameter. Bark greyish-white. Branchlets slender, striate, initially pale green maturing dark green to emerald green. Interpetiolar stipules conspicuous, comprising 3 1.2-2.6 mm long pale pink to red, filaments; these connate near base, behind which are 3-6 smaller hyaline filaments. Petioles up to 15-20 mm long, lamina subcoriacous, somewhat fleshy, 50-100 × 10-30 mm, green, emerald green to dark green above, paler beneath, serrations weakly pigmented, pink to pale maroon often fading into pale pink spotting, narrowly lanceolate, lanceolate, lanceolate- oblong to narrowly elliptic, acuminate to acute.
    [Show full text]
  • A Palaeoenvironmental Reconstruction of the Middle Jurassic of Sardinia (Italy) Based on Integrated Palaeobotanical, Palynological and Lithofacies Data Assessment
    Palaeobio Palaeoenv DOI 10.1007/s12549-017-0306-z ORIGINAL PAPER A palaeoenvironmental reconstruction of the Middle Jurassic of Sardinia (Italy) based on integrated palaeobotanical, palynological and lithofacies data assessment Luca Giacomo Costamagna1 & Evelyn Kustatscher2,3 & Giovanni Giuseppe Scanu1 & Myriam Del Rio1 & Paola Pittau1 & Johanna H. A. van Konijnenburg-van Cittert4,5 Received: 15 May 2017 /Accepted: 19 September 2017 # The Author(s) 2017. This article is an open access publication Abstract During the Jurassic, Sardinia was close to con- diverse landscape with a variety of habitats. Collection- tinental Europe. Emerged lands started from a single is- and literature-based palaeobotanical, palynological and land forming in time a progressively sinking archipelago. lithofacies studies were carried out on the Genna Selole This complex palaeogeographic situation gave origin to a Formation for palaeoenvironmental interpretations. They evidence a generally warm and humid climate, affected occasionally by drier periods. Several distinct ecosystems can be discerned in this climate, including alluvial fans This article is a contribution to the special issue BJurassic biodiversity and with braided streams (Laconi-Gadoni lithofacies), paralic ^ terrestrial environments . swamps and coasts (Nurri-Escalaplano lithofacies), and lagoons and shallow marine environments (Ussassai- * Evelyn Kustatscher [email protected] Perdasdefogu lithofacies). The non-marine environments were covered by extensive lowland and a reduced coastal Luca Giacomo Costamagna and tidally influenced environment. Both the river and the [email protected] upland/hinterland environments are of limited impact for Giovanni Giuseppe Scanu the reconstruction. The difference between the composi- [email protected] tion of the palynological and palaeobotanical associations evidence the discrepancies obtained using only one of those Myriam Del Rio [email protected] proxies.
    [Show full text]
  • Wood Anatomy of Ascarina (Chloranthaceae) and the Tracheid-Vessel Element Transition
    ALISO 12(4), 1990, pp. 667-684 WOOD ANATOMY OF ASCARINA (CHLORANTHACEAE) AND THE TRACHEID-VESSEL ELEMENT TRANSITION SHERWTN CARLQUIST Rancho Santa Ana Botanic Garden and Department of Biology, Pomona College Claremont, California 91711 ABSTRACT Quantitative and qualitative features are presented for 13 collections of 8 species of Ascarina. Wood anatomy is maximally primitive in most respects; moderate exception occurs in the imperforate tracheary elements, which range from tracheidlike (A. solmsiana) to fiber-tracheids (septate in two species). Perforation plates are scalariform, average more than 100 bars per plate, and have bordered bars. Even more significantly, portions of the primary walls in perforations characteristically fail to dissolve; these pit membrane portions range from nearly intact (much like the pit membranes in pits on end walls of tracheids of vesselless dicotyledons) to remnant strands or flakes. Dissolution of pit membranes in perforations is apparently inhibited by deposition of resinlike substances in some species; the rugose surfaces formed by these deposits may account for a report of vesturing on vessel walls of Ascarina. Axial parenchyma is diffuse, with only very small expressions of diversification; apotracheal banded parenchyma is, however, present in A. swamyana. Wood of Ascarina is highly mesomorphic. With age of plant, vessels increase in diameter, vessel elements and fiber-tracheids increase in length, and rays become wider and have a higher proportion of procumbent cells; uniseriate rays decrease in abundance. The implications of wood anatomy data on generic distinctions within the family and on the systematic position of Chloranthaceae will be examined when monographs on woods of the other genera have been completed.
    [Show full text]
  • S1. List of Taxa Included in the Disparity Analysis and the Phylogenetic Alysis, with Main References
    S1. List of taxa included in the disparity analysis and the phylogenetic alysis, with main references. Taxa in bold are included in the phylogenetic analysis; taxa also indicated by * are included only in the phylogenetic analysis and not in the disparity analysis. Three unpublished arborescent taxa were included on the basis that they showed additional anatomical diversity. 1 Callixylon trunk from the Late Devonian of Marrocco showing large sclerotic nests in pith; 2 Axis from the late Tournaisian of Algeria, previously figured in Galtier (1988), and Galtier & Meyer-Berthaud (2006); 3 Trunk from the late Viséan of Australia. All these specimens and corresponding slides are currently kept in the Paleobotanical collections, Service des Collections, Université Montpellier II, France, under the specimen numbers 600/2/3, JC874 and YB1-2. Main reference Psilophyton* Banks et al., 1975 Aneurophytales Rellimia thomsonii Dannenhoffer & Bonamo, 2003; --- Dannenhoffer et al., 2007. Tetraxylopteris schmidtii Beck, 1957. Proteokalon petryi Scheckler & Banks, 1971. Triloboxylon arnoldii Stein & Beck, 1983. s m Archaeopteridales Callixylon brownii Hoskin & Cross, 1951. r e Callixylon erianum Arnold, 1930. p s o Callixylon huronensis Chitaley & Cai, 2001. n Callixylon newberry Arnold, 1931. m y g Callixylon trifilievii Lemoigne et al., 1983. o r Callixylon zalesskyi Arnold, 1930. P Callixylon sp. Meyer-Berthaud, unpublished data1. Eddya sullivanensis Beck, 1967. Protopityales Protopitys buchiana Scott, 1923; Galtier et al., 1998. P. scotica Walton, 1957. Protopitys sp. Decombeix et al., 2005. Elkinsiales Elkinsia polymorpha Serbet & Rothwell, 1992. Buteoxylales Buteoxylon gordonianum Barnard &Long, 1973; Matten et al., --- 1980. Triradioxylon primaevum Barnard & Long, 1975. Lyginopteridales Laceya hibernica May & Matten, 1983. Tristichia longii Galtier, 1977.
    [Show full text]
  • SYSTÉMATIQUE DES EMBRYOPHYTES Document Illustrant Plus Particulièrement Les Taxons Européens Version 4 Octobre 2007
    Université Pierre et Marie Curie (PARIS 6) Préparation à l’agrégation SVSTU, secteur B SYSTÉMATIQUE DES EMBRYOPHYTES Document illustrant plus particulièrement les taxons européens version 4 octobre 2007 Catherine Reeb, Préparation agrégation SVSTU, UPMC Jean-Yves Dubuisson, Laboratoire Paléobotanique et Paléoécologie, équipe Paléodiversité, systématique et évolution des Embryophytes, UPMC Dessin de couverture : extrait d’un traité botanique tibétain Pour Garance Remerciements: merci à Jean et Monique Duperon pour les clés de détermination des familles d’Angiospermes, à A.M pour la reproduction de couverture, à Michaël Manuel et Eric Queinnec pour la partie I de l’introduction. Egalement à tous les illustrateurs qui ont autorisé l’utilisation de leurs documents mis en ligne sur Internet : Françoise Gantet, Prof. I. Foissner, Association Endemia de Nouvelle Calédonie. 1 Table des matières Introduction 3 Les données essentielles pour l’agrégation . 5 I Systématique générale des Embryophytes 6 I.1 Caractères des Embryophytes . 6 I.2 La place des Embryophytes au sein de la lignée verte . 7 I.3 Le groupe frère des Embryophytes . 7 I.4 Relations au sein des Embryophytes :les points acquis aujourd’hui . 8 I.4.1 Marchantiophytes, Bryophytes, Anthocérotophytes à la base des Embryophytes . 8 I.4.2 Les Trachéophytes ou plantes vasculaires, un groupe monophylétique . 9 I.4.3 Les Spermatophytes ou plantes à ovules, un groupe monophylétique . 9 I.5 Quelques points encore en discussion . 11 I.5.1 Position et relations des trois clades basaux (Bryophytes, Marchantiophytes et Anthocérotophytes) 11 I.5.2 Relations au sein des Spermatophytes :l’hypothèse "Gnepine" . 13 II Les principaux clades d’Embryophytes 15 II.1 MARCHANTIOPHYTA:Les Marchantiophytes ou Hépatiques .
    [Show full text]
  • A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E
    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1262–1271. © Pleiades Publishing, Ltd., 2009. A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E. V. Karasev Borissiak Paleontological Institute of the Russian Academy of Sciences, 117997, Profsoyuznaya, 123, Moscow e-mail: [email protected] Received January 25, 2009 Abstract—A new genus of peltaspermalean ovuliferous organs Navipelta gen. nov. is described from the ter- restrial deposits of the Nedubrovo locality (village of Nedubrovo, Vologda Region, Russia), belonging to the base of Vetlugian Group (Upper Permian–Lower Triassic). Data on the anatomy of the peltate bilateral ovulif- erous organs are obtained for the first time. Vascular strands in the peltoid depart from that of a stalk and branch up to three times distally. Transfusion tissue around the vascular strands is well developed. The new genus had a system of radially arranged resin canals, broaden into large secretory cavities. Key words: Peltaspermaceae, ovuliferous organs, Peltaspermum, Autunia, Permian/Triassic boundary, Vetlu- gian Group, systematics. DOI: 10.1134/S0031030109100086 INTRODUCTION angium Zhao ex Gomankov et Meyen and Autuniopsis Poort et Kerp) or on the basis of their association with The family Peltaspermaceae attracts attention of different foliage (Peltaspermopsis buevichiae Goman- many researchers, because its members were the main kov et. Meyen and Meyenopteris, Poort et Kerp) component of the Late Permian Angaraland floras. (Gomankov and Meyen, 1986; Poort and Kerp, 1990). They escaped the global crisis on the Permian/Triassic boundary and transited in the Mesozoic, where domi- The morphology and epidermal structure of seed- nated during the Middle and Late Triassic of the North- bearing organs in the Peltaspermaceae were studied rel- ern as well as Southern hemispheres.
    [Show full text]
  • Reappraisal of the Genus Dicroidium Gothan from the Triassic Sediments of India
    The Palaeobotanist 63(2014): 137–155 0031–0174/2014 Reappraisal of the genus Dicroidium Gothan from the Triassic sediments of India PANKAJ K. PAL1*, AMIT K. GHOSH2, RATAN KAR2, R.S. SINGH2, MANOBIKA SARKAR1 AND RESHMI CHATTERJEE2 1Department of Botany, UGC Centre of Advanced Study, University of Burdwan, Burdwan–713 104, West Bengal, India. 2Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. *Corresponding author: [email protected] (Received 28 August, 2014; revised version accepted 25 September, 2014) ABSTRACT Pal PK, Ghosh AK, Kar R, Singh RS, Sarkar M & Chatterjee R 2014. Reappraisal of the genus Dicroidium Gothan from the Triassic sediments of India. The Palaeobotanist 63(2): 137–155. The genus Dicroidium Gothan, belonging to Corystospermaceae, is characterised by pinnately compound leaves with proximally forked primary rachis. The genus was earlier included under the genus Thinnfeldia Ettingshausen. Dicroidium is the most consistent macrofloral element in the Triassic strata of Southern Hemisphere. The present reassessment deals with the morphotaxonomy and stratigraphic significance of the species of Dicroidium in India. A critical review of the literature reveals that the specimens of Dicroidium described so far from India require reassessment, because same morphotypes have often been placed under different species names and sometimes dissimilar elements have been assigned to the same species. In view of this, a thorough analysis of Indian Dicroidium was undertaken based on fresh collections along with the species described earlier by previous workers. The present reappraisal reveals that the genus in the Triassic of Peninsular India is represented by eight species. These are D. hughesii (Feistmantel) Lele, D.
    [Show full text]
  • Mezzolombardo
    ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale SERVIZIO GEOLOGICO D’ITALIA Organo cartografico dello Stato (legge 68 del 2.2.1960) NOTE ILLUSTRATIVE della CARTA GEOLOGICA D’ITALIA alla scala 1:50.000 foglio 043 MEZZOLOMBARDO A cura di Marco Avanzini1 Giuseppe Maria Bargossi2, Andrea Borsato1, Maurizio Cucato3, Corrado Morelli3, Vincenzo Picotti2, Luigi Selli2 Con la collaborazione di: Tiziano Abbà3, Mariangela Balboni4, Gianfranco Bazzoli3, Paolo Campedel4, Claudio Carraro5, Oscar Groaz4, Lorenz Keim5, Paolo Ferretti1, Luca Froner4, Pierpaolo Macconi2, Mattia Marini6, Gianluca Piccin3, Matteo Rinaldo3, Ernesto Santuliana4,Claudia Strada5, Riccardo Tomasoni3, Alfio Viganò4, Giorgio Zampedri4, Mauro Zambotto4 1 MuseoPROGETTO Tridentino di Scienze Naturali, Trento 2 Dipartimento di Scienze della Terra e Geologico - Ambientali, Università di Bologna 3 Geologo, libero professionista 4 Servizio Geologico - Provincia Autonoma di Trento 5 Ufficio Geologia e prove materiali - Provincia Autonoma di Bolzano - Alto Adige 6 SEA Srl, Torino Enti realizzatori Provincia Autonoma di Trento ProvinciaProvincia Autonoma Autonoma di Bolzano di Bolzano - Alto Adige Servizio Geologico CARGUfficio Geologia e prove materiali Ufficio Geologia e prove materiali Direttore del Servizio Geologico d’Italia - ISPRA: C. Campobasso Responsabile del Progetto CARG per il Servizio Geologico d’Italia - ISPRA: F. Galluzzo Responsabile del progetto CARG per la Provincia Autonoma di Trento: S. Cocco Responsabile del Progetto CARG per la Provincia Autonoma di Bolzano: V. Mair Per il Servizio Geologico d’Italia – ISPRA Revisione scientifica: D. Berti, R. Graciotti, M.L. Pampaloni, M. Pantaloni Coordinamento cartografico: D. Tacchia, S. Falcetti Coordinamento editoriale ed allestimento per la stampa: M.L. Vatovec, S. Falcetti Revisione informatizzazione dei dati geologici: L.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • The Formation of Plant Compression Fossils
    THE FORMATION OF PLANT COMPRESSION FOSSILS: EXPERIMENTAL AND SEDIMENTOLOGICAL INVESTIGATIONS by G illia n Mary Rex Thesis submitted fo r the degree of Doctor of Philosophy in the University of London Department of Botany Bedford College University of London September 1983 ProQuest Number: 10098497 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10098497 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To Bob ”The simple^ qudlitab’ive experiments described belcw are only justifiable in so fa r as they give good ideas and they can d isc re d it bad ones. For me they did both”. Professor Tom M. Harris (1974) ABSTRACT The mechanisms and processes that lead to the formation of a plant com­ pression fossil have been experimentally reproduced and studied in the present investigation. This research has used two main lines of in ve sti­ gation: f ir s t ly , experimental modelling of the fo ssilisa tio n process; and secondly, a detailed examination of plant compression fo ssils. Early experimental modelling was based on the simplest system possible.
    [Show full text]
  • System Klasyfikacji Organizmów
    1 SYSTEM KLASYFIKACJI ORGANIZMÓW Nie ma dziś ogólnie przyjętego systemu klasyfikacji organizmów. Nie udaje się osiągnąć zgodności nie tylko w odniesieniu do zakresów i rang poszczególnych taksonów, ale nawet co do zasad metodologicznych, na których klasyfikacja powinna być oparta. Zespołowe dzieła przeglądowe z reguły prezentują odmienne i wzajemnie sprzeczne podejścia poszczególnych autorów, bez nadziei na consensus. Nie ma więc mowy o skompilowaniu jednolitego schematu klasyfikacji z literatury i system przedstawiony poniżej nie daje nadziei na zaakceptowanie przez kogokolwiek poza kompilatorem. Przygotowany został w oparciu o kilka zasad (skądinąd bardzo kontrowersyjnych): (1) Identyfikowanie ga- tunków i ich klasyfikowanie w jednostki rodzajowe, rodzinowe czy rzędy jest zadaniem specjalistów i bez szcze- gółowych samodzielnych studiów nie można kwestionować wyników takich badań. (2) Podział świata żywego na królestwa, typy, gromady i rzędy jest natomiast domeną ewolucjonistów i dydaktyków. Powody, które posłużyły do wydzielenia jednostek powinny być jasno przedstawialne i zrozumiałe również dla niespecjalistów, albowiem (3) podstawowym zadaniem systematyki jest ułatwianie laikom i początkującym badaczom poruszanie się w obezwładniającej złożoności świata żywego. Wątpliwe jednak, by wystarczyło to do stworzenia zadowalającej klasyfikacji. W takiej sytuacji można jedynie przypomnieć, że lepszy ułomny system, niż żaden. Królestwo PROKARYOTA Chatton, 1938 DNA wyłącznie w postaci kolistej (genoforów), transkrypcja nie rozdzielona przestrzennie od translacji – rybosomy w tym samym przedzia- le komórki, co DNA. Oddział CYANOPHYTA Smith, 1938 (Myxophyta Cohn, 1875, Cyanobacteria Stanier, 1973) Stosunkowo duże komórki, dwuwarstwowa błona (Gram-ujemne), wewnętrzna warstwa mureinowa. Klasa CYANOPHYCEAE Sachs, 1874 Rząd Stigonematales Geitler, 1925; zigen – dziś Chlorofil a na pojedynczych tylakoidach. Nitkowate, rozgałęziające się, cytoplazmatyczne połączenia mię- Rząd Chroococcales Wettstein, 1924; 2,1 Ga – dziś dzy komórkami, miewają heterocysty.
    [Show full text]