<<

Earth-Science Reviews 127 (2013) 262–299

Contents lists available at ScienceDirect

Earth-Science Reviews

journal homepage: www.elsevier.com/locate/earscirev

Gemstones and geosciences in space and time Digital maps to the “Chessboard classification scheme of mineral deposits”

Harald G. Dill a,b,⁎,BertholdWeberc,1 a Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany b Institute of Geosciences — Gem-Materials Research and Economic Geology, Johannes-Gutenberg-University, Becherweg 21, D-55099 Mainz, Germany c Bürgermeister-Knorr Str. 8, D-92637 Weiden i.d.OPf., Germany article info abstract

Article history: The , covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite Received 27 April 2012 subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineral- Accepted 16 July 2013 ized sites. The various maps were designed based on the “Chessboard classification scheme of mineral deposits” Available online 25 July 2013 proposed by Dill (2010a, 2010b) to reveal the interrelations between deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories Keywords: were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin–tungsten, beryllium, Gemstones fl Country lithium, zinc, calcium, boron, uorine, strontium, phosphorus, zirconium, silica, , feldspathoids, zeolite, Geology amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite–andalusite, corundum–spinel−diaspore, Geomorphology diamond, vermiculite–pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems Digital maps by country) the mineral deposit is drawn on a geological map, illustrating the lithologies, stratigraphic Chessboard classification scheme units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space. The geomorphological map is to show the control of climate and subaerial and submarine hydrography on the depo- sition of secondary gemstone deposits. The digital maps are designed so as to be plotted as a paper version of different scale and to upgrade them for an interactive use and them to gemological databases. © 2013 Elsevier B.V. All rights reserved.

Contents

1. Introduction:Gemsandgeosciences...... 263 2. Gems and classificationschemesofmineraldeposits...... 263 3. Gemsinspaceandtime...... 264 3.1. Distributionbycountry(Amap)...... 264 3.2. Distributionbygeology(Bmap)...... 264 3.2.1. Archeancratons...... 264 3.2.2. Proterozoicterrains...... 264 3.2.3. EarlyPaleozoicCaledonianfoldbeltsandPaleozoicplatformsediments...... 264 3.2.4. LatePaleozoicVariscanfoldbelts...... 265 3.2.5. MesozoictoCenozoicplatformsediments,forelandandintercontinentalbasins...... 265 3.2.6. MesozoictoCenozoicAlpidicfoldbelts...... 265 3.2.7. MesozoictoCenozoicvolcanicrocksandintercontinentalgrabens...... 265 3.2.8. Magmaticrocks...... 265 3.3. Distributionbygeomorphology(Cmap)...... 266 3.3.1. Dissection...... 266 3.3.2. Processescreatinglandforms...... 266 3.3.3. Marinegeomorphology...... 266 4. Gemstonedeposits...... 266 4.1. Chromium-bearing gemstones ( — group1)...... 266

⁎ Corresponding author at: Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany. Tel.: +49 511 643 2361; fax: +49 511 643 2304. E-mail address: [email protected] (H.G. Dill). URL: http://www.hgeodill.de (H.G. Dill). 1 Berthold Weber passed away on October 4, 2013.

0012-8252/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.earscirev.2013.07.006 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 263

4.2. Nickel-bearing gemstones ( — group2)...... 266 4.3. Titanium-bearing gemstones ( — group5)...... 267 4.4. Iron-bearing gemstones ( — group7)...... 268 4.5. Manganese-bearing gemstones ( — group8)...... 268 4.6. Copper-bearing gemstones ( — group9)...... 269 4.7. Tungsten- and tin-bearing gemstones ( — group12)...... 270 4.8. Beryllium-bearing gemstones ( — group14)...... 273 4.9. Lithium-bearing gemstones ( — group15)...... 274 4.10. Zinc-bearing gemstones ( — group16)...... 274 4.11. Calcium-bearing gemstones ( — group29)...... 274 4.12. Boron-bearing gemstones ( — group30)...... 275 4.13. Fluorine-bearing gemstones ( — group32)...... 277 4.14. Strontium-bearing gemstones ( — group34)...... 277 4.15. Phosphorus-bearing gemstones ( — group38)...... 277 4.16. Zirconium-bearing gemstones ( — group39)...... 279 4.17. Silica-dominant gemstones ( — group40)...... 279 4.18. Feldspar of gem quality ( — group41)...... 284 4.19. Feldspathoids of gem quality ( — group42)...... 285 4.20. Zeolites of showcase/gemmy quality ( — group43)...... 285 4.21. Amphibole of showcase and gemmy quality ( — group44)...... 286 4.22. Olivine (peridot) of showcase and gemmy quality ( — group45)...... 286 4.23. Pyroxenoid of showcase and gemmy quality ( — group46)...... 288 4.24. Garnet-group minerals of showcase and gemmy quality ( — group47)...... 288 4.25. Epidote-group minerals of showcase and gemmy quality ( — group48)...... 292 4.26. Sillimanite-group minerals (plus high-aluminum silicates) of showcase and gemmy quality ( — group49)...... 294 4.27. Corundum and spinel group gemstones ( — group50)...... 295 4.28. Diamond deposits ( — group51)...... 295 4.29. Pagodite ( — group 58), prehnite ( — group 60) and sepiolite deposits ( — group61)...... 296 4.30.Jet/gagat(group62)andamberdeposits(group63)...... 296 5. Conclusionsandoutlook...... 296 Acknowledgments...... 296 AppendixA. Supplementarydata...... 297 296 References...... 297

1. Introduction: Gems and geosciences Data on gemstone deposits have derived from publications as well as data from the internet encompassing more than 650 datasets (not listed Gemstones are traditionally dealt with and evaluated by mineralo- in detail in this supplementary paper), from basic maps showing the gists, or to be more specific, by a special group of material scientists global distribution of gemstone (Gübelin, 1992; Shigley et al., 2010) named gemologists. To get to the bottom of the evolution of gemstone and from unpublished maps and reports of geological surveys. mineralizations and to find out where the “big three”, diamond, emerald and precious corundum varieties came from, a lot of time and effort have 2. Gems and classification schemes of mineral deposits to be invested in igneous and metamorphic petrology (Altherr et al., 1982; Golani, 1989; Jaques et al., 1990; Coenraads et al., 1995; Mitchell, Before entering into any discussion of the evolution of minerals or 1995; Oakes et al., 1996; Sutherland et al., 1998; Mercier et al., 1999; gemstones in space and time a classification scheme has to be set up Limtrakun et al., 2001; Baker et al., 2003; Yui et al., 2003; Berryman according to which this group of commodities can be presented. et al., 2004; Hetman, 2008; Scott , 2008). Only a few of these papers Currently, there is no classification scheme of gems and gemstones gen- can be quoted here. Other precious stones, may they be of jeweler's qual- erally agreed upon that might achieve a geoscientific objective like that ity or only end up in the showcase of a mineral enthusiast or rockhound, (Walton, 2004). There are many publications dealing with one group are eclipsed by the “big three” and mainly dealt with for their gemological only, e.g., ruby, or a wealth of textbooks going through the kingdom of features or listed among other nice crystals in special gemological journals gemstones from the noble diamonds through the pearls paying little at- or full-color magazines geared to attract the interest of collectors and tention to their geological origin (Garnier et al., 2008). In the present mineral enthusiasts. From whatever angle you may look at gemstones, publication, gems and gemstones are not discussed as a stand-alone material sciences obviously rank higher than geoscientificdisciplines group of minerals but are considered as an integral part of mineral de- such as geology and geomorphology. A closer look at the evolution of posits from aluminum to zirconium, both of which play an important gemstones in time and space, however, may change one's mind. A set of part in the build-up of gemstones. They were subdivided according to maps is going to be provided and briefly discussed in the succeeding sec- the “Chessboard classification scheme of mineral deposits” designed tions to make gemologists and enthusiasts in these special group of min- by Dill (2010a) to show the interrelationship of (1) ore minerals (used erals alike, acquainted with the temporal and aerial distribution of to extract metals such as Pb, Zn, Cu, Cr or looked for as a source of energy gemstone deposits on the globe (Russian Academy of Sciences Institute in case of U and Th), (2) industrial minerals and rocks (used for by virtue of Geography, 1998). The current paper is a supplement to the “Chess- of their physical and chemical properties and utilized either directly or board classification scheme of mineral deposits” (Dill, 2010a). The maps after appropriate processing) and (3) gemstones and ornamental stones are designed to be used in context with this study but they may also be (utilized for their esthetic value or for financial investment). In the handled as stand-alone items by those readers who want to know in “Chessboard classification scheme of mineral deposits” gems and gem- which countries, geomorphological environments and geological units stone ranked as high-unit-value commodities are dealt with along with gemstone deposits formed. For that reason a short introduction into the their “less shiny” brethren (red ruby of jeweler's quality vs. opaque co- geology as well as an overview of the classification scheme has been rundum used for abrasives) which are named as high-place-value com- given. modities. The latter are not measured by the carat but by the ton. In the 264 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 succeeding sections, a numerical code is given for each group of gem- They were instrumental for the ascend of magmas and reflect suture stones that is referred to in the “Chessboard classification scheme of zones of plate tectonic relevance. A rough idea of the geodynamic mineral deposits”. This allows for a direct correlation with the afore- and geological evolution of the Earth is provided in the following sec- mentioned classification scheme (Dill, 2010a). In the mentioned classi- tions so as to make the reader not fully acquainted or unfamiliar with fication scheme the keystone is a “chessboard” or “EXCEL spreadsheet”, geosciences and much more interested in material sciences better un- where the mineralogy and geology act as x- and the commodities as derstand the primary concentration of gemstones. y-axis, respectively. Magmatic and sedimentary lithologies together with tectonic structures (1-D/pipes, 2-D/veins) are plotted along the 3.2.1. Archean cratons x-axis in the header of the spreadsheet diagram representing the The Archean (plus Hadean) covers the oldest rock series on Earth columns in this chart diagram. 63 commodity groups, encompassing which formed roughly before 2500 to 3800 Ma the nucleus of today gemstones are plotted along the y-axis, forming the lines of the spread- much larger continents such as the Guyana shield, the Gabon and sheet. This “Chessboard classification scheme of mineral deposits” is Indian cratons or the Baltic shield (Wilde et al., 2001; Wyche designed as an “interactive paper” open for amendments in the elec- et al., 2004). African cratons have been essentially stable since the Arche- tronic spreadsheet version and adjustable to the needs and wants of ap- an. Nevertheless they have been repeatedly subjected in post-Archean plication, research and training in the various disciplines of geosciences time to thermal perturbations and varying degrees of metasomatic mod- and the gemological field, in particular. Therefore, no newly designed ification (Fouch and James, 2004). The extent to which cratonic keels classification scheme is prepared herein or adjusted to the set of maps. interacted with and influenced the pattern of mantle convection, by nu- Only a framework of classification is delivered so as to be filled in, if cleating small-scale edge-driven convection or by coupling plate motions needed, with a more detailed subdivision. Like the chessboard classifica- to deeper mantle flow, remains an open question (King, 2005). These tion scheme which is designed as an interactive paper and a launch pad Archean cratons underwent a polymetamorphic history locally ending for new ideas rather than the final result, these digital maps are not up in a granulite facies metamorphism at temperatures around 750 °C designed as a global model on gemstone evolution but to be used as a under low CO2 streaming, as demonstrated for the aluminous granulites basis to kickstart investigation by different geoscientists into distribu- of the Archean Kasai craton, DR Congo, and the Qianxi Group from east- tion of gemstones in time and space. ern Hebei Province, China (Jahn and Zhang, 1984; Bingen et al., 1988). Only the larger coherent cratons are shown on the map. Smaller cratonic 3. Gems in space and time parts squeezed into and preserved as slices within younger fold belts have not been shown for reasons of scale and readability. The Archean In the following paragraphs gemstones in their broadest sense are crust reveals its close temporal relationship to the gemstone within the not treated as to the p–T pathways which they evolved along or as to mining provinces of , southern India and Sri Lanka (Peucat their minor impurities and chromophores that may enhance or worsen et al., 1989; Milisenda, 1991). their quality but with respect to their areal distribution on the globe and their evolution through the geological past. To address this issue a set of 3.2.2. Proterozoic terrains three digital maps has been created for each of these high-unit-value The Proterozoic eon lasted longer than the Archean and ended commodities and the gemstones shown by country (A map), by geology 542 Ma from now. This era is marked by some fundamental changes af- (B map) and geomorphology (C map). Each of the tripartite sets of maps fecting the atmosphere which changed from a reducing to an oxygenated is grouped around one commodity only and available in a set of digital one and rendered the abundance in banded iron formation deposits fea- maps. sible during the first half of the Paleoproterozoic (Bartley and Kah, 2004; Canfield, 2005). The climatic conditions saw a change from high temper- 3.1. Distribution by country (A map) atures to a globe wide glaciation and the geodynamic regime can be com- pared for the first time with modern plate tectonic processes reflected by The geographic map in this paper showing the name and political the onset of continental drift and the creation of a large supercontinent borders of each country is self-explanatory by illustrating the locality of Rodinia (Sial et al., 1999; Meert and Torsvik, 2003; Pesonen et al., 2003; origin of a gemstone or gem's mining province on the globe. It reveals Eyles and Januszczak, 2004): During the Mesoproterozoic era (1600 to where the major resources of gemstones are and may contribute to the 1000 Ma), the first proven evidence of an orogeny, the Grenville orogeny, issue of legal and ethical restrictions on the trade in gems and assist can be found, earlier ones are less well documented in the lithological to sort out “blood gemstones” if required. An article by Shigley et al. record. From around 900 to 700 Ma this supercontinent began falling (2010) reviews the geographic sources of diamonds and colored stones, apart, splitting up along grabens into different fragments, e.g., Amazonia, as well as the areas of both natural and cultured pearls, that were com- Baltica, Laurentia and Siberia. mercially important during the years 2001–2010. These data were inte- grated in the maps and the user is referred to this report for further 3.2.3. Early Paleozoic Caledonian fold belts and Paleozoic literature cited there under. The geological and geomorphological maps platform sediments illustrating the gemstone deposits in relation to their host rock geology The Caledonides, covering the Cambrian through the Devonian, and prominent structure zones as well as geomorphology are an amend- represent an orogen, encompassing the Appalachians in North ment to this study. America, North and East Greenland, Spitzbergen, the north-western British Isles and Western separated from each other through 3.2. Distribution by geology (B map) the Atlantic. There is paleontological, sedimentological and paleomag- netic evidence that in the Caledonian orogenic belt resulted The geological map has been modified and trimmed to the require- from the collision of Baltica and Laurentia (Cocks and Torsvik, 2006). ments of this study using as geological basis the studies from the The Caledonides are visible evidence of the assembly of the superconti- Russian Academy of Sciences Institute of Geography (1998).Themap nent of Pangaea from the Ordovician through the Silurian periods, with shows the stratigraphy, encompassing sedimentary and metamorphic the Taconic and Acadian phases as the most prominent tectonic distur- rocks from the Archean to the Quaternary. Magmatic rocks have been bances (Torsvik et al., 1996; Tanner and Bluck, 1999; Stampflietal., subdivided as to their silica contents and given from ultrabasic to felsic 2002). The landmasses created throughout this orogeny include magmatic rocks for the major interval of the geological timetable. Volca- Laurentia; the continent composed of North America and Greenland, nic and intrusive rocks were high lightened by different symbols. Prom- Baltica; part of Scandinavia, and Gondwana Land; with South America, inent fault and thrust zones acted as pathways for mineralizing fluids. Africa and eastern (Glen, 2005). The Iapetus was the ocean H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 265 closed during the collision of plates in course of the Caledonides. Off et al., 2009). Large areas in the central parts of the north American these mobile fold belts vast synclines subsided into the ancient cratons cratons are covered with Mesozoic and Cenozoic platform sediments, filled with platform sediments such as in North America (Cincinnati locally, extending into the adjacent foreland basins of the Alpidic fold Arch) and the Baltic Syncline. During the Devonian, deep molasse basins belts at the edge of these cratons. Such foreland basins evolved in con- subsided alongside the rising mountain chain in NW Europe and tinental collision zones as elongate depressions next to actively modern northern America to take up the debris of the “Old Red Continent” fold belts, such as the south American Andes, the Rocky Mountains in uplifted in the wake of the Caledonides. The term “Old Red” refers to northern America, the Alpine Mountain Chain and the Himalayas the most prevailing rock color of siliciclastic sediments (sandstones (Bieg et al., 2007). Their development is closely coupled with the tec- and arenites) which were laid down predominantly in a well-aerated tonic evolution of the mountain range which they are spatially linked continental depositional environment. Epicontinental Paleozoic platform with. Taking an antithetical position relative to the foreland basins, sediments spread across southernmost America, central Africa, Australia the passive margin basins contain some of the world's largest sediment and Siberia (Noll and Hall, 2006). accumulations, often attaining a thickness measuring in the tens of kilometers such as the Bengal and Mississippi basins. 3.2.4. Late Paleozoic Variscan fold belts The Variscan orogeny contributed to a significant increase of the 3.2.6. Mesozoic to Cenozoic Alpidic fold belts landmass on the northern hemisphere from the upper Devonian through The modern Alpine–Himalayan fold belts extending across Eurasia the Permian. This geodynamic process is widespread in Europe and the circum-Pacific mountain range with the north American extending from the highlands of western Portugal to eastern Poland in Cordillera, the south American Andes and the “Fire Belt” in the western the Bohemian Massif. The orogenic event triggered by Late Paleozoic Pacific are closely related with some types of basin already described in continent–continent collision between Euramerica or Laurussia and the previous section located near active margins. In the geological map Gondwana conduced to the evolution of the supercontinent of Pangaea the range from the Triassic to the Neogene. These mobile fold belts (Matte, 2001). Small isolated Precambrian blocks such as Avalonia and stand out from the stable platform sediments by deep-seated promi- Armorica were squeezed into the collision zone (Behr et al., 1984). Dur- nent thrust zones parallel to the strike of the orogen, e.g. in the Andes ing the northward motion of Gondwana two oceanic domains the Rheic or the Himalayas. Towards the oceans many of these modern fold and Theic oceans, were closed in early Devonian times (Franke, 1989). belts are bounded by subduction zones. The tectonic movements re- The Rheic and Theic oceanic lithospheres were consumed by subduction sponsible for the build-up of these high altitude mountain chains underneath the Armorica–Barrandia blocks. Subduction of oceanic and began during the lower Cretaceous and faded out during the Paleogene continental lithosphere was accompanied by high-pressure metamor- as far as the Alps a collisional orogen are concerned. About 65 Ma from phism leading to eclogites and granulites between 440 Ma and ago India split off from Africa and first began heading southward and 390 Ma. During the Permo-Carboniferous felsic igneous rocks intruded then straight northward towards its present position. Subsequently, ap- into the folded and thrusted orogen. In North America the Ouachita proximately 45 Ma ago the Himalayas began to develop as the Indian and Appalachian Mountains, the fold belts in New England, Nova Scotia Plate was colliding with the Eurasian Plate (Steck et al., 1993; Yin, and Newfoundland formed part of the Variscides. Opposite to the 2006). The non-collisional orogen of the Andes came into existence Appalachian Mountains before the opening of the Atlantic Ocean during due to the subduction of the Nazca plate beneath the south American the Jurassic, the Moroccan Meseta and the Anti-Atlas Mountains devel- Plate which started during the Jurassic and still lasting today thereby oped in NW Africa. Variscan mountains are also in the Pamir, the causing an intensive igneous activity shown in the geological map a Tianshan, Eastern Australia and other Asian fold belts. The connection strong uplift which may be deduced from the geomorphological maps withtheAsianpartsisoverprintedbytheAlpineorogeny.Somemassifs (Gregory-Wodzicki, 2000). within the Alpine mountain chain such as the Mercantour, Montblanc and Aar Massif in the Western Alps are remnants of the southern 3.2.7. Mesozoic to Cenozoic volcanic rocks and intercontinental grabens Variscan mountain chains engulfed by rocks of a much younger orogeny Only those volcanic rocks at outcrop over vast areas are shown on the discussed later. A further step towards consolidation of the landmass geological maps in the following sections. Many of the volcanic fields are on the northern hemisphere towards the east was achieved when bounded by deep-seated lineamentary fault zones which fostered the Siberia, which was approaching from the northeast, collided with vast amount of magma to ascend to the surface. It is a rather heteroge- Laurentia and produced the Ural Mountains during the latest Paleozoic neous group of magmatic rocks emplaced in the course of two contrast- (Scotese, 2002). ing geodynamic events. The igneous rocks, exemplified by the Andes, developed along a subduction zone as two plates collided — see Andean 3.2.5. Mesozoic to Cenozoic platform sediments, foreland and fold belt, whereas much of the areas on the map to be covered with intercontinental basins volcanic rock are located where plates moved apart from each other Analysis of modern basins is at the core of geoscientificworkandthe creating deep-seated lineamentary faults that acted as vents for plateau data gathered in the course of these investigations found an outlet in basalts in the USA, India, Ethiopia and Siberia. While in the afore- comprehensive publications issued by Ingersoll (1988), Allen and mentioned areas the feeder channels are concealed by the volcanic Allen (1990) and Miall (1996). Intercontinental or intracratonic basins rocks, the intercontinental grabens and the volcanic rocks genetical- mostly relatively shallow and circular in shape formed within stable ly lined up with them are shown side-by-side along the East-African continental interiors, such as the Michigan–Illinois basins in the Middle Rift and the Red Sea–Jordan Rift. In other areas, the sedimentary West of the USA, the Moscow basin on the Russian platform and the basin fill of these grabens prevails over the amount of magmatic Congo basin in Africa. Intracontinental basins filled with Mesozoic and rocks vented along graben subsidence, e.g., in Nigeria or Germany. Cenozoic sediments began subsiding by the Late Permian and Mesozoic Other basinal structures such as the pull-apart basins form in areas break-up of Pangaea. Early siliciclastic sediments a result of the uplift undergoing transform, strike-slip tectonics (San Andreas fault-zone in and denudation of the Variscides may be called “New Red” by analogy California, USA). These narrow and deep basins are characterized by ex- with its predecessor sediments representing the Devonian molasse of tremely fast subsidence. the Caledonides. Some of the large basins are the Sahara basin filled with continental Triassic, Jurassic, and Cretaceous sediments and the 3.2.8. Magmatic rocks Mesozoic Ordos Basin in China (Makhous et al., 1997; Guiraud, 1998; The classification of magmatic rocks into intrusive and volcanic MacGregor and Moody, 1998). The latter intercontinental basin is rocksisbasedontheQ–A–P–F diagram combined with the pigeonhole bounded by deformed polyphase orogenic belts on all margins (Ritts diagram by Le Maitre et al. (2005) that uses the SiO2 content (wt.%) and 266 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

the sum of Na2OandK2O(wt.%)(Streckeisen, 1980). It yields a subdivi- (Dill et al., 2013). The last-mentioned paper addresses the chemical res- sion into ultrabasic rocks, basic, intermediate and acidic magmatic rocks idues on a global basis in relation to climatic geomorphological changes. suitable to describe the host rock lithologies in the “Chessboard classifi- cation scheme of mineral deposits” and these maps alike (Dill, 2010a). 4. Gemstone deposits

3.3. Distribution by geomorphology (C map) In the current overview of gemstone deposits for each commodity the general classification scheme (for example 1a A, 51b J) is presented Nature is the most effective and economic processing plant to sepa- based on the “Chessboard classification scheme of mineral deposits”. rate the gangue/thrash minerals from the ore or, in terms of gemology, Those types of deposits of importance for gemstones are highlighted the high-quality from the low-quality material. Sedimentological in the classification scheme and some references are given. For further processes operative in the field of clastic deposits are not matched by information the reader is referred to the paper of Dill (2010a). any technical device of mineral dressing, nor is there any process as cost-effective as separation on erosion and transport. Erosion, transport, 4.1. Chromium-bearing gemstones (Table 1 — group 1) abrasion and the impact of chemical weathering during transit give rise to the full range of placer deposits from residual to coastal placer Minerals under consideration: uvarovite, chromium diopside and deposits (Dill, 2010b). Forward modeling and exploration of gemstone Cr-chalcedony (mtorolite): placer deposits in continental areas, include heavy mineral analysis Classification scheme: and lithofacies terrain analysis (Dill, 1998, 2005; Dill, and Ludwig, (1) Magmatic chromium deposits 2008). Terrain and heavy mineral analyses may be used in two different ways. They may help delineate secondary placer deposits containing (1) Stratiform chromite deposits (1a A) gemstones and/or precious metals (, platinum group minerals) (2) Podiform chromite deposits (1b A) and they may act as an “ore guide” and lead the exploration geologist (3) Concentric chromite deposits (1c A) to a primary deposit of these high-unit-value commodities (Dill et al., (4) Chrome diopside mineralization in kimberlites (1d A) 2007, 2009). (2) Sedimentary chromium deposits Second to none is the wide range of colored gemstones developing as (1) Cr concentration in laterites and saprolites (1a H) a result of chemical weathering of bedrocks enriched in Cu, Ni, P and Cr (2) Mtorolite mineralization (1b H) but barren as to minerals of gemological interest or attractive to minerals (3) Chromite placer deposits (1a I) enthusiasts (e.g. turquoise, chrysoprase, malachite, chrysocolla). (3) Metamorphic chromium deposits The geomorphological map combined with time slices illustrating the (1) Uvarovite and Cr-bearing sphene gem deposits (1e A) (paleoclimate) during the most recent parts of the Earth history may be key to localize secondary gemstone deposits at a proximal or dis- tal position relative to the primary deposits plotted onto the geological Bultfontein-Kimberley South Africa Chrome Magmatic Khokhryakov map. diopside rocks et al. (2002) Mtoroshanga Zimbabwe Mtorolite Sedimentary Willing and 3.3.1. Dissection (Mutorashanga) rocks Stocklmayer (2003) The paleogradients are shown by the degree of dissection in moun- Saranovskoye Russia Uvarovite Metamorphic Spiridonov tainous areas which is synonymous with the section “Mesozoic to rocks et al. (2006) Cenozoic Alpidic fold belts” referred to under geology and plains and plateaus which evolved on more stable parts of the earth crust. Con- trasts in altitude are the most decisive effect when it comes to the accu- Chromium-bearing minerals of gemological interest are associated mulation of placer minerals. with a more common gemstone in kimberlitic pipes worldwide. Many deposits which are listed under the header “diamonds” may also qualify 3.3.2. Processes creating landforms for a site relevant to chrome diopside. Dispersed in alluvial and fluvial Alluvial glacial, eolian processes etc. are driven by the changing drainage systems around diamondiferous pipes this mineral may rank fi climatological regime and signi cantly shape the surface of the earth as an ore guide. Together with further indicator minerals such as pyrope (Tricart and Cailleux, 1958; Büdel, 1977; Summerfield, 1991; Bremer, garnets, ilmenite and spinel in surficial sediments they are useful for the 1993; Thomas, 1994, 1995; Dill et al., 2005, 2006; Glennie, 2005; recovery of kimberlitic pipes (Muggeridge, 1995) (see C map). Mtorolite Turkington and Paradise, 2005; Migoń,2006). They have a major impact may be described as chemical residue (silcrete) on top of ultrabasic on the concentration of heavy or placer minerals and chemical residues rocks, whereas uvarovite and the less widespread Cr-bearing sphene or duricrusts bearing gemmy materials (Goudie and Pye, 1983; Wilson, are observed in the primary rocks underneath (Proenza et al., 1999) 1983). There are landforms, such as volcanoes, which are controlled by (see B map). the lithology and endogenous processes rather than climate which can only modify their outward appearance. The same is true to biological 4.2. Nickel-bearing gemstones (Table 2 — group 2) processes in the sea which only indirectly suffer from climatological changes and are responsible for the reefal deposits. The latter bridge Minerals under consideration: chalcedony (chrysoprase) the gap into marine landforms. Classification scheme:

3.3.3. Marine geomorphology (1) Magmatic nickel deposits An increasing amount of placer-type deposits is going to be mined (1) Stratiform Ni–Cu-PGE deposits in the basal zone of (ultra) from the submarine shelf. Often the geomorphological features on land basic complexes (Sudbury–Stillwater-type) (2a A) may be traced into genetically equivalent submarine features. Combin- (2) Cu–Ni-PGE/PGM pipes in stratiform deposits (2b A) ing the geomorphology and geology of primary gemstone deposits be- (3) Cu–Ni deposits in the basal ultramafic parts of Greenstone comes a means of forward modeling of submarine placer deposits. Belts (2c A) While the geomorphological series of maps link the formation of (1) Komatiitic subtype landforms to the accumulation of heavy minerals and the development (2) Dunitic subtype of gem placer-type deposits, another study is complementary to this (3) Picritic subtype H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 267

Table 1 Table 1 (continued) Chromium. Number Locality Country

Number Locality Country 76 Pike Co.-Murfreesboro USA 1 Lunda Sul Province Angola 77 Mountain-Boulder USA 2 Trial Harbour district Australia 78 Ithaca Tompkins USA 3 Yinnietharra Station Australia 79 Kenosha Co. USA 4 Mount Anakie Australia 80 Mtoroshanga (Mutorashanga) Zimbabwe 5 Kununurra Australia 6 Mount Abbott Australia 7 Kraubath Austria 8 Islitz Alp/Virgen Valley Austria (4) Cu–Ni-PGE deposits in rift-related volcanic host rocks 9 Letlhakane District Botswana (Duluth–Norilsk-type) (2a B) 10 Araçuaí-Jequitinhonha valley Brazil – – – 11 Estrie-Québec Canada (5) Synvolcanic synorogenic Ni Cu (Co) deposits (2b B) 12 Watson Lake Mining District-Itsy Mts Canada (2) Structure-related nickel deposits 13 Buffalo Hills Canada (1) Ni vein-type deposits (Ag–Bi–Co–Ni–U association) (2a G) 14 Contwoyto Lake Canada (3) Sedimentary nickel deposits 15 Nunavut Territory Canada (1) Ni laterite (2a H) 16 Gauthier Township Timiskaming District Canada – 17 Hanzhong Prefecture-Shaanxi Province China (1) Ni Co laterite (Cawse-type) 18 Anqing Prefecture-Anhui Province China (2) Ni–(Co) laterite deposits (Niquelandia–New Caledonia- 19 Lianyungang Prefecture-Jiangsu Province China type) 20 Panshishan-Nanjing Prefecture China (2) Mixed-type hypogene–supergene Ni deposits (Uralian-type) 21 Weihai Prefecture-Shandong Province China (2c H-2d A) 22 Yimeng Shan-Linyi Prefecture China 23 Mayarí-Baracoa Belt Cuba (3) Chrysoprase-bearing laterite (2b H) 24 Třebenice-Ústí Region Czech Republic (4) Shale-hosted Ni–Zn–Mo-PGE deposits (Black shale-type) 25 Benshangul-Gumaz Province Ethiopia (2a J) 26 Kemi Finland (5) Manganese nodules (2a M) 27 Outokumpu-Itä-Suomen Lääni Finland 28 La Chaise-Dieu-Haute-Loire France Chrysoprase developed on moderately deep dissected landscapes in 29 Aveyron-Midi-Pyrénées France the course of weathering of basic to ultrabasic rocks. The best exposures 30 Massat-Ariège-Midi-Pyrénées France 31 Aulus-les-Bains-Col d'Agnès France and of economic interest are found in Australia. 32 Vourinos-Kozáni Prefecture Greece 33 Karnataka-Mysore District India 34 Saint-Marcel-Aosta Valley Italy Binti Binti Australia Chrysoprase Sedimentary Vasconcelos and Singh 35 Genova Province Italy rocks (1996) 36 Malenco Valley-Sondrio Province Italy 37 Ossola Valley-Piedmont Italy 38 Carbonia-Iglesias Province Italy 39 Hokkaido Japan 4.3. Titanium-bearing gemstones (Table 3 — group 5) 40 Nagano Prefecture Japan 41 Ehime Prefecture-Shikoku Island Japan Minerals under consideration: titanite, benitoite and rutile (sagenite) 42 Samani-cho-Hidaka Province-Hokkaido Japan Classification scheme: 43 Aktobe Province Kazakhstan 44 Butha-Buthe District Lesotho (1) Magmatic titanium deposits 45 Tenoumer area-Tiris Zemmour Region Mauretania (1) Ti–Fe–(V) deposits related to maficintrusions(5aB) 46 Shavaryn Tsaram-Arhangay Aimag Mongolia 47 Bou Azzer District Morocco (2) Ti-bearing metasomatized gabbros (5b B) 48 Calana-Nampula Province Mozambique (3) Ti–Nb–Zr–REE deposits related to carbonatites and agpaites 49 Velfjorden- Norway (5a E) 50 Oppdal-Vinstradalen Norway (2) Structure-related titanium deposits 51 Røros-Feragen Norway (1) Sphene in Alpino-type fissure veins (5a G) 52 Beerenberg-Jan Mayen Island Norway 53 Uglvik (Ugelvik) Norway 54 Storakersvatn-Rana Norway 55 - Norway 56 Skardu District Pakistan 57 Luzon-Zambales Province Philippines Table 2 58 Slyudyanka (Sludyanka)-Prebaikalia Russia Nickel. 59 Biserskoye Ural Russia 60 Nurali complex-Bashkortostan (Bashkiria) Republic Russia Number Locality Country 61 Inagli Massif Russia 1 Binti Binti Australia 62 Daldyn Russia 2 Boyce Creek East Chrysoprase Australia 63 Avacha (Avachinskaya Sopka)-Kamchatka Oblast' Russia 3 Cronulla Minerals Australia 64 Verkhotina-Zimny Bereg District Russia 4 East Coolgardie/Mason (25) Australia 65 Lydenburg District-Mpumalanga Province South Africa 5 Gianni J Australia 66 Koffiefontein South Africa 6 Goongarrie Australia 67 Bultfontein-Kimberley South Africa 7 Marshall Creek Australia 68 Warrenton-Mount Rupert South Africa 8 Menzies Australia 69 Lelatema Mts-Arusha Region Tanzania 9 Spargoville Australia 70 Olmani Hill Tanzania 10 Taurus Australia 71 Kop Daglari-Erzurum Province Turkey 11 Warrawanda Creek Chrysoprase Australia 72 Halibut Bay USA 12 Wingellina Australia 73 Cerbat Mts USA 13 Yerilla–Boyce Creek Group Australia 74 Diablo Range USA 14 Paderu India 75 Buell Park-Apache Co. USA 15 Haneti Tanzania

(continued on next page) 268 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 3 (2) Structure-related iron deposits Titanium. (1) Iron oxide breccias with Cu–Au–Ag–U(7bE) Number Locality Country (2) Vein-type unconformity-related hematite deposits (7a G) (3) Thrustbound siderite veins (7b G) 1 Fargon Meeru Afghanistan 2 Capelinha Brazil (3) Sedimentary iron deposits 3 Karur, Kunjampalayam India (1) Carbonate-hosted (metasomatic) deposits 4 Ankarafa Madagascar (1) Fe-base metal-barite vein-type and replacement de- 5 Akuressa, Kamburupitiya Sri Lanka posits (7a K) 6 Elahera, Kongahawela Sri Lanka 7GalleSriLanka(2) Polymetallic siderite and magnesite replacement deposits 8 Kataragama Sri Lanka (7b K) 9 New Idria District USA (2) Continental Fe deposits (1) Eluvial–alluvial Fe placer deposits (7a I) (2) Fluvial–lacustrine and bog iron ores (7c H) (3) Claybands and blackbands (7a J–7a N) (3) Sedimentary titanium deposits (4) Laterite (“ferrites”), bean and karst Fe ores (7a H–7b H– (1) Ti–Nb laterites and bauxites (Ti only as byproduct) (5a H) 7d H–7c K–7d K) (2) Ti placer (5a I) (5) Residual Fe related to evaporites (7e KL) –fl (1) Alluvial uvial (3) Marine ironstones (2) Marine (eolian) (1) Oolithic ironstones (Minette-/Wabana types) (7c IJ) (4) Metamorphic titanium deposits (2) Detrital iron ore deposits (7b I) (1) Benitoite-bearing serpentinite and glaucophane schists (3) Marine Fe placer deposits (7d I) (5c A) (4) Pyrite deposit (gemstone-showcase) Pyrite in marls (7f K) (2) Rutile-bearing metagabbros and eclogites (5c B) (4) Metamorphic iron deposits Titanium-bearing gemmy material is represented by sphene in (1) Metamorphosed deposits (Algoma-type) (7g BCD) Alpino-type fissure veins, where it is frequently associated with minerals (2) Marine iron formation (banded iron formation/BIF), including like chlorite and adularia. Benitoite is exclusively found as a high-quality semi-precious hematite (7d J) and faceable material with some combination of natrolite, joaquinite, Iron minerals such as hematite and pyrite are mainly found in and neptunite on serpentinite. showcases or used for ornamental purposes. Local craftsmen may sometimes use both of these minerals for necklaces and bracelets. Apart from the sedimentary and some metamorphic deposits no Untersulzbachtal Austria Sphene Veins Dill (2010a) (titanite) mining activity is centered around these Fe minerals. Extraordinary New Idria District USA Benitoite Metamorphic Laurs et al. specimens may be found in a wide range of magmatic and structur- rocks (1997) ally related deposits but only won as by-product, in order to increase the salary of miners. 4.4. Iron-bearing gemstones (Table 4 — group 7)

Minerals under consideration: hematite, marcasite and pyrite Classification scheme: Navajún (Province La Rioja) Spain Pyrite Sedimentary Dill (2010a) rocks (1) Magmatic iron deposits Itabira Brazil Hematite Metamorphic Orlandi and (1) Fe Ti–Fe–(V) deposits related to mafic intrusions (high Ti) rocks Pezzotta (1997) (7a B) (2) Apatite-bearing Fe oxide deposits (low Ti) (7a CD) — (3) Apatite-bearing Fe oxide deposits related to alkaline igneous 4.5. Manganese-bearing gemstones (Table 5 group 8) rocks (1) Titanomagnetite–magnetite–apatite deposits (7a E) Minerals under consideration: rhodochrosite, rhodonite and sugilite fi (2) REE–apatite Fe deposit (7b E) Classi cation scheme: (4) Contact metasomatic Fe deposits (Fe skarn) (1) Magmatic manganese deposits (1) Ca skarn Fe deposit (7c CD) (1) Sedimentary/volcanic-exhalative marine Mn deposits (2) Mg–(B) skarn Fe deposit (7d CD) (SEDEX to VOLCEX) (8b BC–8c B–8c D) (3) Na–Cl skarn Fe deposit (7e CD) (2) Volcano-sedimentary lacustrine (8b D) (4) Fe sulfide skarn (7f CD) (3) Epithermal Mn in places with gem quality rhodochrosite (5) Volcanic-hosted Fe (unmetamorphosed) deposits (7b BCD) (8d D) (4) Rhodonite skarn (8e D) (2) Structure-related manganese deposits

Table 4 (1) Hydrothermal unconformity-related vein-type deposits Iron. (8a G) (2) Mixed-type unconformity-related vein-type deposits (8b Number Locality Country GH–8b K) 1 Itabira Brazil (3) Rhodochrosite veins (8c G) 2 Cleator Moor Great Britain (3) Sedimentary manganese deposits 3ElbaItaly 4 Rio Marina-Gavorrano Italy (1) Shallow marine Mn deposits with/without remobilization in 5 Hunzala Peru subaerial regimes (8a I–8a K) 6 Navajun Spain (1) Clastic-hosted deposits (8a I) 7 Lower Peninsula USA (2) Carbonate-hosted (8a K) H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 269

Table 5 (4) Supergene manganiferous deposits (8a H) Manganese. (1) Bog iron ores on siliciclastic bedrocks Number Locality Country (2) Manganiferous replacement deposits hosted by calcare- ous rocks 1CapillitasArgentina 2BendemeerMine1Australia(4) Metamorphic manganese deposits (prevalently sedimentary 3 Black Jack Mountain Australia protore) 4BlackJewelAustralia(1) Manganiferous banded iron formation with sugilite (8a 5 Black Swan Australia BCD–8a J) 6BlueDuckAustralia 7BrokenHillAustralia(2) Rhodonite gemstone deposits (8b J) 8 Brown and Kellys Australia 9 Bullock Range Manganese Mine Australia Manganese is chemically next of kin to Fe but offers a much wider spec- 10 Bungendore Creek Manganese Australia trum of gemological use, as shown by the various gemstones in magmatic, 11 Burraki Manganese Mine Australia structural-related and metamorphic Mn deposits (Cairncross and 12 Cawtes Manganese Prospect Australia 13 Charmant Vue Australia Dixon, 1995; Marquez-Zavalia et al., 1999; Paar et al., 2004; Bartos, 14 Cooee Creek Manganese Australia 2005; Putz, 2005). The fold belts along the western edge of the 15 Den Manganese Mine Australia Americas are enriched in magmatic Mn deposits achieving gem quality. 16 Fentons Australia 17 Fogartys Manganese Australia 18 Glen Morangie Australia 19 Grahams Australia Capillitas Argentina Rhodochrosite Magmatic Marquez-Zavalia 20 Heather Glen Australia rocks et al. (1999) 21 Hobbs Gully Australia Undukiin Buuts Mongolia Rhodonite Magmatic Kievlenko (2003) 22 Ivy Ellen Mine Australia rocks 23 Kootingal Australia Sacarimb Romania Rhodochrosite Veins Dill (2010a) 24 Manganese Mountain Australia Wessel Mine South Africa Sugilite Metamorphic Shigley et al. (1987) 25 Mount Jasper Australia rocks 26 Mount Lowry Australia Broken Hill Australia Rhodonite Metamorphic Millsteed (2006) 27 Mount Mcdonald Australia rocks 28 Ogunbil Rhodonite Australia 29 O'Neills Australia 30 Orchard Australia 31 Pacey Mine Australia — 32 Paddys Australia 4.6. Copper-bearing gemstones (Table 6 group 9) 33 Peel View Australia 34 Pikes Area Australia Minerals under consideration: turquoise, malachite, azurite, 35 Pine Glen Australia chrysocolla, and cuprite 36 Pinnacle Australia Classification scheme: 37 Red Gully Australia 38 Red Hill Australia (1) Magmatic copper deposits 39 Rollos Australia 40 Roseneath Australia (1) Stratiform Cu- PGE-Ni-deposits in the basal zone of (ultra) 41 Rylefire Mine Australia basic complexes (9a A) 42 Rywung Station Australia (2) Cu–Ni deposits in the basal ultramafic parts of Greenstone 43 Spring Creek Rhodonite Australia Belts (9b A) 44 Spring Valley Australia (3) Cu- PGE/PGM-Ni-pipes in stratiform deposits (9c A) 45 Stratton Australia 46 Stronghurst Australia (4) Cu- PGE-Ni deposits in rift-related volcanic host rocks (9a B) 47 Tammy Marie Australia (5) Carbonatite-hosted Cu deposits (9b E) 48 Tamworth Australia (6) Native copper deposits in zeolitized basic volcanics associated 49 Tarwonga Australia with red beds (9b B) 50 Ti Tree Creek Australia 51 Turnbull And Gordons Mine Australia (7) Manto-type Cu deposits within volcanics and volcaniclastics 52 Unnamed Australia (9b CD) 53 Warrabah Rhodonite Deposit Australia (8) Shallow high- and low-sulfidation Cu–Au–Ag deposits (9a CD) 54 Woods Manganese Australia (9) Alkalic intrusion-related Au–Ag–Te–Cu veins (9a E) 55 Conselheiro Lafaiete Brazil (10) Porphyry Cu deposits including co-magmatic breccia pipes 56 Williams Lake Canada – – 57 Tongren China (1) Calcalkaline porphyry Cu Au Mo deposits and 58 Ylistaro Finland Cu–(Mo) breccia pipes (9d D) 59 Undukiin Buuts Mongolia (2) Alkalic porphyry Cu–Au/diorite porphyry copper (9d E) 60 Huachocolpa Peru (11) Cu skarn deposits (9f CD) 61 Oyón Peru (12) Volcanic massive sulfide deposits (VMS) 62 Yauli Peru 63 Yekaterinburg Russia (1) Kuroko-type (9c D) 64 N'Chwaning South Africa (2) Besshi-type (9c B) 65 Wessels Mine Near Kuraman South Africa (3) Cyprus-type (9d B) 66 LÕngban Sweden (4) Iberian-type (9e B–9e D) 67 Võrmlands Lõn Sweden 68 Alma USA (5) VMS deposits of unknown type in medium to high 69 Pikes Peak USA grade metamorphic terrains (9g BCD) 70 Sweet Home USA (13) Turquoise in amygdulal basalts (9f B) (2) Structure-related copper deposits (1) Unconformity-related Cu iron-oxide and selenium vein-type (2) Mn deposits in black shales (8c J) deposits (9a G) (3) Mn nodules in deep-marine depositional environments (in (2) Thrustbound polymetallic Cu vein deposits (9b G) parts endogenous) (8a M) (3) Cu–U–Au–REE–Fe deposits of the Olympic-Dam-type (9b F) 270 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 6 Copper-bearing gemstones are either hydrothermal in origin or su- Copper. pergene and mainly bound to magmatic rocks which primarily are Number Locality Country abundant in Cu (porphyry Cu deposits). Not surprisingly, modern fold belts have a better potential than old cratons. From geomorphological 1 Amaroo Australia 2 Burra Australia and climatic point of view, supergene Cu minerals occur in two ribbons 3 Edi Australia NandSoftheequator. 4 George Creek Australia 5JervoisRange Australia 6 Little Gap Well Australia 7 Mount Lorigan Australia Chah Iran Turquoise Magmatic rocks Dill (2010a) 8Sandover Australia Sinai Peninsula Egypt Turquoise Sedimentary rocks Abdelhadi (1999) 9 Tomakin Point Australia 10 Wagonga-Grants Australia 11 Whitfield Australia 12 Itacupim Island Brazil 13 Chuquicamata Chile 4.7. Tungsten- and tin-bearing gemstones (Table 7 — group 12) 14 Batang GarzÛ China 15 Chamdo China Minerals under consideration: scheelite and cassiterite 16 Huangcheng China Classification scheme: 17 Huoshosi China 18 Jinliantong Mine, Zhushan China (1) Magmatic tin–tungsten deposits 19 Labashan China (1) Sn–Ta–Nb pegmatites (12a D) 20 Nghari-Khorsum China 21 Shanyang China (2) Granitic skarn deposits 22 Yangchun China (1) Proximal Sn–(W) skarn deposits (Erzgebirge–Cornwall- 23 Yungaisi China type) (12c CD) 24 Yunxian China (2) Distal skarn/replacement deposits (manto-type) (12d D) 25 Zhushan China – 26 Kolwezi Democratic Republic of (3) Post-granitic Endo- and exogranitic Greisen vein in S- and the Congo A-type granites and breccia pipe deposits (12b DE) 27 Abu Zuneima Egypt (4) Porphyry-type and subvolcanic deposits 28 Sinai Egypt (1) W–Mo deposits (12a C) 29 Gunheath Pit-Saint Austell Great Britain (2) Sn–(Ag–Pb–Zn–Cu) vein-type deposits (12b C) 30 Nischapur In The Kuh-I-Binalud Mountains Iran – 31 Eilat Israel (5) Stratiform Sn Wdeposits(?) 32 Karakaralinsk Kazakhstan (6) Volcanic massive sulfide Pb–Zn–Cu deposits (VMS) (12d C) 33 Kazakhskaya Kazakhstan (1) Iberian-type – 34 Cuitaca Cananea Mexico (2) Structure-related tungsten deposits 35 El Aguajito/Municipio De Ensenada Mexico – 36 Municipio De Cananea Mexico (1) Thrustbound Au W deposits (12a G) 37 Zacatecas Mexico (3) Sedimentary tin–tungsten deposits 38 Ganta Nigeria (1) SEDEX/SMS Pb–Zn–Ag–FeS–(Sn) deposits (12a J) 39 Indus Valley Pakistan (2) Sn laterite (residual placer) deposits (12a H) 40 Nishni Tagilsk Russia (3) Sn placer deposits sensu stricto (12a I) 41 Kouroudiako Senegal –fl 42 Arizona USA (1) Alluvial uvial 43 Battle Mountain USA (2) Marine 44 Bisbee USA 45 Bishop Mine Lynch Station USA Scheelite of metasomatic origin may in some cases attain 46 California USA jeweler's quality as at Ratnapura gem field, Sri Lanka, where it is 47 Cripple Creek (Colorado) USA also accompanied by more prestigious minerals such as emerald 48 Globe Gila USA and taaffeite. 49 Manassa USA 50 Morenci USA 51 Nevada USA 52 Santa Fe Mount Chalchihuitl USA Various tin Erzgebirge, Cassiterite Magmatic rocks Dill (2010a) 53 Sleeping Beauty USA veins Germany/Czech 54 Auminzatau Mts. Uzbekistan Republic + 55 Ungurlikan Uzbekistan Bolivian Andes Ratnapura Sri Lanka Scheelite Magmatic + Fernando gem field sedimentary et al. (2005) rocks

(3) Sedimentary copper deposits (1) (Volcano)-sedimentary Cu-bearing Fe sulfide deposits (SEDEX) (9b J) (2)Sandstone-hostedCudeposits(SHSCD) (1) Sulfidic Cu deposit (9a I) (2) Non-sulfidic Cu deposits (9b I) Table 7 – (3) Shale-hosted Cu deposits Tungsten tin. (1) Kupferschiefer (9a J) NUMBER LOCALITY COUNTRY – (2) Copper cobalt belt (9c J) 1a Ratnapura Sri Lanka (4) Turquoise–malachite/azurite–chrysocolla deposits in super- 1b Ratnapura Sri Lanka gene alteration zone shales (9a H) 2b Kunene Region Nambia (5) Hg–Sb–Ge–Zn–Pb-bearing limestone-hosted Cu deposits 3b Mogok Myanmar 4b Viloco Mine Loayza Province Bolivia (9a K) H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 271

Table 8 Table 8 (continued) Beryllium. Number Locality Country Number Locality Country 76 Pilao Acado Brazil 1 Badel Afghanistan 77 Pirenopolis Goias Brazil 2 Chitral Afghanistan 78 Porangatu Brazil 3 Darra-i-Pech, Gur-Salak, Kala, Khana Khana, Afghanistan 79 Resplendor Brazil Paroon Valley 80 Rio Grande Do Norte Brazil 4 Gur-Salak Konar Province Afghanistan 81 Salininha Brazil 5 Kalaigal, Kantiwa, Munjagal, Nishai, Waigal, Warma Afghanistan 82 Sant Ana Dos Ferros Brazil 6 Khash Afghanistan 83 Santa Leopoldina Brazil 7 Kunar Afghanistan 84 Santa Teresinha de Goiás Brazil 8 Kurgal, Sharnya, Titin Afghanistan 85 Santa Tereza Brazil 9 Mawi, Nilaw-Kolum Afghanistan 86 Sao Joao Grande, Sao Joao do Sabuji Brazil 10 Panjshir Valley Afghanistan 87 Socoto Brazil 11 Papra, Paprowk Afghanistan 88 Tauß-Ceara Brazil 12 Las Palomas-San Luis Argentina 89 Teixeira (Bahia) Brazil 13 Sierra De Ancasti Argentine 90 Teófilo Otoni, Topázio Brazil 14 Sierra De Cordoba Argentine 91 Terra Branca Minas Gerais Brazil 15 Sierra De San Luis Argentine 92 Triunfo Brazil 16 Sierra Velazco Argentine 93 Valadares Brazil 17 Aga Khan Emerald Australia 94 Vila Pancas Brazil 18 Comet Vale Australia 95 Vitória de Conquista Brazil 19 Emmaville Australia 96 Boli (Heilongjiang) China 20 Gascoyne Australia 97 Danba China 21 Mcphees Hill Australia 98 Fujiang China 22 Menzies Australia 99 Hebei China 23 Poona Australia 100 Hehe China 24 Tatong Australia 101 Hubei China 25 Wonder Well-Menzies Australia 102 Jianmusi China 26 Habachtal Austria 103 Jianxi China 27 Acari, Carnaúba dos Dantas, Parelhas Brazil 104 Kotokay China 28 Agua Boa, Malacacheta Brazil 105 Kuangding China 29 Alcobaca Brazil 106 Maguan-Malipo China 30 AnagÚ Bahia Brazil 107 Malipo China 31 Anajé Brazil 108 Molongshan–Honghe China 32 Aracuaí, Coronel Murta, Virgem da Lapa Brazil 109 Pingwu China 33 AraþuaÝ Brazil 110 Qinghai China 34 Baixo Guandu Brazil 111 Qinjiafan China 35 Barnabas Pindobaþu Brazil 112 Quinghe Mountains China 36 Barra De Salinas Rubelita Brazil 113 Shanxi China 37 Borborema Brazil 114 Sichuan China 38 Brumado Piraja (Serra Das Eguas), Bahia Brazil 115 Yuanyang China 39 Caicara, Tenente Ananias Brazil 116 Chivor, Gachalá, Macanal Colombia 40 Campo Formoso, Pindobacu Brazil 117 Coscuez Colombia 41 Capoeirana-Nova Era Minas Gerais Brazil 118 Gachala Colombia 42 Caraí, Padre Paraíso Brazil 119 La Pita Colombia 43 Carnaiba Region Brazil 120 Macanal Colombia 44 Castelinho Brazil 121 Muzo, Maripí (La Pita), San Pablo de Borbur, Yacopí Colombia 45 Castelo Brazil 122 Penas Blancas Colombia 46 Catuji Brazil 123 Yacopi Colombia 47 Colatina Brazil 124 Kobokobo Congo 48 Conselheiro Pena Brazil 125 Kafubu Democratic Republic 49 Corrego Da Mata Near Itanhem Brazil of the Congo 50 Doce Brazil 126 TunugdliarfikDenmark-Greenland 51 Equador, Pedra Lavrada Brazil 127 Marsa Alam Red Sea Hills Egypt 52 Espirito Santo Brazil 128 Wadi Sikeit Egypt 53 Espirito Santo-Colatina Corrego Alegre Brazil 129 Adola Ethiopia 54 Ferros, Hematita, Itabira, de Itabira Brazil 130 Carrara Near Harar Ethiopia 55 Galiléia,Sao Geraldo do Baixio Brazil 131 Luumõki Finland 56 Governador Valadares Brazil 132 Harris Great Britain 57 Hematita Brazil 133 Invercauld Great Britain 58 Itaberai Goias Brazil 134 Knoydar Great Britain 59 Itabira Brazil 135 Addatigala India 60 Itaguacu Brazil 136 Ajmer India 61 Itamaraju Brazil 137 Araku Valley, Borra India 62 Itambé Brazil 138 Aruvikkara, Uzhamalakkal India 63 Itanhém Brazil 139 Balangir India 64 Jaguaribe Area Brazil 140 Basha Valley, Braldu Valley, Shigar Valley India 65 Lajes Pintadas Brazil 141 Chintapalli India 66 Macarani, Malquinique Brazil 142 Coimbatore India 67 Manhuacu Brazil 143 Deobhog India 68 Medina Brazil 144 Dindigul India 69 Mimoso do Sul, Muqui Brazil 145 Godavari (Kakinada) India 70 Minacu Brazil 146 Hazaribag India 71 Monte Santo Brazil 147 Hunza Valley India 72 Ouro Preto Brazil 148 Indus Valley India 73 Pancas Brazil 149 Kadavur India 74 Paraíso do Tocantins Brazil 150 Kakaoria India 75 Pedra Azul Brazil (continued on next page) 272 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 8 (continued) Table 8 (continued) Number Locality Country Number Locality Country

151 Kaliguman India 226 Alto Ligonha Mozambique 152 Kangayam, Padiyur, Tiruppur India 227 Alto Molócuè Mozambique 153 Kanniyakumari India 228 Chalaua, Moma Mozambique 154 Kantabanji India 229 Gillé, Ile, Murrua, Uape Mozambique 155 Karur, Kunjampalayam India 230 Lalaua Mozambique 156 Khammam India 231 Malema Mozambique 157 Kolattupuzha India 232 Marávia Mozambique 158 Koraput India 233 Maria Iii Mine Mozambique 159 Kurumbapatti India 234 Mayfield Mozambique 160 Madurai India 235 Milange Mozambique 161 Nawapara India 236 Mocuba Mozambique 162 Nayyar, Ooruttambalam India 237 Morrua District Mozambique 163 Orissa India 238 Muiane Mozambique 164 Palni India 239 Mutarara Mozambique 165 Panwar India 240 Nihame Mozambique 166 Pattalai India 241 Zambue Mozambique 167 Phulabani India 242 Bernardmyo, Kabaing, Kyatpyin, Myanmar, Birma 168 Quilon India Kyauksin, Mogok 169 Raipur India 243 Kume Myanmar, Birma 170 Rajasthan India 244 Mogok Myanmar, Birma 171 Rajgarh India 245 Molo Myanmar, Birma 172 Rayagada India 246 Momelk (Mong Mit) Myanmar, Birma 173 Rayikot India 247 Erongo Mountains, Klein Spitzkoppe, Namibia 174 Salem India Tubussis 175 Sambalpur India 248 Kawab Namibia 176 Sarwad (Sarwar) India 249 Rössing Namibia 177 Shahpura India 250 Spitzkopje Namibia 178 Sivapuram India 251 Akwandoka, Akwanga Nigeria 179 Srikakulam India 252 Bomo Nigeria 180 Subarnapur India 253 Egbe Nigeria 181 Sunjam India 254 Gwantu, Nandu Nigeria 182 Swat Valley India 255 Igbo Ora Nigeria 183 Tarapuram India 256 Ijebo Igbo Nigeria 184 Tirunelveli India 257 Jos Nigeria 185 Udaipur-Ajmer India 258 Kwoi Nigeria 186 Varusha Nadu India 259 Nassarawan, Eggon, Shabu Nigeria 187 Vishakhapatnam India 260 Okene Nigeria 188 Vizianagaram India 261 Okuta Nigeria 189 Zanskar India 262 Olonde Nigeria 190 Baragoi District Kenya 263 Paikolo Nigeria 191 Embu–Meru Kenya 264 Byrud-Eidsvoll Norway 192 Ambatondrazaka Madagascar 265 Eidsvoll Norway 193 Ambatovita Madagascar 266 Iveland Norway 194 Amboasary Madagascar 267 Apaligun Pakistan 195 Ambodibakoly, Irondro, Kianjavato, Morafeno Madagascar 268 Bulache (Gilgit) Pakistan 196 Ambohidrano, Mahasolo, Soavinandriana Madagascar 269 Chamachhu Pakistan 197 Ambohimanitra, Antandrokomby, Manjaka, Madagascar 270 Doko-Baltistan–Gilgit Pakistan Mount Bity 271 Dusso (Baltistan-Gilgit) Pakistan 198 Ambositra Madagascar 272 Gandao Pakistan 199 Analalava District Madagascar 273 Godarpur Pakistan 200 Andapa District Madagascar 274 Khaltaro-Gilgit Pakistan 201 Andilamena Madagascar 275 Nagar Hunza Valley Pakistan 202 Andongologo, Anjanabonoina, Antsikoza, Madagascar 276 Nilaw Pakistan , Vohitrakanga 277 Shigar Valley Pakistan 203 Andravory District Madagascar 278 Shingus-Dusso Pakistan 204 Andriamena Madagascar 279 Stak-Nala Pakistan 205 Ankadilalana Madagascar 280 Swat Pakistan 206 Ankazobe-Vohambohitra Madagascar 281 Swat Mingora Pakistan 207 Antandrokomby Madagascar 282 Tisgtung Pakistan 208 Antsirable, , Soamiakatra Madagascar 283 Adun-Tschilon Mountain Russia 209 Antsongombato Madagascar 284 Ekaterinburg Russia 210 Betafo-Antisabe Madagascar 285 Malyshevo Russia 211 Boriziny Madagascar 286 Miass Russia 212 Madagascar 287 Mursinska District Russia 213 Ifanadiana Madagascar 288 Sanarka Russia 214 Madagascar 289 Sherlovaya Gora Russia 215 Irondro Madagascar 290 Ural Russia 216 Isahara Madagascar 291 Berbera Somalia 217 Lake Alaotra District Madagascar 292 Booroma (Alihiley) Somalia 218 Mahajamba Madagascar 293 Booroma (Simodi) Somalia 219 Malakialina Madagascar 294 Baviaanskap South Africa 220 Mananjary Madagascar 295 Bvb Ranch South Africa 221 Mansoala District Madagascar 296 Cobra Pit South Africa 222 Marjao-Ankazobe Madagascar 297 Danie South Africa 223 Tsaratanana 2 Madagascar 298 Esmefour South Africa 224 Voandambo Madagascar 299 Farrell South Africa 225 Mzimba Malawi 300 Granville South Africa H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 273

Table 8 (continued) 4.8. Beryllium-bearing gemstones (Table 8 — group 14) Number Locality Country

301 Gravelotte South Africa Minerals under consideration: beryl (emerald, aquamarine, heliodor, 302 Josephine South Africa morganite, goshenite), pezzottaite, chrysoberyl (alexandrite), phenakite, 303 Keimoes South Africa euclase, hambergite, rhodizite, taaffeite and tugtupite 304 Leeuw Kop South Africa Classification scheme: 305 Leeuwspruit South Africa 306 Willie South Africa (1) Magmatic beryllium deposits 307 Akuressa, Kamburupitiya Sri Lanka (1) Beryl–emerald–euclase–hambergite-bearing granite pegma- 308 Ambalangoda Sri Lanka 309 Balangoda Sri Lanka tites (14a D) 310 Deniyaya, Morawaka Sri Lanka (2) Taaffeite-and emerald-bearing skarns (14c D) 311 Hambantota Sri Lanka (3) Replacement deposits in volcaniclastic deposits and granites 312 Hatton, Maskeliya Sri Lanka (14b D) 313 Kaikawala, Matale, Rattota Sri Lanka (4) Be-bearing alkaline intrusive rocks (nepheline syenite) 314 Kalawana, Niwitigala Sri Lanka 315 Kolonne, Rakwana Sri Lanka (14a E) 316 Lunugamwehera, Tissamaharama Sri Lanka (5) Tugtupite-bearing alkaline intrusions (14b E) 317 Nawalapitiya Sri Lanka (6) Chrysoberyl within rare element pegmatites (14c E) 318 Opanayaka, Pelmadulla Sri Lanka (7) Beryl-bearing pegmatoids (14d D) 319 Pattara Sri Lanka 320 Ratnapura Sri Lanka (2) Structure-related beryllium deposits 321 Zolotaia Voda Tadjikistan (1) Aquamarine veins (14a G) 322 Kukurt Tajikistan (3) Sedimentary beryllium deposits 323 Chala, Sumbawanga Tanzania (1) Regolith-hosted emerald deposits (gemstone) (14a H) 324 Lake Manyara Tanzania (2) Alluvial–fluvial chrysoberyl placer (14a I) 325 Loliondo Tanzania 326 Lumesule , Muhuwesi River Tanzania (3) Black shale-hosted emerald deposits (gemstone) (14a J) 327 Makanjior Tanzania (4) Metamorphic beryllium deposits 328 Mangola-Endamangha Tanzania (1) Schist-related emerald deposits with or without pegmatitic 329 Mayoka Tanzania mobilizates (gemstone) (14a AB) 330 Mtetesi River, Tunduru Tanzania 331 Nyamtumbo Tanzania (2) Chrysoberyl in pegmatitic mobilizates in the contact zone of 332 Sibweza Tanzania (1) Metaultrabasic rocks (14b A) 333 Songea Tanzania (2) Metapelites (14b J) 334 Sumbawanga Tanzania 335 Wolodarsk Ukraine There is undoubtedly a dominance of beryllium-bearing gem- 336 Boise USA stones within the older cratons, which have been disrupted by 337 Haddam USA modern plate tectonics, such as the opening of the Atlantic Ocean 338 Hiddenite USA (see the Brazilian and Nigerian provinces) and the fragmentation 339 Little Three Mine, Ramona USA 340 Macon USA of the eastern edge of which was accompanied by a motion 341 Pikes Peak USA of Madagascar, Sri Lanka and India towards the NE. The southern 342 Thomas Range USA paleo-continent called Gondwana has the highest potential for Be- 343 Topsham USA bearing gemstones, while the Caledonides and Variscides, with 344 Wah Wah USA 345 Wah-Wah Mountains USA some exceptions are undernourished with regard to Be deposits. In 346 An Phu, Bai Da Lan, Khai Trung, Luc Yen, Vietnam addition to a fertile source rock lithology, deep-seated lineamentary Minh Tien, Minh Xuan, Tan Lap, Truc fault zones were crucial as to the emplacement of Be-bearing gem- 347 Phu Tho Vietnam stone deposits. 348 Qui Chau, Qui Phong Vietnam 349 Thach Khoan Vietnam 350 Xuan Le Area Vietnam 351 Chama Zambia 352 Itezhi-Tezhi Zambia Minas Gerais Brazil Beryl emerald Magmatic/pegmatite O'Donoghue 353 Kapiri Mposhi Zambia euclase rocks (2006) 354 Luanshya (Kufubu River) Zambia hambergite 355 Lundazi Area Zambia Mt. Painter Australia. Taaffeite emerald Magmatic plus O'Donoghue 356 Miku Mine Zambia metasomatic (2006) rocks 357 Muyombe Zambia TunugdliarfikDenmark– Tugtupite Magmatic rocks Jensen and 358 Ndola Rural Zambia Greenland Petersen 359 Sambesi Graben Zambia (1982) 360 Benson Zimbabwe Triunfo Brazil Chrysoberyl Magmatic/pegmatitic Walton (2004) 361 Bikita Zimbabwe rocks 362 Chikwanda Zimbabwe Thach Khoan Vietnam Beryl Magmatic/pegmatitic Dill (2010a) 363 Filabusi Zimbabwe rocks 364 Kadoma Zimbabwe Pelly USA Aquamarine Vein Turner et al. 365 Karoi-Miami Zimbabwe Mountain (2007) 366 Machingwe Zimbabwe Volcanic Belt 367 Masvingo Zimbabwe Itabira Brazil Emerald Sedimentary rocks Dill (2010a) 368 Mberengwe Zimbabwe (Minas 369 Mutoko, Rushinga Zimbabwe Gerais) Teixeira Brazil Chrysoberyl Magmatic plus Dill (2010a) 370 Mwani Baboon Hill Zimbabwe (Bahia) sedimentary rocks 371 Novello Mine Zimbabwe Yacopi Colombia Emerald Sedimentary rocks Giuliani et al. 372 Sandawana Zimbabwe Black shales (2000) 373 Sandawana-Belingwe District Zimbabwe Swat Valley Pakistan Emerald Metamorphic Arif et al. 374 Somabhula Zimbabwe rocks +/− (1996) pegmatitic mobilizates 274 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 9 (3) Polymetallic Ag–Zn–Pb skarn deposits Lithium. (1) Skarn deposits s.s. (16d CD) Number Locality Country (2) Skarn–vein-type deposits (mixed-type) (16e CD) (4) Volcanic massive sulfide Pb–Zn–Cu–In deposits (VMS) 1 Mawi, Nilaw-Kolum Afghanistan 2 Conselheiro Pena Brazil (1) Kuroko-type (16c D) 3 Divino das Laranjeíras Brazil (2) Besshi-type (16c B) 4 Galiléia, Sao Geraldo do Baixio Brazil (3) Cyprus-type (16d B) 5 Lavra Do Tim Near Galileia Brazil (4) Iberian-type/Greenstone-belt-type (16e B–16e D) 6 Ambatovita Madagascar 7 Ambohimanitra, Antandrokomby, Manjaka, Mount Bity Madagascar (5) VMS deposits in medium to high grade metamorphic 8 Andongologo, Anjanabonoina, Antsikoza, Mahaiza, Madagascar terrains of unknown type (16f BCD) Vohitrakanga (2) Structure-related lead–zinc deposits 9 , Betafo, Soamiakatra Madagascar (1) Unconformity-related Pb–Zn–F–Ba deposits (16a G) 10 Ilakaka Madagascar (2) Thrustbound and fold-related Pb–Zn deposits (16c G) 11 Voandambo Madagascar fi fi 12 Gillé, Ile, Murrua, Uape Mozambique (3) Replacement deposits (sul dic and non-sul dic) (16b G) 13 Bernardmyo, Kabaing, Kyatpyin, Kyauksin, Mogok Myanmar (3) Sedimentary lead–zinc deposits 14 Pandogari Nigeria (1) SEDEX/SMS Pb–Zn–Ag–(Ba)–FeS–(Sn) deposits (16a J) 15 Altai Russia (2) Sandstone-hosted Pb–(Zn) deposits 16 Kataragama Sri Lanka fi 17 Macon USA (1) Sul dic subtype (16a I) 18 Pala USA (2) Non-sulfidic subtype (16b I) (3) Carbonate-hosted Pb–Zn–(Ag) deposits (sulfidic and non- sulfidic) (1) Pb–Zn–Ba–F–(Ag) flexure- to horstbound sulfidic de- 4.9. Lithium-bearing gemstones (Table 9 — group 15) posits (plus gem-quality sphalerite) (16b K) (2) Pb–Zn–(As–Ba) flexure- to horstbound sulfidic–non- fi Minerals under consideration: spodumene (hiddenite, kunzite), sul dic (16c K) – – – – – fi – amblygonite and petalite (3) Pb Zn Ba Ag (Ni Co) horstbound sul dic (non- fi Classification scheme: sul dic) (16c K) (4) Pb–Zn–Ge–Mo faciesbound sulfidic (16e K) 1) Magmatic Li and Cs deposits (5) Carbonate–evaporite-associated Pb–Zn deposits (16f KL) 1) Pegmatitic Li (including gem spodumene) and Cs deposits (15a D) (6) Karst-related non-sulfidic Ba–Zn–(Pb) deposits (16a– – – 2) Li Cs Rb in rhyolitic tuffs with Be and F (15b D) 16b H) 2) Sedimentary Li and Cs deposits (7) Non-sulfidic Zn hypogene–(supergene) replacement 1) Brine deposits and salars (15a L) deposits (16a K) fi 1) Geothermal waters and oil- eld formation waters (4) Ge-enriched coal seams (16a N) 2) Li brines within playas in Chile (4) Metamorphic lead–zinc deposits (16b J) 2) Clay deposits (15a J) fi 1) Hectorite in altered volcaniclastic rocks related to hot-spring Zinc is rst and foremost together with lead the main commodity in activity the supply chain of base metals. The only type of Zn deposit which may bring about red and yellowish brown gem-quality sphalerite is the It is only the pegmatites which may brought about minerals of carbonate-hosted MVT mineralization of the Áliva Mine at Picos de jeweler's quality. The geology of lithium-bearing gemstones is quite Europa, Spain. similar to that of beryllium yet without providing such gemstone clus- ters recognized in the geological map of beryllium. It is the chemical af- filiation of both elements and their preferred concentration in late stage Picos de Europa Spain Sphalerite Sedimentary Gómez Fernández and highly-differentiated felsic rocks which makes both geological rocks et al. (2000) maps to resemble closely each other. There is conspicuous geodynamic control on the distribution of Be and Li mineralization worldwide. 4.11. Calcium-bearing gemstones (Table 11 — group 29)

Conselheiro Pena Lavra Brazil Spodumene Magmatic/ Delaney (1996) Minerals under consideration: calcite (Iceland spar), aragonite, do Tim/Galileia pegmatite rocks “pearls” and “corals” Classification scheme: — 4.10. Zinc-bearing gemstones (Table 10 group 16) 1) Magmatic calcium carbonate deposits 1) Carbonatites (sövite) (29a E) Minerals under consideration: sphalerite and gahnite 2) Basalt-hosted Iceland spar deposits (29a B) fi Classi cation scheme: 2) Structure-related calcium carbonate deposits (1) Magmatic lead–zinc deposits 1) Unconformity-related calcite-bearing F–Ba–Pb–Zn–Uveinde- (1) Polymetallic Sn–(Ag–Pb–Zn–Cu) vein-type deposits in inter- posits (29a G) mediate subvolcanics (16a C) 2) Deep-seated calcite vein-type deposits (29b G) (2) In-bearing Zn–Sn–Cu veins and replacement deposits in 3) Sedimentary calcium carbonate deposits granites (16a D) 1) Continental calcitic limestone deposits (29a H) 2) Continental eolian calcitic sediments (loess) (29a I) Table 10 3) Marine calcitic limestone (plus marls) deposits (29a K–J) Zinc. 4) Ca-bearing biological gem material (29a N) 4) Metamorphic calcium carbonate deposits Number Locality Country 1) Contact-metamorphic and regionally-metamorphosed marble 1 Picos De Europa Las Monforas Spain (29b K) H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 275

Table 11 Table 12 Calcium. Boron.

Number Locality Country Number Locality Country

1 El Jazair Algeria 1 Darra-i-Pech Gur-Salak Kala Khana Khana Afghanistan 2 La Calle Algeria Paroon Valley 3 Broome Australia 2 Diwaneh Baba Afghanistan 4 Cygnet Bay Australia 3 Kalaigal Kantiwa Munjagal Nishai Waigal Afghanistan 5DarwinAustralia Warma 6 Shark'S Bay Australia 4 Korgal Laghman Afghanistan 7 Thursday Island Australia 5 Kunar Province Afghanistan 8 Bahrain Bahrain 6 Kurgal Shamya Titin Afghanistan 9 Chang Jiang China 7 Lagham Province Afghanistan 10 Guangzhou China 8 Mawi Nilaw-Kolum Afghanistan 11 Haikou China 9 Nilaw Afghanistan 12 Ishigaki China 10 Nuristan Afghanistan 13 Mijako China 11 Papra Paprowk Afghanistan 14 Pescadores China 12 Forrestania Australia 15 Tai Hu China 13 Gascoyne Australia 16 Tsushima Egypt 14 Warriedar Tourmalinealine Australia 17 Dahlak Eritrea 15 Willsons Promotory Australia 18 La RÚole France 16 Yinnietharra Australia 19 Tittling Bayerischer Wald Germany 17 Cochabamba Bolivia 20 Sardinia Italy 18 Acari Carnaúba dos Dantas Parelhals Brazil 21 Ago-Wan Japan 19 Agua Boa Malacacheta Brazil 22 Biwa-Ko Japan 20 Aracuaí Coronel Murta Virgem da Lapa Brazil 23 Goto Island Japan 21 AraþuaÝ Brazil 24 Kujyukushima Island Japan 22 Borborema Province Brazil 25 Okinawa Japan 23 Burmado Brazil 26 Uwajima Japan 24 C¾rrego Do FaÝsca Brazil 27 Nossi Be Madagascar 25 Conselheiro Pena Brazil 28 Malta Malta 26 Divino das Laranjeíras Brazil 29 Paulus Island Palau 27 Equador Pedra Lavrada Brazil 30 Las Perlas Panama 28 Frei Martinho Brazil 31 Samarai Island Papua New Guinea 29 Gailéia Sao Geraldo do Baixio Brazil 32 Devec Philippines 30 Governador Valadares Brazil 33 Maderia Portugal 31 Jequitinhonha Province Brazil 34 Jiddah Saudi Arabia 32 Paraiba Brazil 35 Agulhas South Africa 33 Quixeramobim Brazil 36 Gulf of Mannar Sri Lanka 34 Rio Doce Province Brazil 37 Phuket Thailand 35 Rio Grande Do Norte Brazil 38 Sfax Tunisia 36 Salgadinho Brazil 39 Appleton USA 37 Salinas Brazil 40 Lower Peninsula USA 38 Sao José da Safira Virgolândia Brazil 41 Cat Ba Vietnam 39 Solonópole Brazil 42 Ha Long Vietnam 40 Fugong China 43 Nha Trang Vietnam 41 Gongshan China 44 Phu Quoc Island Vietnam 42 Koktokay China 43 KuruÚrte China 44 Talate China 45 Manono Democratic Republic of The maps reveal sites of jeweler's quality to be concentrated around the Congo the equator in nearshore marine environments. Pearls and to limited 46 Virunga Democratic Republic of extent corals form part of the biomineralization which in the strict the Congo sense only becomes part of the geology (paleontology) after entering 47 Walikale Democratic Republic of the Congo the cycle of fossilization. 48 Qarusulik-Amaralik Denmark-Greenland 49 Kuortane Finland SW-Guizhou China Iceland spar Magmatic rocks Zhaochang 50 Araku Valley Borra India Basalt (1994) 51 Boudh India Ha Long, Nha Trang, Vietnam Pearls Sedimentary rocks Long et al. 52 Jharsuguda India Phu Quoc Island (2005) 53 Kashmir India 54 Sambalpur India 55 Vishakhapatnam India 4.12. Boron-bearing gemstones (Table 12 — group 30) 56 Chawia Manoa Mgama Taita Hills Kenya 57 Kisoli Kuranze Lasamba Hill Mwakinsunzuru Kenya Minerals under consideration: elbaite (Paraiba-tourmaline, indigolite, 58 Mangare Mukongonyi Mwachango Rukanga Kenya 59 Narok Kenya rubellite, verdelite), liddicoatite, dravite, schorl, axinite, danburite, 60 Alakamisy Intenina Madagascar datolite, dumortierite, jeremejevite, kornerupine, painite, , 61 Ambatofinandrahana Madagascar sinhalite and poudretteite 62 Ambatondrazaka Madagascar Classification scheme: 63 Ambatovita Madagascar 64 Ambohimanitra Antandrokomby Manjaka Madagascar (1) Magmatic boron deposits Mount Bity 65 Andongologo Anjanabonoina Antsikoza Madagascar (1) Pegmatites bearing tourmaline–danburite–dumortierite– Mahaiza Vohitrakanga kornerupine mineralization (30a D) 66 Anjanabonoina Madagascar (2) Skarn bearing axinite–serendibite–sinhalite mineralization 67 Antsirabe Betafo Soamiakatra Madagascar (30b D) (continued on next page) 276 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 12 (continued) Table 12 (continued) Number Locality Country Number Locality Country

68 Betroka Madagascar 143 Neelum Valley Pakistan 69 Bevaondrano Madagascar 144 Paprok Pakistan 70 Madagascar 145 Altai Russia 71 Ilakaka Madagascar 146 Bortschowotschnom Russia 72 Isahara Madagascar 147 Mursinska District Russia 73 Sahatany District Madagascar 148 Avissawella Pugoda Sri Lanka 74 Taolagnaro Madagascar 149 Badulla Sri Lanka 75 Valozoro Madagascar 150 Balangoda Sri Lanka 76 Baja California Mexico 151 Elahera Kongahawela Sri Lanka 77 Charcas Mexico 152 Embilipitiya Sri Lanka 78 Alto Ligonha Mozambique 153 Kolonne Rakwana Sri Lanka 79 Alto Molócue Mozambique 154 Okkampitiya Sri Lanka 80 Chalaua Moma Mozambique 155 Passara Sri Lanka 81 Gilé Ile Murrua Uape Mozambique 156 Polonnaruwa Sri Lanka 82 Macuvo Mozambique 157 Ratnapura Sri Lanka 83 Marávia Mozambique 158 Daluni Tanzania 84 Muiane Mozambique 159 Kalalani Kigwase Mwakijembe Umba Valley Tanzania 85 Murupane Murrua Mozambique 160 Komolo Merelani Hills Lelatema Mountains Tanzania 86 Nacala-a-Velha Mozambique 161 Landanai Lossongonoi Naberera Nurujuruju Tanzania 87 Namecuna Mozambique 162 Matombo Mkuyuni Mvuha Uluguru Tanzania 88 Nametil Mozambique Mountains 89 Naquilite Naquissupa Mozambique 163 Mnazi Tanzania 90 Nhampassa Mozambique 164 Sanga-Sanga Tanzania 91 Pataguenha Mozambique 165 Usambara Mountains Tanzania 92 Ribaue Mozambique 166 Black Mountain Dunton Mine USA 93 Bernardmyo Kabaing Kyatpyin Kyauksin Mogok Myanmar 167 Mount Auburn USA 94 Karenni Hill-Hsa Taw Myanmar 168 Mount Mica USA 95 Makmai Myanmar 169 Pala USA 96 Mogok Myanmar 170 Ramona USA 97 Molo Myanmar 171 San Diego County USA 98 Momeik (Mong Mit) Myanmar 172 Wah Wah USA 99 Mong Hsu Myanmar 173 Luc Yen Vietnam 100 Mong Long Myanmar 174 Chipata Zambia 101 Mong Pan Myanmar 175 Kabwe Zambia 102 Pawn Chaung Myanmar 176 Lukusuzi Zambia 103 Singu Myanmar 177 Lundazi Zambia 104 Aukas Namibia 178 Mkushi Zambia 105 Brandberg Namibia 179 Nyimba Zambia 106 Eausiro Namibia 180 Gwanda Zimbabwe 107 Erongo Mountains Klein Spitzkoppe Namibia 181 Masvingo Zimbabwe Tubussis 182 Mwami Zimbabwe 108 Karibib Namibia 109 Klein-Spitzkopje Namibia 110 Kubas Namibia 111 Neu Schwaben Namibia (3) Contact metasomatic/skarn Fe–B deposits and datolite– 112 Omapyo Namibia danburite mineralization (30b CD) 113 Outjo Namibia (4) Metaultrabasic to basic rock bearing datolite–kornerupine 114 Uis Namibia mineralization (30d A) 115 Usakos Namibia 116 Hyakule Nepal (5) Poudretteite-bearing alkaline magmatic complexes (30a E) 117 Jajarkot Nepal (2) Sedimentary boron deposits 118 Khumbu Nepal (1) Playa lakes and lagoons with B–(As–Sb–Li) brines (hot 119 Phakuwa Nepal brine-related) (30b J) 120 Akwandoka Akwanga Nigeria – – – 121 Are Nigeria (2) Playa lake with B (As Sr Li) (lacustrine-syn(dia)genetic) 122 Babana Nigeria (30c J) 123 Budo Iseyin Nigeria (3) Salars with Li–K–Cs–(B) (30a L) 124 Garatu Nigeria (4) Residual deposits (30b L) 125 Ijero Ekiti Nigeria (5) Evaporites/byproduct (30c L) 126 Ilorin Nigeria 127 Itasa Nigeria (6) Volcano-sedimentary B deposits/metamorphosed SEDEX 128 Kagarko Nigeria deposit (30e J–30e L) 129 Keffi Nigeria (7) B in plant remains (30a N) 130 Komu Nigeria (3) Metamorphic boron deposits 131 Kontagora Nigeria 132 Lemo Ndeji Nigeria (1) Al-enriched gneiss bearing dumortierite and kornerupine 133 Ogbomosho Nigeria (30e HI) 134 Ora Nigeria (2) Mg-enriched schists (white schists) bearing kornerupine 135 Oro Nigeria (30d KL) 136 Pandogari Nigeria – 137 Sarkin Pawa Nigeria (3) Cr-bearing tourmalinites in serpentinite limestone contact 138 Astore Valley Pakistan zones (30b A) 139 Batwash Gah Mir Malik Nanga Parbat Pakistan (4) Datolite–danburitemarble(30eK) 140 Hoh Braldu ValleyBasha Valley Pakistan Shigar Valley Precambrian host rocks of the same age juxtaposed across the Atlantic 141 Hunza Valley Pakistan and Indian Ocean basins play a significant part for the concentration of 142 Kantiwa-Ye lya Pakistan tourmaline on what is called Gondwanaland. About 200 Ma ago this H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 277 continent broke apart into pieces which are located now in South that may fetch some reasonable prices. Its moderate hardness and per- America (Brazil), southern (Namibia) and central Africa (Nigeria) as fect , however, disqualify this mineral as gemstone in the strict well as eastern Africa, where the fragmentation of the continent is still sense. going on along the eastern African rift. The tourmaline provinces on the Indian subcontinent and western Australia have driven far off the former Wah-Wah USA Topaz Magmatic rocks Christiansen nucleus of Gondwana. Laurasia is host only to a few sites containing tour- Mountains Volcanites et al. (1986) maline of gem quality. Underneath the ice shield of Antarctica and along St. Ann's Zimbabwe Topaz Magmatic rocks Schulz et al. Hurungwe Granites (1993) the submarine fans of the Indian Ocean some tourmaline may still be District expected. Nabburg–Wölsendorf Germany Fluorite Veins in various Dill and Weber host rocks (2010) Ouro Preto Brazil Topaz Veins in dolomitic Hoover (1992) Borborema Brazil Tourmaline Magmatic rocks Delaney (1996) limestones province Danburite Pegmatite Northern Pennines Great Britain Fluorite Sedimentary rocks Fisher (2004) Dumortierite Calcareous rocks Kornerupine Santa Cruz River Brazil Topaz Sedimentary rocks Delaney (1996) Namaqualand South Africa Dumortierite Metamorphic Waters and Unconsolidated Kornerupine rocks, Moore (1985) siliciclastic paragneisses rocks/placer Sar-e-Sang Afghanistan Kornerupine Metamorphic Grew (1988) rocks, white schists 4.14. Strontium-bearing gemstones (Table 14 — group 34) Jajarkot Nepal Datolite– Metamorphic This paper danburite rocks, marble Minerals under consideration: celestite Classification scheme: (1) Magmatic strontium deposits — 4.13. Fluorine-bearing gemstones (Table 13 group 32) (1) Strontianite-bearing carbonatites (34a E) (2) Structure-related strontium deposits fl Minerals under consideration: topaz and uorite (1) Hydrothermal vein-type barite deposits enriched in Sr fi Classi cation scheme: (34a G) (2) Hydrothermal vein-type celestite–strontianite deposits (1) Magmatic deposits (34c G) (1) Fluorite deposits related to granitic intrusions and fluorite (3) Epithermal vein-type deposits of fluorite and celestite skarn W–Sn and Pb–Zn deposits (32e D) (34b G) (2) Fluorite deposits related to U–REE carbonatites and alkaline (3) Sedimentary strontium deposits intrusive rocks (32a E) (1) Residual and karst-related celestite deposits (34a H) (3) Granite-related Be–Nb–Ta–fluorite deposits (32d D) (2) Celestite–fluorite–barite base metal deposits in platform (4) Pegmatite-hosted F–(Sc) deposits (32a D) carbonates (MVT) (34a K) (5) Volcanic-hosted F–U–Mo deposits (32g CD) (3) Diapir-related barite–celestite deposits (34b KL) (6) Volcanic-hosted topaz (32f D) (4) Syndiagenetic through epigenetic celestite–gypsum deposits (7) Granite-related topaz deposits (gemstone) (32b D) in evaporitic calcareous series (34d KL) (8) Intragranitic fluorite deposits (32c D) (5) Epigenetic celestite replacement deposits in porous (reefal) (9) Cryolite deposit related to metasomatic A-type granites limestones (34c K) (32b E) (6) Playa lake with B–(As–Sr–Li) (lacustrine-syn(dia)genetic) (2) Structure-related deposits (34a J) (1) F-bearing mega breccia (32c F) (7) Celestite–barite deposits in lacustrine (playa) environments “ ” fl (2) Epithermal ( hot brine ) uorite breccia veins (32a G) (34b J) (3) Epithermal F–(Ba) deposits (maars) (32a F) (4) Unconformity-related (shallow veins) Pb–Zn–Ba fluorite de- Similar to fluorite, celestite may only achieve good qualities to come posits (32b G) close what might be called a gemmy material. Apart from an occurrence (5) Thrustbound and replacement topaz deposits (gemstone) in the USA, there is only the Mahajanga–Sakoany celestite deposit, (32c G) Madagascar, that developed during the Danian (Paleogene) in a series (3) Sedimentary deposits of limestones and sandy marls. It is a diagenetic mineralization with (1) Stratabound Pb–Zn–Ba fluorite deposits in carbonate rocks large druses of blue transparent celestite which is mined exclusively (MVT) including replacement deposits (“mantos”)(32aK) for its well-crystallized celestite aggregates and has grasped worldwide (2) Stratabound fluorite–celestite deposits in carbonate rocks attention among mineral dealers. (32b K) (3) Fluorite cavity fillings and calcretes (32a H) Mahajanga–Sakoany Madagascar Celestite Sedimentary Extralapis (4) Fluorite replacement/calamine deposits (32b H) rocks (1999) (5) Phosphorites with F apatite(32c IJK) (6) Topaz placer (32a I) 4.15. Phosphorus-bearing gemstones (Table 15 — group 38) Topaz present in granite-related, pegmatitic and thrustbound de- Minerals under consideration: apatite, lazulite, scorzalite, brazilianite, posits is the only fluorine-bearing mineral which attains jeweler's qual- eophosphorite, phosphophyllite, variscite, “ivory” and “bones” ity. During redeposition topaz shows up as a heavy mineral in stream Classification scheme: sediments of alluvial and fluvial placer deposits proximal to the primary deposits, e.g. Rondonia Province, Brazil. Fluorite often occurs in colorful (1) Magmatic phosphate deposits and well-preserved crystals in a wide range of vein-type and replace- (1) Pegmatite-hosted Li–Fe–Mn–Mg phosphates (in places of ment deposits. It may be considered as a mineral of showcase quality gem-quality) (38a D) 278 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 13 Table 13 (continued) Fluorine. Number Locality Country

Number Locality Country 76 Muiane Mozambique 1 Papra, Paprowsk Afghanistan 77 Bernardmyo, Kabaing, kyatpyin, Kyauksin, Mogok Myanmar, Birma 2Beechworth Australia 78 Kume Myanmar, Birma 3 Flinders Island Australia 79 Mogok Myanmar, Birma 4 Untersulzbach Austria 80 Molo Myanmar, Birma 5 Santa Cruz Region Bolivia 81 Erongo Mountains, Klein Spitzkoppe, Tubussis Namibia 6 Aracuaí, Coronel Murta, Virgem da Lapa Brazil 82 Okurusu Namibia 83 Spitzkopje Namibia 7 CapÒo Do Lana Mine, Ouro Preto, Minas Gerais Brazil 84 Hyakule Nepal 8 Caraí, Padre Paraíso Brazil 9 Catuji Brazil 85 Phakuwa Nepal 10 Brazil 86 Bomo Nigeria 11 Espirito Santo Brazil 87 Jos Nigeria 12 Ferros, Hematita, Itabira, Santa Maria de Itabira Brazil 88 Magama Nigeria 13 Itinga, Jequitinhonha Brazil 89 Nassarawan Eggon, Shabu Nigeria 14 Lavra Do Juscelino Brazil 90 Basha Valley, Braldu Valley, Shigar Valley Pakistan 91 Chumar Bakhoor Pakistan 15 Limoeiro Brazil 92 Gone-Shirgar Valley Pakistan 16 Marambaia Brazil 17 Massangana Rondonia Brazil 93 Hunza Valley Pakistan 18 Medina Brazil 94 Hushe Pakistan 19 Ouro Preto Brazil 95 Indus Valley Pakistan 20 Pedra Azul Brazil 96 Katlang Ghundao Hill Pakistan 97 Mardan Pakistan 21 Rondonia Province Brazil 98 Niyit-Bruk Pakistan 22 Serro Brazil 99 Nyet Pakistan 23 Virgem Da Lapa Brazil 100 Shengus Pakistan 24 Madoc Canada 101 Stak-Nala Pakistan 25 Rock Candy Canada 102 Huanzala Peru 26 Dushan (Guizhou Province) China 103 Alabaschka Russia 27 Guangdong China 104 Altai Russia 28 Guangxi China 105 Dal Negorsk (Primorskiy Kray) Russia 29 Pinhwu China 106 Klichka Russia 30 Shangbao China 107 Miass Russia 31 Shuzhuyuan (Chenzhou) China 108 Nertschinsk Area-Adun Tschilon Russia 32 Taolin China 109 Sanarka Russia 33 Wushan China 110 Barend South Africa 34 Xiefang China 111 Freddie South Africa 35 Xilin Qagan Obo China 112 Kwarel South Africa 36 Yaogangxian China 113 Landsdown South Africa 37 Yunnan China 114 London South Africa 38 Yunxiao-Zhangpu China 115 Nyenes South Africa 39 Chamonix Area France 116 Piet South Africa 40 Fontsante France 117 Rosendale South Africa 41 Le Beix France 118 Berbes-Caravia Spain 42 Sewen France 119 La Collada Spain 43 Nabburg-W÷lsendorf Germany 120 Villabona Arlos Spain 44 Schneckenstein Germany 121 Balangoda Sri Lanka 45 County Durham Great Britain 122 Elahera Sri Lanka 46 Land"S End Great Britain 123 Kaikawala, Matale, Rattota Sri Lanka 47 Treak Cliff Great Britain 124 Nawalapitiya Sri Lanka 48 Balangir India 125 Polonnaruwa Sri Lanka 49 Boudh India 126 Ratnapura Sri Lanka 50 Kangayam, Padiyur, Tiruppur India 127 Aare-Mont Blanc Massif Switzerland 51 Kanniyakumari India 128 Val Lugnez Switzerland 52 Karur, Kunjampalayam India 129 Kulikolon Tajikistan 53 Orivesi India 130 Conway Granite-New Hampshire USA 54 Singhbhum India 131 Hardin County USA 55 Subarnapur India 132 Thomas Range USA 56 Tirunelveli India 133 Wah-Wah Mountains USA 57 Hoei Japan 134 Bao Lac Vietnam 58 Kishu Japan 135 Loc Tan Vietnam 59 Naegi Japan 136 Tu Le Vietnam 60 Obira Japan 137 Xuan Le Vietnam 61 Suishoyoma Japan 138 Chipata Zambia 62 Takatori Japan 139 Guruwe Zimbabwe 63 Akchatau Kazakhstan 140 Masvingo District Zimbabwe 64 Kara-Oba Kazakhstan 141 Mwami Zimbabwe 65 Voi-Taveta Kenya 142 Somabhula Zimbabwe 66 Ambositra Madagascar 143 St. Ann"s Hurungwe District Zimbabwe 67 Andapa Madagascar 68 Madagascar 69 Ilakaka Madagascar 70 Isahara Madagascar 71 Baja California Mexico (2) Apatite-bearing Fe deposits (Kiruna type) (38b CD) 72 Musquiz District Mexico (3) Apatite-bearing titanomagnetite–magnetite deposits (Kola 33 73 Goriko Zuun Bayan (Z nbayan) Mongolia type) (38a E) 74 El Hammam Near Meknes Morocco (4) Apatite-bearing REE–Fe deposit in alkaline and carbonatite 75 Marávia Mozambique complexes (Sokli type) (38b E) H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 279

Table 14 (4) Metamorphic phosphate deposits Strontium. (1) Apatite-bearing skarn-like mineralization (regionally meta- Number Locality Country morphosed limestone) (38c K) 1 Mahajanga-Sakoany Madagascar (2) Regionally and contact-metamorphosed phosphorites 2LowerPeninsulaUSA (38c J) (3) Lazulite-bearing metasedimentary rocks (38c I)

Phosphates of inorganic origin as well as organic origin, e.g. ivory, (2) Structure-related phosphate deposits may attract the interest of gemstone and mineral dealers. Phos- (1) Apatite vein (38a G) phate mineralization in pegmatites in the United States (Maine), (3) Sedimentary phosphate deposits Mexico (Durango) and Myanmar (Mogok) are sometimes of gem quality. The contender for the title among gem-quality phosphates (1) Continental phosphates is lazulite the best quality of which is found in granite pegmatites (1) Alluvial placers of apatite possessing gem-quality (38a I) in Minas Gerais, Brazil, and the Chilas region in Pakistan. Another (2) Nb–P–Ti laterites and bauxites (38a H) phosphate discovered for the first time at Linopolis, Brazil, is (3) Phoscretes brazilianite that may sometimes attain gem-quality in the Borborema (1) Apicretes (38c H) area, Brazil. (2) APS-mineral bearing duricrusts (38b H) (4) Lacustrine phoscretes (1) (Fluvial-)lacustrine and bog iron ores (38g H–38g K) Minas Gerais and Brazil Li-phosphates Magmatic rocks Bilal et al. (2) Perennial or organic lakes (38a JK) Espirito Santos Triphylite Pegmatites (2012) (3) Ephemeral lakes (38b I) provinces Ferraisiklerite (2) Marine phosphates Various sites Sri Lanka Apatite Sedimentary Dill (1998) (1) Guano deposits (38a M) Madagascar rocks Unconsolidated (2) Carbonate-hosted phosphorites (38e K) siliciclastic (3) Siliciclastic-hosted phosphorites (38e J) rocks/placer (4) Phosphate sandstones (38e I) Various sites Bones of Apatite Sedimentary Dill (2010a, (5) Marine phosphate-bearing ironstones animals rocks 2010b) Fossil or recent (1) Phosphatic bonebeds in oolithic ironstones biomineralization (Minette-/Wabana types) (38f IJ) Northern Serra do Brazil Lazulite Metamorphic Morteani and (2) Phosphatic bonebeds in detrital iron ore deposits Espinhaço, State rocks Ackermand (38g I) of Bahia Metaquartzite (2003) (3) P-bearing biological gem material (ivory) (38a N)

4.16. Zirconium-bearing gemstones (Table 16 — group 39) Table 15 Phosphorus. Minerals under consideration: zircon (hyacinth) Number Locality COUNTRY Classification scheme:

1 Mount Deverell Australia (1) Magmatic zirconium deposits 2 Divino das Laranjeíras Brazil – 3 Linopolis Brazil (1) Zircon sapphire-bearing alkali basalt (39 B) 4 Santa Tereza Brazil (2) Zr–REE–P–Nb–Ta–F–(Be–Th) carbonatite–alkaline igneous 5 Anhui China complex (39 E) 6Xinjiang China (2) Sedimentary zirconium deposits 7 Ajmer India 8 Araku Valley, Borra India (1) Zircon (hyacinth) placer deposits (39 I) 9 Baraganda India 10 Bendria, Bhilwara India Alkali basalts often host zircon sometimes in jeweler's quality, but 11 Hinjlibahal, Kalahandi India much more these magmatic rocks are of an attraction for sapphire. In 12 Namakkal India this case the clastic apron around these volcanic host rocks is gemolog- 13 Rajgarth India ical of greater importance than the source rocks themselves for its high- 14 Salem India 15 Vishakhapatnam India quality zircon (hyacinth) occurrences. 16 Ambakirano, Manambato Madagascar 17 Ambilobe Madagascar 18 Ankarafa, Daraina Madagascar San Carlos USA Zircon Magmatic rocks Dill (2010a, 19 Milanoa Madagascar Peridot Basalt 2010b) 20 Mitsinjo, Tsivory Madagascar Pailin Cambodia Zircon Magmatic rocks Dill (2010a, 21 Cerrod de Mercado Mexico Sapphire Basalt 2010b) 22 Bernardmyo, Kabaing, Kyatpyin, Kyauksin, Mogok Myanmar Ruwenzori , Zircon Sedimentary rocks This study 23 Momeik (Mong Mit) Myanmar Ridge Australia Unconsolidated 24 Singu Myanmar siliciclastic 25 Basha Valley, Braldu Valley, Shigar Valley Pakistan rocks/placer 26 Hunza Valley Pakistan 27 Panasqueira Portugal 28 Deniyaya, Morawaka Sri Lanka 29 Eppawala Sri Lanka 30 Mahiyangana Sri Lanka 4.17. Silica-dominant gemstones (Table 17 — group 40) 31 Okkampitiya Sri Lanka 32 Ratnapura Sri Lanka Minerals (and rocks) under consideration: quartz (rock crystal, 33 Mount Auburn USA citrine, amethyst, rose quartz, smoky quartz, morion, chalcedony, 280 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 16 Table 16 (continued) Zirconium. Number Locality Country

Number Locality Country 74 Si Sa Ket Thailand 1 Back Creek Zircon Australia 75 San Carlos USA 2 Bald Nob Australia 76 An Phu, Bai Da Lan, Khai Trung, Luc Yen, Minh Tien, Vietnam 3BathurstIsland Australia Minh Xuan, Tan Lap, Truc Lau 4Beechworth Australia 77 Binh Thuan Province Vietnam 5 Blue Mountain Australia 78 Dak Lak Province Vietnam 6 Bugaldie Prospect Australia 79 Dong Nai Province Vietnam 80 Gia Lai Province Vietnam 7 Burraga Australia 81 Kon Tum Province Vietnam 8 Caution Point Australia 9 Australia 82 Lam Dong Province Vietnam 10 Elsmore Hill Australia 83 PlÔy Cu Vietnam 11 Glen Innes Australia 84 Qui Chau, Qui Phong Vietnam 12 Glenross Australia 13 Gloucester Tops Australia 14 Gummi Australia 15 Harts Range Australia 16 Australia “ ” 17 Jahleel Australia agate, onyx, jasper, carnelian), opal, obsidian, zebra rock ,tektite 18 Laughlen Australia and “silicified wood” 19 Oban Australia Classification scheme: 20 Rocky Creek Australia 21 Ruwenzori Ridge Australia (1) Magmatic deposits 22 Swamp Oak Australia (1) Agate–amethyst–rock–crystal–opal deposits in basic to acidic 23 Upper Tarlo Zircon Australia volcanic rocks 24 Sisters Creek Australien – – – 25 Bong Long Cambodia (1) Hypogene agate amethyst rock crystal opal deposits 26 Pailin Cambodia in basic magmatic rocks (40a B) 27 Mingxi China (2) Thundereggs in felsic magmatic rocks (40a D) 28 Wenchang China (3) Supergene opal deposits on top of basic and felsic mag- 29 Xuanhua China matic rocks (40b B–40b H) 30 Yangchun China – 31 SmrcÝ Czech Republic (4) Hypogene zeolite celadonite-bearing opal deposits in 32 Zabargad Egypt basic to acidic magmatic rocks (40f BCD) 33 Le Puy France (2) Opal and quartz in volcanic sinter, geyserites and high- 34 Elie Ness Great Britain sulfidation replacement deposits (40c CD) 35 Glem Urquart Great Britain (3) Quartz- and semi-precious gemstone pegmatites (40d D) 36 Mam-Ratagain (Ratagain Intrusios) Great Britain 37 Strontian Great Britain (4) Glass-bearing pyroclastic and volcanic rocks 38 Struy Bridge Great Britain (1) Pumice (40g CDE) 39 Tiree Great Britain (2) Scoria (40g B) 40 Balangir India (3) Perlite (40h CD) 41 Hinjlibahal, Kalahandi India (2) Structure-related deposits 42 Kangayam, Padiyur, Tiruppur India 43 Kanniyakumari India (1) Unconformity-related shallow quartz veins (40a G) 44 Karur, Kunjampalayam India (2) Deep-seated lineamentary quartz veins (40c G) 45 Ramanathapuram India (3) Sedimentary deposits 46 Sambalpur India (1) Silcretes 47 Tiruchchirappalli India 48 Tirunelveli India (1) Quartz (40a H) 49 Champasak Laos (2) Chalcedony (40c H) 50 Amboasary Madagascar (3) Opal (40d H) 51 , Antsahanandriana, Madagascar (2) Rock crystal placers (40a I) Mandrosohasina (3) Quartz sand and arenites (40c I) 52 Betroka Madagascar 53 Ilakaka Madagascar (4) Limnoquartzite (transitional into volcano-sedimentary 54 Bernardmyo, Kabaing, Kyatpyin, Kyauksin, Myanmar deposits) (40e J) Mogok (5) Biogenic silica deposits 55 Kyaukpon Myanmar (1) Diatomite (40c J) 56 Mogok Myanmar 57 Thabeikkyin Myanmar (2) Radiolarite (40d J) 58 Arendal Norway (3) Chert (40g J) 59 Seiland Norway (4) Rottenstone/tripolite (40c K) 60 Sunnm°re Norway (4) Metamorphic deposits 61 Kol'Skiy Poluostrov Russia (1) (Meta)quartzites (40d I) 62 Balangoda Sri Lanka 63 Deniyaya, Morawaka Sri Lanka (2) Opal concretions in graphite schist (40h J) 64 Elahera, Kongahawela Sri Lanka (3) Onyx within marble (40d K) 65 Embilipitiya Sri Lanka (4) Tektites (40a N) 66 Kataragama Sri Lanka (5) Zebra rock (40a J) 67 Matara Sri Lanka 68 Ratnapura Sri Lanka 69 Kalalani, Kigwase, Mwakijembe, Umba Valley Tanzania 70 Kisiriri Tanzania Although not among the leading colored gemstones, silica pertains 71 Korogwe Tanzania certainly to those groups of minerals reflecting the most variegated 72 Mwenmbe, Pare Mountains, Same Tanzania spectrum of kind. Opal is certainly the most attractive contender 73 Chantaburi Thailand among the gemmy silica modifications with deposits related to volcanic H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 281

Table 17 Table 17 (continued) Silica. Number Locality Country

Number Locality Country 77 Kynuna Australia 1 Moqor Afghanistan 78 Lake Argyle Zebra Rock Stone Australia 2 Tidikelt Oasis Algeria 79 Laverton Australia 3 Kwanza-Norte Angola 80 Lenas Hill Australia 4 San Luis Argentine 81 Lightning Ridge Australia 5 San Rafael Argentine 82 Lila Springs Australia 6AllahsRush Australia 83 Lismore Tank Australia 84 Lochray Opal Australia 7 Andamooka Australia 85 Lummos Australia 8 Araluen Australia fi 9 Australia 86 Lyn eld Australia 10 Baikes Australia 87 Maleney Australia 11 Barclays Bunker Australia 88 Marble Bar/Ord Riddley Australia 12 Barretts Mine Australia 89 Marlborough Australia – 13 Beechworth Australia 90 Mcs 151 154 Australia 14 Benz Hill Australia 91 Mehi Australia 92 Millionaires Gully Australia 15 Billy Goat Hill 2 Australia 93 Milparinka Australia 16 Black Hills Australia 17 Blazed Tree Australia 94 Mintabie Australia 18 Blind Freddies Australia 95 Minyon Falls Australia 19 Boora Boora Australia 96 Ml Australia 20 Boorooma Opal Deposit Australia 97 Moffats Hill Australia 21 Brian Eakins Claim Australia 98 Mooka-Soklich Australia 22 Broadmeadows Prospect Australia 99 Morris Opal Claim Australia 100 Mount Brockman Australia 23 Bulga Well Amethystyst Australia 24 Byro-Mekamara Australia 101 Mount Regal Green Rock Australia 25 Camfield Australia 102 Mozzie Gully Australia 26 Carinya Opal Australia 103 Mulga Rush Australia 27 Carters Rush Australia 104 Muttama Crystal Workings Australia 28 Central Station Australia 105 Natalies Dream Australia 29 Chalby Chalby Australia 106 New Angledool Australia 107 New Coorcoran Australia 30 Chichester Range Australia 108 New Glengarry Australia 31 Chinamans Gully Australia 32 Clancys Australia 109 Nightcap Range Australia 33 Clarke's Bore Australia 110 Nine Mile Australia 34 Comboyne Common Opal Australia 111 Norseman Australia 35 Comet Vale Australia 112 Norway Workings Australia 36 Coober Pedy Australia 113 Nowa Nowa Australia 37 Coocoran Australia 114 Okhei Australia 115 Olympic Dribble Australia 38 Coolabah North Australia 116 Ooradidgee Australia 39 Cowarna Downs Australia 40 Crystal Hole Australia 117 Pear Creek Australia 41 Czinners Australia 118 Phillip Island Australia 42 Davenport/Palparara Australia 119 Pilbara Australia 43 Dennis Corbys Claim Australia 120 Point Danger Australia 44 Divide Creek 1 Australia 121 Polpah Australia 45 Dundas/Rose Australia 122 Polpah Australia 123 Purnanga Australia 46 Eucalyptus Australia 47 Fire Chief Australia 124 Questa Park Australia 48 Gelantipy Australia 125 Quilpie-Bulgroo Australia 49 Gema Australia 126 Rainah'S Australia 50 Gemville Australia 127 Riddles Australia 51 Glendara Australia 128 Rockhampton Australia 52 Glengarry Australia 129 Rocklea Pittado Australia 130 Rocky Bridge Creek Australia 53 Glenrowan Australia 131 Rod'S Revenge Australia 54 Gotham City Australia 55 Gravesend Australia 132 Roy Hill Jasper 1 Australia 56 Grawin Australia 133 Sheepyard Australia 57 Great Eastern Australia 134 Shepherds Opal Claim Australia 58 Halls Creek Australia 135 Shields Australia 59 Hardys Crack Australia 136 Smiths Hill Australia 60 Heathcote Australia 137 Snowy Mount Jasper Australia 138 Spinifex Australia 61 Hercomer Quartz Australia 139 Springs and Harrisons Folly Australia 62 Hitchcocks Opal Claim Australia 63 Hyandra Creek Australia 140 Springsure Australia 64 Inverell No 2 Australia 141 Sullivans Hill Australia 65 Jag Hill Australia 142 Tallangallook Australia 66 Jeerinah Jasper Australia 143 Tamworth Australia 67 Jinka Australia 144 Three Mile Hill Opal Australia 68 John Daves' Claim Australia 145 Tintenbar Australia 146 Toompine Australia 69 Joyces Rush Australia 70 Jundah Australia 147 Tooraweenah Australia 71 Kellies 5 Australia 148 Townsends Reef Australia 72 Kennewells Australia 149 Tracey Australia 73 Kitty Hawk Australia 150 Tuncoona Central Prospect Australia 74 Koroit Australia 151 Turleys Hill, Farleys Hill Australia 75 Kurnalpi Australia 152 Turners Australia 76 Kyabra/Eromanga Australia (continued on next page) 282 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 17 (continued) Table 17 (continued) Number Locality Country Number Locality Country

153 Ulju-Gun Australia 229 Dundee Great Britain 154 Unnamed Australia 230 Glen Buchat Great Britain 155 Unnamed Australia 231 Isle of Man Great Britain 156 Unnamed Australia 232 Lands End Great Britain 157 Unnamed Australia 233 St. Austell Moor Great Britain 158 Warning Australia 234 Stonehaven Great Britain 159 Watsons Reward Australia 235 Erandique Honduras 160 Wayne Manor Australia 236 Gracias Honduras 161 Wee Warra North Australia 237 La Ceiba Honduras 162 Weeona Australia 238 Aurangabad India 163 Welshs Knob Prospect Australia 239 Kangayam, Padiyur, Tiruppur India 164 White Cliffs Australia 240 Karur, Kunjampalayam India 165 Wild Cat Australia 241 Raipur India 166 Williamsons Corner Australia 242 Salem India 167 Wyoming Australia 243 Kali Maya-Rankasbitung Indonesia 168 Yancannia Rush Australia 244 Sicily Italy 169 Yaraka Australia 245 Fuji-San Japan 170 Youngerina Australia 246 Kazakhskaya Kazakhstan 171 Yowah Australia 247 Kumkol Kazakhstan 172 Zacs Corner Australia 248 Kitui Kenya 173 AnahÝ-Mine Bolivia 249 Ambakirano, Manambato Madagascar 174 Cordillera Central Bolivia 250 Ambatofinandrahana Madagascar 175 Sandoval Bolivia 251 Ambatomafana Madagascar 176 Aarguaia River (Para) Brazil 252 Ambatondrazaka Madagascar 177 Acari, Carnaúba dos Dantas, Parelhas Brazil 253 Ambodilazana, Amboditavolo, Ambodivandrika, Madagascar 178 Alto Bonito Brazil Vatomandry 179 Aracuaí, Coronel Murta, Virgem da Lapa Brazil 254 Ambohidrano, Mahasolo, Soavinandriana Madagascar 180 Boi Morto Brazil 255 Ambohimanitra, Antadrokomby, Manjaka, Madagascar 181 Cabeludos Brazil Mount Bity 182 Caetité Brazil 256 Ambositra Madagascar 183 Chapada Diamantina Brazil 257 Analangoaika, Andilamena, Antanimentabaka, Madagascar 184 Conselheiro Pena Brazil Antanimbohibe 185 Diamantina Brazil 258 Andapa Madagascar 186 Galiléia, Sao Geraldo do Baixio Brazil 259 Andongologo, Anjanabonoina, Antsikoza, Madagascar 187 Governador Valadares Brazil Mahaiza, Vohitrakanga 188 Irai Brazil 260 Antsirabe, Betafo, Soamiakatra Madagascar 189 Itabira Brazil 261 Beraketa Madagascar 190 Itinga, Jequitinhonha Brazil 262 Bevitsika Mountain Madagascar 191 Marabá, Tocatins River Brazil 263 Boriziny Madagascar 192 Marabß Brazil 264 Didy Madagascar 193 Pau d'Arco Brazil 265 Faratsiho Madagascar 194 Pedroll Brazil 266 Ifotaka Madagascar 195 Salininha Brazil 267 Isahara Madagascar 196 Sao Geraldo do Araguaia Brazil 268 Lac Alaotra Madagascar 197 Sapucaia Brazil 269 Lakato Madagascar 198 Serra Da Mesa Brazil 270 Mahajamba Madagascar 199 Serra Geral Plateau Brazil 271 Mangataboahangy Madagascar 200 Astrida Burundi 272 Mangatobangy Madagascar 201 Edmonton Canada 273 Mitsinjo, Tsivory Madagascar 202 Okanagan Canada 274 Moramanga Madagascar 203 Peace River Canada 275 Morondava Madagascar 204 Rocky Mountains Canada 276 Ranomafana Madagascar 205 Saskatoon Canada 277 Sahaviavy Fito Madagascar 206 Souris Canada 278 Madagascar 207 Whitesail Canada 279 Tsaratanana Madagascar 208 Williams Lake Canada 280 Tsiroanomandidy Madagascar 209 Winnipeng River Canada 281 Vohemar Madagascar 210 Los Andes Chile 282 Vondrozo Madagascar 211 Kwango Congo 283 Vorondolo Madagascar 212 Tshela Democratic Republic 284 Finishi Village Malawi of Congo 285 Baja California Mexico 213 Mors Island Denmark 286 Cerro El Oregano Mexico 214 Amhara Ethiopia 287 Jalisco Mexico 215 Menz Gishe District Ethiopia 288 Queretaro Mexico 216 Mezezo Ethiopia 289 Sierra Del Gallego Mexico 217 Mormora River Ethiopia 290 Sierra Santa Lucia Mexico 218 Wegel Tena Ethiopia 291 Tepic Mexico 219 Sodankylõ Finland 292 Veracruz Mexico 220 Royat France 293 Zimapßn Mexico 221 Idar-Oberstein Germany 294 Baidrag Mongolia 222 Saar-Nahe District Germany 295 Burugudi (Nw Gobi) Mongolia 223 Ayrshire Great Britain 296 Dalan-Dzhargalan Mongolia 224 Bodmin (Cornwall) Great Britain 297 Dalan-Turuu (Dalan T3r33) Mongolia 225 Cairngorm Great Britain 298 Gashuun Mongolia 226 Cheviot Hills Great Britain 299 North Dakota Mongolia 227 Coast of Northumberland Great Britain 300 Aouli Morocco 228 Dartmoor Great Britain 301 Zaer-Zaiane Morocco H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 283

Table 17 (continued) Table 17 (continued) Number Locality Country Number Locality Country

302 Alto Molócue Mozambique 377 Four Peaks USA 303 Gilé, Ile, Murrua, Uape Mozambique 378 Herkimer USA 304 Milange Mozambique 379 Idaho USA 305 Namapa Mozambique 380 Isle Royale USA 306 Naquilite, Naquissupa Mozambique 381 Jefferson Country USA 307 Zumbo Mozambique 382 Lower Peninsula USA 308 Bernardmyo, Kabaing, Kyatpyin, Kyauksin, Myanmar 383 Moscow USA Mogok 384 New Mexico USA 309 Natogyi Myanmar 385 Opal Butte USA 310 Goboboseb Namibia 386 Red Feather Lakes USA 311 Kalkfeld Namibia 387 Sanke River USA 312 Namib Desert (Sarusas) Namibia 388 Spencer USA 313 Otjiwarongo Namibia 389 Vernon Parish USA 314 Swakopmund Namibia 390 Virgin Valley USA 315 Jalingo Nigeria 391 Dzhangel Dy Uzbekistan 316 Zhob Pakistan 392 Kumyshkan Uzbekistan 317 Arequipa Peru 393 Miskansay Uzbekistan 318 Cordillera Peru 394 Sangardak Uzbekistan 319 Ica Peru 395 Shavaz Uzbekistan 320 Nazca Peru 396 Tashkurgan Uzbekistan 321 Zabkowice Slaskie Poland 397 Don Duong Vietnam 322 Altai Russia 398 Ky Son Vietnam 323 Kol'Skiy Poluostrov Russia 399 Lam Dong Province Vietnam 324 Miass Russia 400 Loc Ninh Vietnam 325 Pribaykal'E Russia 401 Phu Quoc Island Vietnam 326 Yekaterinburg Russia 402 Tay Nguyen Area Vietnam 327 Al Medina Saudi Arabia 403 Thach Khoan Vietnam 328 Median Saudi Arabia 404 Xuan Le Area Vietnam 329 Dubnik Slovakia 405 Aries Zambia 330 Dubnika Slovakia 406 Kalomo Zambia 331 Qabri Baxar Somalia 407 Mumbwa Zambia 332 Blinkpan South Africa 408 Mwakambiko Zambia 333 Boekenhouthoek Mpumalanga South Africa 409 Namazambwe Zambia 334 Curries Camp South Africa 410 Siavonga Zambia 335 Daberas South Africa 411 Simamba Zambia 336 Dwaal Geest South Africa 412 Snamane Zambia 337 Ganzenmond South Africa 413 Featherstone Zimbabwe 338 Kakamas South Africa 414 Nyamandlovu Zimbabwe 339 Klip Koppies South Africa 415 Tsholotsh Zimbabwe 340 Koegab South Africa 341 Lucas Vlei South Africa 342 Mottels Rivier South Africa 343 Omkyk South Africa 344 Regt Kyk South Africa 345 Riet Fontein South Africa activity (Amhara, Ethiopia; Arequipa, Peru). Australia is renowned for 346 Steyns Puts South Africa its opal deposits in sedimentary rocks, where several mineralized sites 347 Wolf Kop South Africa occur in New South Wales, Western Australia and Queensland. Under 348 Zoovoorby South Africa shallow diagenetic conditions, complex processes of redeposition 349 Alba Spain conduced to deposits like Coober Pedy. Chalcedony and agate both 350 Salamanca Spain 351 Sri Lanka have a share in the igneous and sedimentary realm, too. Amethyst, is al- 352 Kaikawala, Matale, Rattota Sri Lanka most exclusively found in hydrothermal (Boora Boora, Western 353 Wellawaya Sri Lanka Australia), volcanic (Finishi Village, Malawi) and pegmatitic deposits 354 Alps Switzerland (Aries, Zambia) as far as the gemmy qualities are concerned. Hydrother- 355 Haneti Hill Tanzania 356 Kigoma Tanzania mal citrine is known from Jinka, Australia-Northern Territories. Jasper at 357 Lugama (Railway Line Dar Es Salaam) Tanzania Marble Bar in Western Australia is of metamorphic origin, whereas 358 Mbirira Tanzania equivalent minerals from Sangardak and Shavaz, Uzbekistan are genet- 359 Tchenzema-Uluguru Mts. Tanzania ically related to volcanic activity. Onyx from Karljuk, Turkmenistan and 360 Henan Tunesia Kumyshkan, Uzbekistan, are also of metamorphic origin. A wide range 361 Cubuk Near Ankara Turkey 362 Simav Turkey of quartz deposits which also brought about (sub)gem quality material 363 Gr. Balchan Turkmenistan is known from pegmatitic lithologies (Alba, Spain), hydrothermal de- 364 Karljuk Turkmenistan posits (Alto Bonito, Brazil), igneous rocks (Cairngorm, Great Britain), 365 Kuschka-Kaschan Turkmenistan metamorphic rocks (Governador Valadares, Brazil) and sedimentary 366 Tuarkyr Area Turkmenistan 367 Kubadag-Karadag Ukraine rocks (Crystal Hole, Australia New South Wales). Rock crystals is used 368 Artigas Uruguay as a special well-crystallized modification of quartz, some of which 369 Arizona USA occur in hydrothermal deposits as double-ender such as at Lugama, 370 Arkansas USA in pegmatites, e.g., Tchenzema–Uluguru Mts., and sedimentary rocks 371 California USA near Mbirira in Tanzania. Rose quartz has mainly been derived from 372 Cave-In-Rock USA 373 Cedar Rim USA pegmatites, e.g., Vorondolo, Madagascar as it is the case with smoky 374 Cuyuna USA quartz or morion, e.g., Ky Son, Vietnam. Tektites are the only modifica- 375 Fairburn USA tion of silica encountered on the earth surface, but of extraterrestrial 376 Flint Ridge USA origin. They are created by metamorphic processes associated with (continued on next page) the impact of meteorites (Phu Quoc Island, Vietnam). The Lake Argyle 284 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Zebra Rock Stone in Australia/Western Australia is of sedimentary Table 18 origin. Feldspar. Number Locality Country

1 Zagradski Potok Bosnia–Herczegowina Ayrshire Great Agate– Magmatic rocks Fallick et al. 2 AraþuaÝ Brazil Britain amethyst Basic volcanic rocks (1985) 3 Itabira Brazil Rock crystal Rock crystal–opal 4 Lavra Das Generosas Brazil Opal deposits in basic 5 Paraiba Brazil volcanic rocks 6 Bancroft Canada (40a B) 7 Belle Isle Canada Opal Butte USA Agate Magmatic rocks Dill (2010a, 8 Monteagle Canada Mine, Opal Felsic volcanic and 2010b) 9Quebec Canada Oregon volcaniclastic rocks 10 Inari Egypt Kali maya Indonesia Opal Magmatic rocks and 11 Sidamo Ethiopia (Java) Glass in basic and Brown 12 Ylõmaa Finland felsic volcanic rocks (1994) 13 Ajmer India White Sail Canada Opal Magmatic rocks Simandl 14 Bangalore India Range Zeolite Felsic and basic et al. 15 Baramula India volcanic, (1999) 16 Bendria, Bhilwara India volcaniclastic 17 Coimbatore India and sedimentary 18 Dindigul India rocks 19 Hazaribag India Whakarewarewa New Opal Magmatic rocks and 20 Idarwa India geothermal Zealand Quartz Volcanic sinter and Renaut 21 Kangayam, Padiyur, Tiruppur India area geyserites (2004) 22 Karur, Kunjampalayam India Governador Brazil Quartz Magmatic rocks Goreva et al. 23 Kiranur India Valadares (rose quartz, Pegmatites (2001) 24 Kodarma India Sapucaia smoky 25 Madurai India pegmatite quartz) 26 Manbhun India Baringyi Mongolia Chalcedony Sedimentary rocks Dill et al. 27 Mysore India Jasper Silcretes (2003) 28 Nayyar, Ooruttambalam India Carnelian 29 Nellore India Coober Pedy Australia Opal Sedimentary rocks Barnes et al. 30 Salem India Silcretes (1992) 31 Tiruchchirappalli India Su–Lu Belt China Rock crystal Sedimentary rocks Li et al. 32 Trivandrum India Unconsolidated (2007) 33 Wangtu India siliciclastic rocks/ 34 Kazakhskaya Kazakhstan placer 35 Ambatondrazaka Madagascar Tasgazkan Uzbekistan Opal Metamorphic rocks Kraft and 36 Ambinda, Madagascar Graphite Kampe 37 Madagascar Schist (1994) 38 Ambositra Madagascar Gun'shak Uzbekistan Onyx Metamorphic rocks Kraft and 39 Behara, Betioky, Madagascar Marble Kampe 40 Itrongay Madagascar (1994) 41 Kandreho Madagascar Tay Nguyen Vietnam Tektites Metamorphic by Futrell and 42 Mahabo Madagascar Province impact of Varricchio 43 Mahajamba Madagascar extraterrestrial (2002) 44 Madagascar bodies 45 Zomba-Malosa Malawi Kimberley, West Australia Zebra rock Metamorphic rocks Bevan 46 Baja California Mexico Australia Low to (2001) 47 Marávia Mozambique low grade 48 Mogok Myanmar metaargillites 49 Bamble Norway 50 Evje Norway 51 T°rdal Norway 52 Indus valley Pakistan 53 Yekaterinburg Russia 4.18. Feldspar of gem quality (Table 18 — group 41) 54 Graafwater South Africa 55 Ambadalangoda, Mitiyagoda Sri Lanka Minerals under consideration: K- (amazonite, moonstone– 56 Balangoda Sri Lanka adularia), plagioclase (moonstone), oligoclase (sunstone), and Ba- 57 Elahera, Kongahawela Sri Lanka feldspars, “unakite” 58 Ratnapura Sri Lanka fi 59 Engare Naibor Tanzania Classi cation scheme: 60 Geiro, Lukande Tanzania (1) Magmatic deposits 61 Kilosa Tanzania 62 Landanai, Lossongonoi, Naberera, Narujuruju Tanzania (1) Felsic feldspar-bearing rocks 63 Longido Tanzania (1) Granites–alaskites–syenites (41a DE) 64 Black Range USA (2) Rhyolites (41b D) 65 Crystal Peak USA (2) Feldspar–quartz pegmatites and aplites (41d D) 66 Macon USA 67 Pikes Peak USA (3) Feldspar-bearing volcanic and plutonic dimension and 68 Plush USA ornamental stones (41a BE) 69 Ponderosa USA (4) Charnokite–hyperstene granulite (41b B) 70 An Phu, Bai Da Lan, Khai Trung, Luc Yen, Vietnam (5) Amazonite–moonstone–sunstone-bearing pegmatites and Minh Tien, Minh Xuan, Tan Lap, Truc Lau pegmatoids (41e D–41f D) (6) “Unakite”-bearing granite (41i D) (2) Structure-related deposits (1) Ba feldspar veins (41a G) H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 285

(3) Sedimentary deposits Table 20 (1) Arkoses and arkosic arenites (41a I) Zeolite. – (2) Feldspar-bearing saprolite (41c D 41c H) Number Locality Country (4) Metamorphic deposits 1 Ambatovita Madagascar (1) Feldspar–quartz metapegmatites (41h D) (2) Feldspar–quartz pegmatoids (pegmatitic mobilizates) (41g D) (3) Ba feldspar (hyalophane, ) mineralization (41a J) 4.19. Feldspathoids of gem quality (Table 19 — group 42) (4) Feldspar-enriched gneisses and migmatites (41b IJ) (5) K feldspar-bearing marble–pegmatoid series (41g K) Minerals under consideration: lazurite (lapis lazuli), scapolite, soda- lite and hauyne Feldspar is the most widespread rock-forming mineral in the Classification scheme: earth crust and plays a peculiar role in bridging the gap between ornamental stones with exceptionally colorful modifications of (1) Magmatic deposits feldspar and feldspar-group minerals attaining gem quality. Feldspar (1) Nepheline syenites (42b E) which is exploited for its esthetic values originated from granitic and (2) Feldspathoid-bearing dimension stones (42a E) pegmatitic lithologies. A few are of hydrothermal origin, such as the (3) Sodalite- and hauyne-bearing alkaline igneous complexes barium feldspar from Zagradski Potok, Bosnia–Herzegovina. Ama- (42d E) zonite is a common constituent in several granitic rocks, but only (4) Scapolite deposits in pegmatites (42a D) in the late stage pegmatitic derivates as at Itabira and Lavra Das (5) Scapolite-bearing skarns (42b CD) Generosas, Brazil, it achieves an outstanding quality to be ranked (1) Fe skarn deposit among this gemstone classification scheme. “Unakite” is not a gem- (2) Ti skarn-like deposit stone in the strict sense but a mixture of pink feldspar, green epidote, (3) Lapis lazuli deposit and quartz and as such it is most conveniently described as an orna- (6) “Lapis lazuli” skarn deposits (42d CD) mental gemstone, that was among others recorded from Bancroft, (2) Metamorphic deposits Canada. (1) Scapolite in marbles and calcsilicates (42a K) (2) Nephelinized gneisses and pegmatites (42c E)

“Lapis lazuli” is the main contender in this group of minerals in Lavra das Brazil Amazonite Magmatic rocks Johnston et al. search of high-quality gemmy material among feldspathoids whose Generosas Moonstone Pegmatites and (1991) Sunstone pegmatoids Sokolov and main occurrences are located in Afghanistan, Namibia, Chile and Martin (2007) Russia. The second-most important mineral in this category is scapolite. Radium Canada “Unakite” Magmatic rocks Cook (2002) Sodalite and hauyne are only of mineralogical and gemological interest. Mine Epidote Granite Bancroft Zagradski Bosnia and Hyalophane Ba feldspar veins Zorz (1996) Southern Bahia Brazil Sodalite Magmatic rocks Da Silva Rosa de Potok Herzegovina hosted by schists Alkaline Province Hauyne Syenite et al. (2007) Zamora Spain Hyalophane Metamorphic rocks Moro et al. Cherokee Co., USA Scapolite Magmatic rocks Mittwede (1994) Low grade- (2001) South Carolina Pegmatites dynamometamorphic Italian Mountain USA “Lapis lazuli” Magmatic rocks, Cuitiño (1986) calcareous beds Colorado Monzonite, skarn Modi Khola Valley Nepal Scapolite Metamorphic rocks Vassileva and Marbles and Bonev (2008) calcsilicates

Table 19 Feldspathoid. 4.20. Zeolites of showcase/gemmy quality (Table 20 — group 43) Number Locality Country Minerals under consideration: chiavennite and natrolite 1 Sar-e-Sang Afghanistan fi 2 Independencia Bolivia Classi cation scheme: 3 Aracruz Brazil 4 El Polvo Brazil (1) Magmatic deposits 5 Bancroft Canada (1) Zeolite deposits in pegmatites (43a DE) 6 Ice River Canada (2) Contact metamorphic and contact metasomatic zeolitization 7OvalleChile (43b CD) 8 Kangayam, Padiyur, Tiruppur India (3) Zeolitization in geyserites and hot springs (43c BCD) 9 Karur, Kunjamplayam India 10 Rajasthan India (4) Zeolite deposits in basic to acidic volcanic rocks 11 Gillé, Ile, Murrua, Uape Mozambique (1) Hypogene zeolite–celadonite-bearing opal deposits in 12 Malema Mozambique subaerial basic to acidic magmatic rocks (43e BCD) 13 Bernardmyo, Kabaing, Kyatpyin, Myanmar (2) Hypogene zeolite–celadonite deposits within subma- Kyauksin,Mogok 14 Hpakant, Kansi, Tawmaw Myanmar rine basic rocks (43f BCD) 15 Ehombo Namibia (3) Supergene–hypogene zeolitization upon cooling of vol- 16 Indus valley Pakistan canic flows and reaction with water after being consoli- 17 Sar-E-Sang Pakistan dated (43d BCDE) 18 Malaya-Bystraya Russia 19 Eheliyagoda, Kuruwita Sri Lanka (2) Sedimentary deposits 20 Embilipitiya Sri Lanka (1) (Volcano)sedimentary zeolite deposits 21 Kolonne, Rakwana Sri Lanka (1) Zeolite–trona–silica deposits in lakes of rift basins 22 Ratnapura Sri Lanka (43e EJ) 23 Mpwapwa Tanzania (2) Zeolite deposits in saline alkaline lakes (43f JL) 286 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 21 Table 22 Amphibole (+ serpentine asbestiform minerals). Olivine.

Number Locality Country Number Locality Country

1 Hamersley Range Australia-Western Australia 1 Hebei China 2 Mount Brockman Australia-Western Australia 2 Jilin China 3 Ord Ranges Australia-Western Australia 3ZabargadEgypt 4 West Pilbara T Australia-Western Australia 4 Mega Ethiopia 5 Wittenoom Australia-Western Australia 5 Segi Seqi Greenland-Denmark 6 Nuuk Denmark-Greenland 6 Battakundi, Kaghan Valley, Sapat Pakistan 7 Buis Vlei South Africa 7 Supat Gah Pakistan 8Kafir Krants South Africa 8 Kolonne, Rakwana Sri Lanka 9 Kameelpoort South Africa 9 Lashaine Hill Tanzania 10 Keikams Poort South Africa 10 Kilbourne Hole, USA 11 Kransfontein South Africa 11 Bien Ho Vietnam 12 Naauw Poort South Africa 12 Ham Rong Vietnam 13 Sandfontein South Africa 14 Zeekoeneus South Africa

of various amphiboles was first described from Nuuk, Greenland, where it was discovered in 3 Ga old volcanic origin. The “eye”-mineral oriented intergrowth of fibrous amphibole and silica provoked a chatoyancy. (2) Zeolites in ocean floor sediments They develop in metamorphic and in volcanic rocks. (1) Zeolites in fine-grained deep-sea sediment (43g J) (2) Zeolites in manganese nodules (43g M) (3) Metamorphic deposits Central European Germany Cat's-eye Magmatic rocks Götze et al. (1) Zeolitization of metabasic and metaultrabasic rocks during Variscides Prasem Altered basic volcanic (2001) burial metamorphism (43g BCD) rocks/diabase Eyre Peninsula Australia Nephrite Metamorphic rocks Flint and Pegmatites have brought about rather uncommon zeolites together jade Dolomitic marble Dubowski with semi-precious gemstones such as at Ambatovita, Madagascar. Calc-silicate rocks (1990) Fengtian Taiwan Nephrite Metamorphic rocks Yui et al. Chiavennite a rare Be-bearing zeolite was reported to be associated jade Deposits in (1988). with amazonite, spodumene, Cs-bearing beryl and pezzottaite as well serpentinites as Cs-rich muscovite–lepidolite. Nuuk Greenland “Nuummite” Metamorphic rocks Appel and Deposits in Jensen meta(ultra)basic (1987) La Madera Argentina Analcime, Magmatic Galliski rocks phillipsite-Na rocks et al. Griqualand South Africa Tiger's eye Metamorphic rocks Dreyer and Pegmatite (2004) West Hawk's eye “Banded iron Söhnge formation” (1992)

4.21. Amphibole of showcase and gemmy quality (Table 21 — group 44) 4.22. Olivine (peridot) of showcase and gemmy quality Minerals under consideration: “hawk's-eye”, “tiger's-eye”,ophicalcite (Table 22 — group 45) marble, nephrite jade, “nuummite” Classification scheme: Minerals under consideration: olivine (peridot) Classification scheme: (1) Magmatic amphibole–serpentine deposits (1) Chrysotile asbestos deposits in ultrabasic igneous rocks (1) Magmatic olivine deposits (44a A) (1) Dunite (olivine) deposits (45a A) (2) Cat's-eye and prasem mineralization in altered basic igneous (2) Peridot (chrysolite) gemstone deposits in rocks (44a B) (1) Ultrabasic volcanic rocks (45bc A) (2) Metamorphic amphibole–serpentine deposits (2) Basic volcanic rocks (45b B) (1) Meta-carbonate-hosted chrysotile asbestos deposits (44a K) (3) Forsterite skarn (45d CD) (2) Asbestos deposits in metamorphic igneous rocks (2) Sedimentary olivine deposits (1) Chrysotile in metaultrabasic rocks (44b A) (1) Peridot placer (45a I) (2) Tremolite in metabasic rocks (44b B) (3) Metamorphic olivine deposits (3) Nephrite-jade deposits in meta-carbonate rocks (44b K) (4) Nephrite-jade deposits in serpentinites (44c AB) (1) Olivine in serpentinite (45d A) (5) “Nuummite” deposits in meta(ultra)basic rocks (44d AB) (2) Olivine (forsterite) in meta-limestones (45d K) (6) Crocidolite and amosite asbestos deposits in siliceous Fe de- (3) Ophicalcite (45a K) posits of the BIF (44b J) (7) Tiger's-eye and hawk's-eye deposits in BIFs (44c J) Olivine (peridot) is almost exclusively found in some basic and ultra- (8) Ophicalcite (44d K) basic rocks and their alluvial apron. Due to the low resistance to

The term jade is applied to two different groups of minerals. Jade is a commercial term encompassing green, white, black or yellow-brown Table 23 jadeite and nephrite. Nephrite jade is an aggregate of amphibole fibers Pyroxene (plus pyroxenoids). that are densely packed with its chemical composition being close to Number Locality Country that of the actinolite–tremolite s.s.s. They are found especially in basic and ultra basic igneous rocks. Tiger's, hawk's and cat's eye minerals 1 Larimar Dominican Republic also occur in basic igneous rocks. “Nuummite” an intimate intergrowth 2 Murun Russia H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 287

Table 24 Table 24 (continued) Garnet group. Number Locality Country

Number Locality Country 75 San Piero Italy 1 Darra-i-Pech, Gur-Salak, Kala, Khana Khana, Afghanistan 76 Val Malenco Italy Paroon Valley 77 Kamihogi Japan 2 Kalaigal, Kantiwa, Munjagal, Nishai, Waigal, Warma Afghanistan 78 Kazakhskaya Kasakhstan 3 Clavers Argentine 79 Chawia, Manoa, Mgama, Taita Hills Kenya 4 San Martin Argentine 80 Kajiado Kenya 5 San Quines Argentine 81 Kisoli, Kuranze, Lasamba Hill, Mwakinsunzuru Kenya 82 Mangare, Mukogonyi, Mwachango, Rukanga Kenya 6 Adelaide Australia 83 Ambatondrazaka Madagascar 7 Alice Springs Australia 8 Harts Range Australia-Northern 84 Ambohimaranitra Madagascar Territories 85 Ambositra Madagascar 9 Zillertal Austria 86 Ambovombe Madagascar 10 Acari, Carnaúba dos Dantas Brazil 87 , Antaratra, Bekily Madagascar 11 Buritirama Brazil 88 Anavoha, Fotodrevo Madagascar 12 C¾rrego Do FaÝsca Brazil 89 Andreba Madagascar 90 Ankaditany, , Madagascar 13 Conselheiro Pena Brazil 91 Antetezambato Madagascar 14 Galiléia, Sao Geraldo do Baixio Brazil 15 Peixe Brazil 92 Antsirabe, Betafo, Soamiakatra Madagascar 16 Santa Blandina Brazil 93 Batroka Madagascar 17 Santa Luzia Brazil 94 Behara, Betioky, Maniry Madagascar 18 Sao José da Safira, Virgolândia Brazil 95 Madagascar 19 Asbestos Canada 96 Madagascar 20 Skeena Canada 97 , Madagascar 98 Ilakaka Madagascar 21 Dongtai China 22 Fujian China 99 Mahajamba Madagascar 23 Guangdong China 100 Marolambo Madagascar 24 Hebei China 101 Madagascar 25 Heilongjiang China 102 Sakoandroa Madagascar 26 Inner Mongolia China 103 Taolagnaro Madagascar 27 Jiangsu China 104 Tranoroa Madagascar 105 Tsilaizina Madagascar 28 Jiangxi China 106 Port Louis Mauritius 29 Jilin China 30 Mingxi China 107 El Triunfo Mexico 31 Shaanxi China 108 Hermosillo Mexico 32 Tongbei-Fujian China 109 Altan Khuduk Mongolia 33 Podsedice-Trebenice Czech Republic 110 Shavaryin-Tsavam Mongolia 34 Trebenice Czech Republic 111 Cuamba Mozambique 35 Vestrev Czech Republic 112 Muaguide Mozambique 113 Bernardmyo, Kabaing, Kyatpyin, Kyauksin, Mogok Myanmar 36 Agere Maryam Ethiopia 114 Kume Myanmar 37 Chumba Ethiopia 38 Outokumpu Finland 115 Mogok Myanmar 39 Spessart Germany 116 Mong Hsat Myanmar 40 Elie Ness Great Britain 117 Hartmann Mauntains Namibia 41 Serifos Island Greece 118 Kunene River Namibia 42 Ajmer India 119 Marien River Namibia 43 Angul India 120 Swakopmund Namibia 121 Swachi Nepal 44 Balangir India 45 Bendria, Bhilwara India 122 Babana Nigeria 46 Bhadrachalam India 123 Makutu Nigeria 47 Chittoor India 124 Ogbomosho Nigeria 48 Deogarh India 125 Arendal Norway 49 Ghatpara India 126 Basha Valley, Braldu Valley, Shigar Valley Pakistan 50 Hassan India 127 Battakundi, Kaghan Valley, Sapat Pakistan 128 Batwash Gah, Mir Malik, Nanga Parbat Pakistan 51 Hazaribag India 129 Indus Valley Pakistan 52 Hinjlibahal, Kalahandi India 53 Hyderabad India 130 Neelum Valley Pakistan 54 Jharposi India 131 Ocna De Fier Roumania 55 Kakaoria, Tonk India 132 Achtaragda Russia 56 Karur, Kunjampalayam India 133 Altai Russia 57 Koraput India 134 Chusovaya River (Ural) Russia 58 Madurai India 135 Miass Russia 136 Nishni Tagilsk Russia 59 Mysore India 137 Saranowskaja Biserskoye? Russia 60 Narukot-Mine India 61 Nellore India 138 Yekaterinburg Russia 62 Nilgiri India 139 Buffelsfontein Farm South Africa 63 Orissa India 140 Kimberley South Africa 64 Phulabani India 141 Akuressa, Kamburupitiya Sri Lanka 65 Rajasthan India 142 Eheliyagoda, Kuruwita Sri Lanka 66 Salem India 143 Elahera, Kongahawela Sri Lanka 144 Hatton, Maskeliya Sri Lanka 67 Sambalpur India 68 Sangwa (Taranau) India 145 Kataragama Sri Lanka 69 Sarwad (Sarwar) India 146 Lunugamwehera, Tissamaharama Sri Lanka 70 Shahpura India 147 Matara Sri Lanka 71 Shimoga India 148 Okkampitiya Sri Lanka 72 Subarnapur India 149 Ratnapura Sri Lanka 73 Tiruchchirappalli India 150 Tanamalwila Sri Lanka 74 Udaipur India (continued on next page) (continued on next page) 288 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 24 (continued) Table 25 Number Locality Country Epidote group.

151 Telulla Sri Lanka Number Locality Country 152 Trincomalee Sri Lanka 1 Jegdalek, Shinwari Afghanistan 153 Weligama Sri Lanka 2 Thule Denmark-Greenland 154 Chipa, Lukande, Mahenge, Epanko Tanzania 3 Ongot Olgoit Mongolia 155 Hedaru Tanzania 4 Lom Norway 156 Kalalani, Kigwase, Mwakijembe, Umba Valley Tanzania 5 Basha Valley, Braldu Valley, Shigar Valley Pakistan 157 Komolo, Merelani Hills, Lelatema Mountains Tanzania 6 Komolo, Merelani Hills, Lelatema Mountains Tanzania 158 Landanai, Lossongonoi, Naberera, Narujuruju Tanzania 7Merelani Tanzania 159 Lelatema Tanzania 8 Merelani Hills Tanzania 160 Loliondo Tanzania 161 Lumesule River, Muhuwesi River Tanzania 162 Matombo, Mkuyuni, Mvuha, Uluguru Mountains Tanzania 163 Mpekenyera, Namungu Hill Tanzania 164 Mtetesi River, Tunduru Tanzania 165 Mwembe, Pare Mountains, Same Tanzania 4.24. Garnet-group minerals of showcase and gemmy quality (Table 24 — 166 Namaputa Tanzania group 47) 167 Nyarumba Mountain Tanzania 168 Tsavo Park Tanzania 169 Umbra River Tanzania Minerals under consideration: pyrope, spessartite, almandine, 170 Bo Phloi Thailand grossularite and Andradite 171 Chantaburi Thailand Classification scheme: 172 Charkow Ukraine 173 California USA (1) Magmatic garnet deposits 174 San Benito Country USA 175 Lundazi Zambia (1) Mg-enriched garnet s.s.s. in kimberlites (47a A) 176 Sangu Zambia (2) Garnets in volcanic rocks (1) Mg-enriched garnet s.s.s. in basic volcanic rocks (47a B) weathering olivine is rarely found in pre-Neogene placer deposits or in a (2) Fe-enriched garnet s.s.s. in dacite and andesite (47a C) distal position relative to the magmatic source area. (3) Mn–Fe-enriched garnet s.s.s. in rhyolite (47a D) (3) Fe–Mn enriched garnet s.s.s. in (granite) pegmatites (47b D) Sapat Nala Pakistan Peridot Magmatic rocks Kurat Serpentinized dunites et al. (1993) Shavryn Mongolia Peridot Magmatic rocks Dill et al. Tsaram Alkaline basanites, (2004) Table 26 olivine basalts Sillimanite group minerals (+high-Al silicates). Gia Lai Vietnam Peridot Sedimentary rocks Long et al. Province Eluvial–fluvial placer (2005) Number Locality Country 1 Acari, Carnaúba dos Dantas, Parelhas Brazil 2 Calhau River Near Aracuai Brazil 4.23. Pyroxenoid of showcase and gemmy quality (Table 23 — group 46) 3 Itinga, Jequitinhonha Brazil 4 Maricota Paramirim Das Crioulas Brazil Minerals under consideration: charoite, diopside, pectolite, jadeite, 5 Sao José da Sarira, Virgolândia Brazil jade, maw-sit-sit 6 Vitória da Conquista Brazil 7 Araku Valley, Borra India fi Classi cation scheme: 8Balangir India 9 Bobbili India (1) Magmatic pyroxene and inosilicate deposits 10 Chintapalli India (1) Pectolite mineralization in (ultra)basic igneous rocks 11 Hinjlibahal, Kalahandi India (46a AB) 12 Kangayam, Padiyur, Tiruppur India (2) Pectolite mineralization in alkaline igneous rocks (46a E) 13 Karur, Kunjampalayam India (3) Wollastonite deposits in phonolites of alkaline igneous 14 Kiranur India 15 Madurai India rocks (46b E) 16 Mysore India (4) Wollastonite skarn (46b BCD) 17 Nagamangala India (5) Charoite syenite skarn (46d E) 18 Namakkat India (2) Metamorphic pyroxene and inosilicate deposits 19 Paderu India 20 Rayagada India (1) Wollastonite marble (46b K) 21 Sambalpur India (2) Diopside marble (46a K) 22 Thiruvalla India (3) Omphacite in eclogite (46c B) 23 Tiruchchirappalli India (4) Jadeite jade deposits in high-T meta(ultra)basic igneous 24 Trivandrum India rocks (46d AB) 25 Ambatomanaho Madagascar 26 Bernardmyo, Kabaing, Kyatpyin, Myanmar Despite its great variety of minerals and rocks grouped under this Kyauksin, Mogok heading, there are only a few sites of relevance for their outstanding 27 Mohnyin Myanmar 28 Eheliyagoda, Kuruwita Sri Lanka esthetic value. They occur in tow classes among the magmatic and 29 Elahera, Kongahawela Sri Lanka metamorphic rocks. 30 Okkampitiya Sri Lanka 31 Ratnapura Sri Lanka 32 Loliondo Tanzania Chara River Sakha Russia Charoite Magmatic rocks Dobrovol'skaya 33 Mpwapwa Tanzania Republic, Murunskii Syenite skarn et al. (1985) 34 Mwembe, Pare Mountains, Same Tanzania massif 35 Beitbridge Zimbabwe Tawmaw Myanmar Jadeite Metamorphic rocks Keller (1990) 36 Makuti Zimbabwe jade High-P meta(ultra) 37 Zvishavane Zimbabwe basic igneous rocks H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 289

Table 27 Table 27 (continued) Corundum plus spinel group. Number Locality Country

Number Locality Country 76 Glen Innes Australia 1 Jegdalek, Shinwari Afganistan 77 Glen Innes Road-Swanbrook Australia 78 Glenara Australia 2 Khash Afganistan 79 Glencoe Australia 3 Maidan Shahr Afganistan 80 Glenview Australia 4 Jegdalek Afghanistan 81 Australia 5 Warmankai Afghanistan 82 Golden Gully Australia 6 Australia 83 Golf Club Australia 7 Airly Mountain Sapphire Australia 84 Gordon River Australia 8Anakie Australia 85 Gordons Gully Australia 9 Ann (Oban) River Australia 86 Grabben Gullen Creek Australia 10 Antrim Australia 87 Gragin Deep Lead Australia 11 Apple Tree Gully Australia 88 Grahams Valley Creek Australia 12 Ararat Australia 89 Graveyard Australia 13 Arrawatta Australia 90 Greenfields Australia 14 Back Plain Creek Australia 91 Greentop Australia 15 Backwater Creek Australia 92 Grove Creek Australia 16 Bago Creek Ruby Australia 93 Alluvials Australia 17 Bald Hill Alluvials Australia 94 Hamels Gully Australia 18 Bald Hill Creek Australia 95 Harts Range Australia 19 Bald Hills Australia 96 Heifer Hill Australia 20 Ballarat Australia 97 River Australia 21 Barn Gully Australia 98 Higgins Australia 22 Barrington Australia 99 Hillsborough Australia 23 Bass River Australia 100 Hogans Australia 24 Baxters' Sapphires Australia 101 Homewood Australia 25 Australia 102 Hopes Creek Australia 26 Beechworth Australia 103 Horse Gully Australia 27 Bellvue Australia 104 Horwood'S Mine Australia 28 Belmore Crossing Alluvials Australia 105 Humes Creek Australia 29 Bemboka Australia 106 Inverell Australia 30 Ben Lomond Creek Australia 107 Isabella River Alluvials Australia 31 Biscuit Creek Australia 108 Jeremiah Creek Australia 32 Blacksprings Australia 109 Jindalee Road, Australia 33 Bonds Creek Australia 110 Junction Point Alluvials Australia 34 Braemar Australia 111 Kaindri No 1 Australia 35 Bukkulla Australia 112 Kangaroo Flat Australia 36 Bullock Mountain, Mckenzie Australia 113 Karoola Australia 37 Bungee Australia 114 Kellys Hut Creek Australia 38 Burrendong Dam No 1 Australia 115 Kensilgrove No 1 Australia 39 Camerons Creek Australia 116 Kew Australia 40 Australia 117 Kia Tama Homestead Australia 41 Carrington Falls Australia 118 Kialla Creek No 1 Australia 42 Central Queensland Gemfields Australia 119 Kiamma Creek Australia 43 Australia 120 Kiandra Australia 44 Clairvaulx Creek Australia 121 Kings Plains Australia 45 Clarkes Mountain Australia 122 Kingsland Australia 46 Cockatoo Creek Australia 123 Koolabah No 2 Australia 47 Alluvials Australia 124 Lanigans Creek Alluvials Australia 48 Cubba Kings Plains Australia 125 Laurel Hill Deep Lead Australia 49 , Gulgong No 1 Australia 126 Lava Plains Australia 50 Daylesford Australia 127 Lensby Australia 51 Dirty Creek Australia 128 Limestone Creek Australia 52 Dog Trap Gully Australia 129 Lorrimer Prospect Australia 53 Duckmaloi River Australia 130 Lost River Australia 54 Duncans Creek No 1 Australia 131 Loxton Australia 55 Dundee No 1 Australia 132 Maids Valley Creek Australia 56 Dungowan Creek No 1 Australia 133 Mann River Australia 57 Duval Creek Australia 134 Marowan Creek Australia 58 East Vale Mine Australia 135 Mary Ann Creek Australia 59 East-Lynne, Swanbrook Road Australia 136 Maryland Australia 60 Elsmore, Eastwood Australia 137 Matheson Australia 61 Fern Hill Australia 138 Mclaughlin Australia 62 First Creek Alluvials Australia 139 McPhersons Swamp Creek Australia 63 Australia 140 Meadow Vale Australia 64 Fitzroy Falls Australia 141 Menari-Swan Vale Australia 65 Frazer Creek, Crofts Australia 142 Middle Creek Australia 66 Furracabad Creek Australia 143 Middle Lea Australia 67 Gara Dam Prospect Australia 144 Australia 68 Garlands Australia 145 Mosquito Creek Australia 69 Gem Haven Australia 146 Mount Slow Australia 70 Gembrook Australia 147 Mudgee No 1 Australia 71 Georges Creek Australia 148 Nardoo Australia 72 Gills Australia 149 Narran Vale Australia 73 Gineroi Crossing Australia 150 Native Dog Australia 74 Glen Elgin Australia 151 Neills Australia 75 Glen Idle Australia (continued on next page) 290 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 27 (continued) Table 27 (continued) Number Locality Country Number Locality Country

152 Newstead North Australia 229 Weld River Australia 153 Nimmitabel Sugarloaf Australia 230 Welligrove Australia 154 North Nullamanna Australia 231 Wellington No 1 Australia 155 North Stannifer Australia 232 Werong Creek Australia 156 Nullamanna Australia 233 Wheeo Creek Australia 157 Oak Australia 234 White Billy Sapphires Australia 158 Oak Creek Australia 235 Wilson Ml860 Australia 159 Oak Park Australia 236 Australia 160 Australia 237 No 1 Australia 161 Pablos Australia 238 Wongajong Australia 162 Paddys Gully Australia 239 Woodlands Australia 163 Paradise Creek Australia 240 Yanakie Australia 164 Peppercorn Australia 241 Yarrabin Australia 165 Perrys Swamp Creek Australia 242 Yarrandoo Australia 166 Pheasant Creek Australia 243 Australia 167 Pine Grove Australia 244 Agua Boa, Malacacheta Brazil 168 Point Leo Australia 245 AnagÚ Bahia Brazil 169 Ponds Creek Australia 246 Barra Velha Region Brazil 170 Porters Retreat Australia 247 Capim Grosso Brazil 171 Potten Creek Australia 248 Duque De Caxias (Rio De Janeiro) Brazil 172 Puddledock Creek Australia 249 Guanhaes Region Brazil 173 Quartz Australia 250 Indaiá Brazil 174 Red Range No 1 Australia 251 Jequitinhonha River Brazil 175 Reddestone Australia 252 Malacacheta Brazil 176 Regs Flat Australia 253 Manhuacu Brazil 177 Australia 254 Rio Coxim Brazil 178 Australia 255 Rio Das Contas Brazil 179 Roseville No 1 Australia 256 Rio Doce Near Cachoeira Das Escadinhas Brazil 180 Ruby Creek Australia 257 Rio Gurupi Brazil 181 Ruby Creek-Mt Werong Australia 258 Rio Peixe Brazil 182 Rubyvale Australia 259 Rio Sapucai-Mirim Sao Bento Brazil 183 Sapphire Australia 260 Sapucaia Brazil 184 Sapphire Bend Australia 261 Serra Do Itaqui Brazil 185 Australia 262 Ruanda Border Burundi 186 Severn River Australia 263 Pailin Cambodia 187 Shannon Vale No 1 Australia 264 Mamfe Cameroon 188 Australia 265 Ailao Shan China 189 Sides Australia 266 Ailaoshan Mountains China 190 Single Whiskers Creek Australia 267 Changle China 191 Skeleton Creek No 1 Australia 268 Fujian China 192 Snowy Creek Australia 269 Inner Mongolia China 193 South Glencoe Australia 270 J3nnan Province China 194 Spring Creek Australia 271 Kalpin China 195 Stony Creek Australia 272 Lianshan Mountains China 196 Strathdarr Australia 273 Mingxi China 197 Sugarloaf Mountain Australia 274 Nanjiang China 198 Sunlight Australia 275 Taxkorgan China 199 Surface Hill Deep Leads Australia 276 Tenchong China 200 Swamp Oak Australia 277 Wenchang China 201 Swan Vale Australia 278 Wutu Changle I China 202 Swanbrook Australia 279 Yunnan China 203 Tarcoodie Australia 280 Mercaderes-Rio Maya Colombia 204 Creek Australia 281 Fiskenaesset Denmark- 205 The Fallstin Australia Greenland 206 Tilbuster Creek Australia 282 Kittilõ Finland 207 Tilbuster Ponds Australia 283 Le Puy France 208 Tingha Australia 284 Aberdeenshire Great Britain 209 Tooma Australia 285 Ardnamurchan (Glebe Hill) Great Britain 210 Toora Australia 286 Arran Great Britain 211 Truro Australia 287 Dundonnell Great Britain 212 Tubbarubba Creek Australia 288 Loch Roag Great Britain 213 Australia 289 Mull Great Britain 214 Australia 290 Anantapur India 215 Unnamed Australia 291 Angul India 216 Unnamed Australia 292 Balangir India 217 Unnamed Australia 293 Bastar India 218 Upper Fish River Alluvials Australia 294 Channapatna India 219 Upper Australia 295 Chikmagalur India 220 Vimpany — Mc 146 Australia 296 Chittoor India 221 Vulcan Australia 297 Coimbatore India 222 Walkers Sapphire Mine Australia 298 Coorg, Madikeri India 223 Creek Australia 299 Doda India 224 Warrandah Australia 300 Durgahahalli, Ramanahalli, Tumkur India 225 Waterloo Australia 301 Guntur India 226 Wattle Creek Australia 302 Hassan India 227 Weean Australia 303 Hindupur India 228 Weeon Creek Australia 304 Hinjlibahal, Kalahandi India H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 291

Table 27 (continued) Table 27 (continued) Number Locality Country Number Locality Country

305 Kangayam, Padiyur, Tiruppur India 379 Ilakaka Madagascar 306 Kanniyakumari India 380 Manambolo Madagascar 307 Karnataka India 381 Marosely Madagascar 308 Karur, Kunjampalayam India 382 Massif D Ambre Madagascar 309 Kashmir India 383 Miarinarivo Madagascar 310 Khammam India 384 Moramanga Madagascar 311 Kolattupuzha India 385 Madagascar 312 Kurnool India 386 Sakeny Madagascar 313 Maddur India 387 Tetezampaho Madagascar 314 Mysore India 388 Chimwadzulu Malawi 315 Nalgonda India 389 Ntcheu Malawi 316 Nammakal, Paramatti India 390 Nayarit Mexico 317 Nawapara India 391 Changara Mozambique 318 Orissa India 392 Chimoio Mozambique 319 Pavagada India 393 Marrupa Mozambique 320 Quilon India 394 Montepuez Mozambique 321 Raipur India 395 M'Sawize Mozambique 322 Ratnagiri India 396 Mutarara Mozambique 323 Salem India 397 Bernardmyo, Kabaing, Kyatpyin, Kyauksin Myanmar 324 Sambalpur India 398 Mogok Myanmar 325 Somvarpet India 399 Mong Hkak Myanmar 326 Subrahmanya India 400 Mong Hsu Myanmar 327 Sunjam India 401 Nam Phyu Myanmar 328 Tiruchchirappalli India 402 Nanyaseik Myanmar 329 Trivandrum India 403 Pawn Chaung Myanmar 330 Vellore, Venkatpuram India 404 Thabeikkyin Myanmar 331 Vishakhapatnam India 405 Dhading Nepal 332 Warangal (Andra Pradesh) India 406 Ganesh Himal Nepal 333 Chawia, Manoa, Mgama, Taita Hills Kenya 407 Tablejung Nepal 334 Doldol-Loldaika Hills Kenya 408 Ganye Nigeria 335 Eldoret Kenya 409 Gembu Nigeria 336 Garba Tula (Dusi) Kenya 410 Godogodo, Kafachan Nigeria 337 Kinyiki Kenya 411 Gunda Nigeria 338 Kisoli, Kuranze, Lasamba Hill, Mwakinsunzuru Kenya 412 Nissama Nigeria 339 Kitui-Mount Kenia Kenya 413 Tafawa Balewa Nigeria 340 Kubi Kalo Kenya 414 Froland-Kleggasen Norway 341 Lodwar Kenya 415 Basha Valley, Braldu Valley, Shigar Valley Pakistan 342 Mangare, Mukongonyi, Mwachango, Rukanga Kenya 416 Battakundi, Kaghan valley, Sapat Pakistan 343 Mangari Region Kenya 417 Batwash Gah, Mir Malik, Nanga Parbat Pakistan 344 Mugeno Ridge Kenya 418 Hunza Valley Pakistan 345 Samburu Region Kenya 419 Karimabad Pakistan 346 Thika Upon Chania River Kenya 420 Nangimali Pakistan 347 Turkana District Kenya 421 Neelum Valley Pakistan 348 Voi-Mangare Area (Saul Ruby Mine) Kenya 422 Peak Nangimali Baihk Pakistan 349 West Pokot Kenya 423 Cyangugu District Ruanda 350 Ban Houayxay Laos 424 Lake Tshohhaw Ruanda 351 Ban Huai Sai Laos 425 Kootchinskoye Russia 352 Prilep Macedonia 426 Rai-Iz Russia 353 Ambatomena Madagascar 427 Yekaterinburg Russia 354 Ambatomivahy Madagascar 428 Mashishimala-Leydsdorp South Africa 355 Ambatondrazaka Madagascar 429 Oliphant River South Africa 356 Ambinda, Sahambano Madagascar 430 Akurana Sri Lanka 357 Amboahangimamy, Ambrondromifehy, Madagascar 431 Avissawella, Pugoda Sri Lanka Antserasera, Anivorano 432 Bakamuna Sri Lanka 358 Amboasary Madagascar 433 Balangoda Sri Lanka 359 Ambodilazana, Amboditavolo, Ambodivandrika, Madagascar 434 Bibile Sri Lanka Vatomandry 435 Eheliyagoda, Kuruwita Sri Lanka 360 Ampanihy, Antaratra, Bekity Madagascar 436 Elahera, Kongahawela Sri Lanka 361 Analangoaika, Andilamena, Antanimenabaka, Madagascar 437 Embilipitiya Sri Lanka Antanimbohibe 438 Haputale Sri Lanka 362 Anavoha, Fotodrevo Madagascar 439 Horana, Pelpola Sri Lanka 363 Madagascar 440 Ingiriya, Kiriella Sri Lanka 364 Andranondambo Madagascar 441 Kalawana, Niwitigala Sri Lanka 365 Andriba Madagascar 442 Kataragama Sri Lanka 366 Anjomakely Madagascar 443 Kolonne, Rakwana Sri Lanka 367 Ankaditany, Sakalalina, Zazafotsy Madagascar 444 Lunugala Sri Lanka 368 Antanifotsy, Antsahanandriana, Mandrosohasina Madagascar 445 Matale Sri Lanka 369 Antsirabe, Betafo, Soamiakatra Madagascar 446 Matara Sri Lanka 370 Beforona (Ambohitranefitra) Madagascar 447 Moneragala Sri Lanka 371 Befotaka Madagascar 448 Okkampitiya Gemfield Sri Lanka 372 Behara, Beticky, Maniry Madagascar 449 Opanayaka, Pelmadulla Sri Lanka 373 Betroka Madagascar 450 Passara Sri Lanka 374 Didy Madagascar 451 Polonnaruwa Sri Lanka 375 Ejeda Madagascar 452 Ratnapura Sri Lanka 376 Ejeda-Gogogogo, Vohitany Madagascar 453 Ridiyagama Sri Lanka 377 Faratsiho Madagascar 454 Rupaha Sri Lanka 378 Iankaroka, Voronkafatra Madagascar (continued on next page) (continued on next page) 292 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 27 (continued) (1) Mg–Fe–Mn–Ca enriched garnet s.s.s. in alluvial through Number Locality Country coastal placer deposits (47b I)

455 Wellawaya Sri Lanka (4) Metamorphic garnet deposits 456 Murgab Tadjikistan (1) Mg–Cr-enriched garnet s.s.s. in meta(ultra)basic igneous 457 Chala, Sumbawanga Tanzania rocks (47c A) 458 Chipa, Lukande, Mahenge, Epanko Tanzania (2) Fe–Al-enriched garnet s.s.s. in metapelites (47a IJ) 459 Handeni District Tanzania – 460 Kalalani, Kigwase, Mwakijembe, Umba Valley Tanzania (3) Ca Mn-enriched garnet s.s.s. in calcsilicate rocks (47cd K) 461 Komolo, Merelani Hill, Lelatema Mountains Tanzania (4) Mn-enriched garnet s.s.s. in manganiferous BIF ore deposits 462 Lake Maryara Tanzania (47b J) 463 Landanai, Lossongonoi, Naberera, Narujuruju Tanzania (5) V-enriched garnet s.s.s. in carbonaceous slates/schists 464 Longido Tanzania 465 Lossogonoi Tanzania (47d J) 466 Lumesule River, Muhuwesi River Tanzania The garnet s.s.s. forms a rather variegated group of minerals 467 Mahenge Tanzania 468 Maji Moto Tanzania present in each of the four categories of deposits, although not in 469 Malange (Malamawe) Tanzania any of them to the same extent in terms of gemological relevance. 470 Masuguru Tanzania The majority of sites relevant for gemological use lies within metamor- 471 Matombo, Mkuyuni, Mvuha, Uluguru Mountains Tanzania phic and sedimentary rocks, where alluvial and fluvial placer deposits 472 Mbeya Tanzania 473 Mbinga Tanzania are common due to the good preservation potential of garnet during 474 Morogoro Area Tanzania supergene alteration (weathering). Igneous or pegmatitic/aplitic host 475 Mpwapwa Tanzania rocks are less common sources for gemstones, e.g., Dongtai, Mingxi, 476 Mtetesi River, Tunduru Tanzania Tongbei-Fujian, China, (magmatic) and Orissa, India, (pegmatitic). Gar- 477 Naberera Tanzania net is very widespread across the globe, preferably on both sides of the 478 Ndungu Tanzania 479 Ngana Tanzania southern Atlantic Ocean and western Indian Ocean. 480 Ngapa Tanzania 481 Songea Tanzania 482 Songea-Tunduru Tanzania Shavryn Mongolia Pyrope Magmatic rocks Dill et al. 483 Umba Valley Tanzania Tsaram Mg-enriched (2004) 484 Umbra River Tanzania garnet kimberlites, 485 Winza Tanzania basic rocks, 486 Ban Sya Yai Thailand alkaline basalt 487 Bo Phloi Thailand Laghman- Afghanistan Spessartite Magmatic rocks Bariand and 488 Bo Rai, Bo Waen, Nong Bon, Tok Phrom, Welu Klang Thailand Nuristan (granite), Poullen 489 Chantaburi Thailand pegmatite (1978) 490 Chiang Khong Thailand Kimberley South Africa Pyrope Vein-type Dill (2010a, 491 Den Chai Thailand Kimberlite pipes 2010b) 492 Kanchanaburi Thailand Ganesh Himal Nepal Spessartite Sedimentary rocks Dill (2007) 493 Khao Ploi Waen Thailand Almeria Spain Almandine Alluvial through Muñoz- 494 Khao Saming Thailand Alluvial–fluvial Grossularite coastal placers Espadas 495 Nam Yuen, Nong Khon Thailand et al. 496 Phrae Thailand (2000) 497 Wang Chin Thailand Kuranze area Kenya Tanzania Pyrope Metamorphic Seifert and 498 Franklin USA Kalalani area Pyralspite rocks Hyrsl 499 Helena USA s.s.s. Meta(ultra)basic (1999) 500 Macon USA igneous rocks, 501 Rock Creek USA eclogite 502 Yogo Gulch USA 503 An Phu, Bai Da Lan, Khai Trung, Luc Yen, Vietnam Minh Tien, Minh Xuan, Tan Lap, Truc Lau 4.25. Epidote-group minerals of showcase and gemmy quality (Table 25 — 504 Da Ban Area Vietnam group 48) 505 Dak Nong Area Vietnam 506 Di Linh Vietnam 507 Luc Yen Vietnam Minerals under consideration: epidote (thulite, tanzanite), 508 Ma Lam, Phan Thiet Vietnam piemontite, “unakite” and “saussurite” 509 Ngoc Yeu Area Vietnam Classification scheme: 510 Qui Chau, Qui Phong Vietnam 511 Qui Hoop Vietnam (1) Magmatic epidote deposits 512 Quy Chau District Vietnam “ ” 513 Tan Huong Vietnam (1) Unakite -bearing granite (48a D) 514 Tr · c LÔu Vietnam (2) “Saussurite”-bearing basalt (48a B) 515 Xa Gia Kiem, Xuan Loc Vietnam (3) Skarn-like tanzanite deposits (48c CD) 516 Novello Mine Zimbabwe (4) Thulite-piemontite skarn (48d CD) 517 Somabhula Zimbabwe (5) Thulite-bearing granite (48b D) (2) Metamorphic epidote-group deposits (1) Epidote in regional and contact metamorphic epidosite (48c B) – (4) Ti-enriched garnet s.s.s. in alkaline igneous rocks and (2) Thulite piemontite in Mn-bearing metapelites(48b J) carbonatites (47a D) (3) Thulite nephrite amphibolite (48b B) – (5) Fe–Ti–Ca-enriched (hydro) garnet s.s.s. in skarn (47c CD) (4) Zoisite epidosite in metacarbonates (48b K) (2) Structure-related garnet deposits (5) Tanzanite in calcsilicates (48c K) (1) Mg-enriched garnet s.s.s. in kimberlites (47b EF) Mineral associations such as “unakite” and “saussurite” which (2) Ca–Fe-enriched garnet s.s.s. in Cu deposits (47b G) resulted from autohydrothermal alteration of igneous rocks and in- (3) Sedimentary garnet deposits dividual epidote-group minerals mainly in metamorphic lithologies H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 293

Table 28 Table 28 (continued) Diamond. Number Locality Country

Number Locality Country 75 Pit 57 Australia 1 Andrada Angola 76 Pteropus Pipe Australia 2 Cafunto Angola 77 Rameses Pipe Australia 3 Camafuca-Camazombo Angola 78 Rason Kimberlite Australia 4 Camatchia Angola 79 Runton Kimberlite Australia 5 Camatue Angola 80 Seppelt 1 Australia 6 Catoca Angola 81 Shell Lakes Australia 82 Skeleton Flat Australia 7 Catumbela Angola 83 Terrace 5 Australia 8 Cuango-Luzamba Angola 9 Dundo Angola 84 Ullawarra Diamond Australia 10 Gabela Angola 85 Ulw 1 Australia 11 Kuito Province Angola 86 Walgidee Hills Australia 12 Kwango River Angola 87 Wishy Washy Australia 13 Kwanza-Sul Province Angola 88 Wynyardah Australia 14 Lucapa Angola 89 Ak6 Kimberlite Deposit Botswana 90 Jwaneng S Botswana 15 Lunda Angola 91 Letlhakane Botswana 16 Nzaji Angola 17 Saurimo Angola 92 Orapa Botswana 18 A Channel Australia 93 Palapye Botswana 94 Alto Araguaja River Brazil 19 Airport Pipe Australia 95 Alto Paraguay Brazil 20 Argyle Australia 96 Aquidauana River Brazil 21 Aries Central Trial Pit Australia 97 Boa Vista Brazil 22 Ashmore 1 Australia 98 Chapada De Diamantina Brazil 23 Athena Australia 99 Coromandel Brazil 24 Auvergne Australia 100 Cuiabá Brazil 25 B Channel Australia 101 Diamantina Brazil 26 Beechworth Australia 102 Gilbués Piaui Brazil 27 Berkeley Diamond Australia 103 Juina Brazil 28 Beta Creek Australia 104 Lencóis Brazil 29 Big Springs Australia 105 Marabá, Tocantins River Brazil 30 Blacktop Kimberlite Australia 106 Mato Grosso Brazil 31 Blina Australia 107 Minas Triangle Brazil 32 Bollinger Australia 108 Pacaraima Brazil 33 Bow River Group Australia 109 Pimenta Bueno Brazil 34 Brockman Dyke Australia 110 Rondonia Pimenta Bueno Brazil 35 Caduceus Australia 111 Tibagi River Brazil 36 Carapooee Australia 112 Tocantins River Para Brazil 37 Casuarina Diamond Australia 113 Betare-Oya Cameroon 38 Chiltern Australia 114 Diavik Mine Lac De Gras Canada 39 Clurrie Kimberlite/Helix Australia 115 Ekati Mine Lac De Gras Canada 40 Coanjula Australia 116 Fort La Corne Canada 41 Copeton Australia 117 Fox Canada 42 Cyprus North Pipe Australia 118 Gahcho KuÚ-Kennady Lake Canada 43 Ellendale Australia 119 Koala Canada 44 Geebung Pipe Australia 120 Misery Canada 45 Glyde Australia 121 Panda Canada fi 46 Had elds Australia 122 Snap Lake Diamond Canada 47 Helena Australia 123 Southern Era Projects Canada 48 Ivanhoe Crossing Australia 124 Victor Diamond Canada 49 J Channel Australia 125 BerbÚrati Central African Republic 50 Jewill Kimberlite Australia 126 Ippy Central African Republic 51 Kimberley 19 Australia 127 Kotto River Central African Republic 52 King George Australia 128 Mambéré River Central African Republic 53 Lacrosse Scour Basin Target A Australia 129 Changma Diamond District, Mengyin, China 54 Laymans Bore East Australia 130 Dingjiagang-Changde China 55 Lees Bore Diamond Australia 131 Fu Xian China 56 Limestone Creek Australia 132 Laotiangou Liaoning China 57 Lissadell Road Dykes Australia 133 Linshu China 58 Liveringa Australia 134 Mengyin China 59 Lower Bulgurri Australia 135 Mongyin County China 60 Lower Smoke Creek Australia 136 Penglai-Hainan Island China 61 Mallapunyah Australia 137 Qing Jiang China 62 Moroak Australia 138 Tancheng China 63 Mount Abbot Australia 139 Taoyuan China 64 Mount Noreen-Noonkanbah Australia 140 Yecheng China 65 Mount Percy Airstrip Australia 141 Yuan Jiang China 66 Mount Wynne Creek Australia 142 Yuanling China 67 Napier Range Diamond Australia 143 Angulu-Sankuru River Congo 68 New Discovery Yard Australia 144 Divindji/Sankuru River Congo 69 Niobe-Aries Australia 145 Kahemba Congo 70 Nookanbah-Anomaly 2 Australia 146 Kalonji Congo 71 North Kimberley Diamond Group Australia 147 Katsha River Congo 72 Nullagine Australia 148 Kundelungu Congo 73 Nyairgul Creek Australia 149 Luebo Congo 74 Persephone Australia 150 Lukelenge-Mbuji-Mayi River Congo

(continued on next page) 294 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Table 28 (continued) Table 28 (continued) Number Locality Country Number Locality Country

151 Mbuji-Mayi Congo 224 Port Nolloth South Africa 152 Talala Congo 225 Potgietersrus South Africa 153 Tshikapa Congo 226 Premier Mine South Africa 154 Tshimanga/Lubi River Congo 227 Pretoria South Africa 155 SÚguÚla Cote d'Ivoire 228 Pretoria (Cullinan) South Africa 156 Tortjya Cote d'Ivoire 229 Prieska South Africa 157 Bakwanga Democratic Republic 230 Reivilo South Africa of Congo 231 Schweizer-Reneke South Africa 158 Bushimaie River Democratic Republic 232 Springbok South Africa of Congo 233 Swartuggens South Africa 159 Kasai Democratic Republic 234 Theunissen South Africa of Congo 235 Vaal River South Africa 160 Chaillu Massif Gabon 236 Venetia South Africa 161 Makongonio Gabon 237 Ventersdrop South Africa 162 Mbigou Gabon 238 Vredendal South Africa 163 Mitzic Gabon 239 Mwadui Tanzania 164 Waka Gabon 240 Surat Thani Thailand 165 Akwatia Ghana 241 Arkansas “Crater of Diamonds” USA 166 Ben Hope Great Britain 242 Hayfork Creek USA 167 New Cumnock Great Britain 243 Murfreesboro USA 168 Majuagaa Greenland-Denmark 244 Wisconsin USA 169 Maniitsoq Area Greenland-Denmark 245 Tashkent Area Uzbekistan 170 Macenta Guinea 246 Caicara Venezuela 171 Bartica Guyana 247 El Dorado Venezuela 172 Cuyuni River Guyana 248 Guaniamo Venezuela 173 Issano Guyana 249 Paviche Venezuela 174 Lethem Guyana 250 Roraima Venezuela 175 Mahdia Guyana 251 Santa Elena de Uairén Venezuela 176 Mazaruni Guyana 252 Marange Zimbabwe 177 Golconda India 253 River Ranch-Beitbridge Zimbabwe 178 Guntur India 254 Somabula Zimbabwe 179 Panna India 255 Zvishavane Zimbabwe 180 Raipur India 181 Sambalpur India 182 Wairagarh India are considered sometimes for gemological use. Manganiferous epidote 183 Danau Seran, Kalimantan Indonesia Tanzanite is an outstanding unique epidote-group mineral exclusively 184 Kalimantan Indonesia found at the locus typicus. 185 Kao, Letseng-la-Terae, Liqhobong Lesotho 186 Lesotho Lesotho 187 Lets'Eng Diamond Lesotho 188 Sanokole Liberia Merelani, Tanzania Tanzanite Magmatic rocks Malisa and 189 Regulbat Region Mauretania Mozambique Tsavorite Skarn-like deposits Muhongo 190 Namibian Coast Namibia Orogenic Belt Metamorphic rocks (1990) 191 Namibia'S Orange River Namibia Kyanite–sillimanite– 192 Oranjemund Namibia biotite–graphitic 193 Anabar Mine Russia gneisses and marbles 194 Belaya Russia Ovstebo Norway Thulite Magmatic rocks Neumann 195 Grib Pipe'-Arkhangel'Sk. Russia Piemontite Skarn and granite and Svinndal 196 Jubilee Diamond-Yubileinaya Russia (1954) 197 Krasnovishersk Russia Val d'Ala, Italy Epidote Magmatic and Cook (2002) 198 Lomonosov-Arkhangel'Sk Russia Traversella Zoisite metamorphic rocks 199 Mirna-Sakha Republic, Mirnyy Russia Epidosite and 200 Udachny Mine Russia metacarbonates 201 Vishera Russia 202 Kono Sierra Leone 203 Alexander Bay South Africa 204 Baken Diamond Mine South Africa 4.26. Sillimanite-group minerals (plus high-aluminum silicates) of 205 Barkly West, Boshof, Kimberley South Africa showcase and gemmy quality (Table 26 — group 49) 206 Bloemhof South Africa 207 Bultfontein South Africa 208 Cullinan Diamond Mine (Aka Premier South Africa Minerals under consideration: kyanite, andalusite (chiastolite), Diamond Mine)Gauteng Province sillimanite (cat's eye), sapphirine, cordierite (iolite) 209 Dealesville South Africa Classification scheme: 210 Douglas South Africa 211 Du Toitspan, Wesselton South Africa 1. Magmatic sillimanite-group deposits 212 Finsch Mine South Africa 1. Alteration zones of porphyry copper deposits (49b DE) 213 Griquatown South Africa fi 214 Kimberley South Africa 2. Alteration zones of high-sul dation-type deposits (49a CD) 215 Kleinzee South Africa 3. Kyanite pegmatites (plumasite) (49c cd–50a CD) 216 Koffiefontein South Africa 4. Iolite in anorthosite–syenite (49a A–49a E) 217 Koingnaas South Africa 2. Structure-bound deposits 218 Kroonstad South Africa 219 Langhoogte South Africa 1. Andalusite veins (49a G) 220 Lichtenburg South Africa 3. Sedimentary sillimanite-group and staurolite deposits 221 Lime Acres South Africa 1. Eluvial boulder deposits (49b HI) 222 Messina South Africa 1. Enriched in corundum with accessory rutile 223 Oaks Diamond-Swartwater South Africa 2. Sillimanite boulder ore enriched in corundum H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 295

2. Alluvial–fluvial placers (49a I) 3) Ruby in marble (50c K) 1. Enriched in kyanite 4) Corundum/emery-bearing metaduricrusts 2. Enriched in andalusite 1) Corundum–diaspore–spinel metabauxite in marble (50b K) 3. Iolite paleoplacers 2) Sillimanite–corundum meta-palaeosol (49c H) 3. Kyanite, sillimanite, and staurolite in coastal placers operated for 3) Corundum–spinel meta-bauxite (50a H) ilmenite, rutile, and zircon (49a I) 5) Ruby and sapphire in gneisses (50b J) 4. Metamorphic sillimanite-group deposits Corundum of precious to semiprecious (showcase quality) and 1. Andalusite–sillimanite–kyanite crystalline schists, quartzites and spinel occur in magmatic, metamorphic and sedimentary rocks. The lat- hornblende gneisses (49c IJ) ter only host corundum in the most proximal parts of continental placer 2. Sapphirine-bearing high-al granulites (49b J) systems, although its resistance to weathering is quite good. Excluding a 3. Sapphirine–corundum meta(ultra)basic rocks (49c a–50c A) few corundum deposits in northern America and in Asia, almost all pre- 4. Iolite in Al-enriched high-grade metamorphic rocks (49a J) cious corundum deposits cluster along the eastern edge of Brazil and This group is rather heterogeneous from the crystallographic Nigeria, along the East-African Rift, the eastern rim of the Indian sub- point of view and characterized by the dominance of aluminum. It continent and within Precambrian rocks along the Himalayan mountain is closely related to succeeding group of minerals, with its minerals range which fades out into Indochina. The eastern rim of Australia is al- deprived of silica. Gemstones of the sillimanite-group minerals in- most exclusively enriched in sapphire as it is the case with some regions cluding high-aluminum silicates are confined to the eastern edge of in Laos, Thailand and Cambodia. the South American, African continents and the Indian subcontinent. Ankaratra Madagascar Sapphire Magmatic rocks Rakotondrazafy Alkali basalt, et al. (2008) Virgolandia Brazil Iolite Magmatic rocks Delaney anorthoclasites (Minas Anorthosite and (1996) nephelinite, nepheline Gerais) syenite Hawaite and bassanite Agua Brazil Andalusite Structure veins Delaney Nghia Dan Vietnam Chrome Magmatic rocks Quoc et al. Quente Crystalline schists (1996) Province spinel Alkali basalts and (2005) Various sites Sri Lanka Kyanite Sedimentary rocks Rapasinghe Ruby alkaliultramafic –fl Andalusite Alluvial uvial and Sapphire volcanics Iolite placers/paleoplacers Dissanayake Andriandambo Madagascar Ruby Magmatic rock Rakotondrazafy (1985) Spinel Skarn et al. (2008) Various sites Sri Lanka Andalusite Metamorphic rocks Gübelin et al. Yogo Gulch, USA Sapphire Magmatic rock Meyer and Sillimanite Crystalline schists, (1986) Montana Lamprophyres Mitchell (1988) Kyanite quartzites and Various sites Madagascar Precious Magmatic rocks Rakotondrazafy hornblende gneisses and East corundum Plumasite, marundite, et al. (2008) Betroka and Madagascar Sapphirine Metamorphic rocks Razakamanana Africa sakenite, corundumite Bekily Precious Meta(ultra)basic et al. (2001) and biotitite corundum rocks Ilakaka– Madagascar Precious Sedimentary rocks Laurs (2000) Various sites Sri Lanka Iolite Metamorphic rocks Keller (1992) Sakaraha Sri Lanka corundum Modern alluvial to High-grade Various sites Spinel alluvial–fluvial placers metasedimentary and paleoplacer rocks Saul ruby Kenya Ruby Metamorphic rocks Hughes (1990) Mine In al-enriched meta(ultra) basic 4.27. Corundum and spinel group gemstones (Table 27 — group 50) igneous rocks, serpentinites, zoisite Amphibolite Minerals under consideration: corundum (ruby, sapphire), Mogok Myanmar Ruby Metamorphic rocks Kissin (1994) padparadscha, spinel and diaspore Marble Classification scheme: Azov Russia Ruby Metamorphic rocks Greiff (1994) Sapphire Sillimanite–corundum 1) Magmatic corundum and spinel deposits gneisses 1) High-sulfidation-type deposits adjacent to acidic igneous rocks (50d CD) 2) Corundum xenoliths and sapphire in alkali basalt and 4.28. Diamond deposits (Table 28 — group 51) anorthoclasites (50a B) 3) Chrome spinel with ruby and sapphire in ultramafic volcanics Minerals under consideration: diamonds (50b A) Classification scheme: 4) Corundum (nepheline) syenite and pegmatites (50b E) 1) Magmatic deposits – 5) Ruby spinel skarn (50c D) 1) Diamond in komatiites, lamprophyres and other ultrabasic rocks 6) Sapphire in lamprophyres (50d E) (51b A) – 7) Corundum pegmatites (plumasite + marundite) (49c CD 50a 2) Diamond in peridotites of ophiolite sequences (51c A) CD) 3) Diamond deposits bound to kimberlites (51a A–51a F) 2) Sedimentary corundum and spinel deposits 4) Diamond deposits bound to lamproites (51a E) 1) Precious corundum and spinel in modern alluvial to alluvial–fluvial 2) Sedimentary deposits placers (50b I) 1) Placer deposits 2) Paleoplacer (50d I) 1) Alluvial–fluvial and nearshore-marine modern diamond placer 3) Metamorphic corundum and spinel deposits deposits (51a I) 1) Sapphirine–corundum meta(ultra)basic rocks (49c a–50c A) 2) Paleoplacer diamond deposits (51b I) 2) Ruby in al-enriched meta(ultra) basic igneous rocks 3) Alluvial–fluvial carbonado placer (51c I) 1) Ruby metaultrabasites–serpentinites (50a A) 3) Metamorphic deposits 2) Ruby in zoisite amphibolite (50c B) 1) Microdiamonds in impact structures (51a N) 296 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

2) Microdiamonds in high-pressure zones (51b N) Table 31 3) Microdiamonds in garnet gneiss (51b J) Sepiolite. 4) Diamond in graphite schist (51c J) Number Locality Country Magmatic rocks and their proximal continental as well as distal sub- 1 Eskisehir Turkey marine clastic aprons are the main sources of diamonds. Many other metamorphic lithologies also contain diamonds, but too small-sized and too disseminated as to be economic. Table 32 Jet. Wawa area, Canada Diamond Magmatic rocks Ayre and Number Locality Country Ontario Komatiites, lamprophyres Wyman and other ultrabasic rocks (2003) 1 Coast of Yorkshire Great Britain Bobaris Massif, Indonesia Diamond Magmatic rocks MacNevin 2 Whitby Great Britain Kalimantan Peridotites of ophiolite (1977) sequences Jwaneng Botswana Diamond Magmatic rocks Gurney Kimberlites (1989) 5. Conclusions and outlook Argyle-Western Australia Diamond Magmatic rocks Jaques Australia Lamproites et al. The digital maps with more than 2600 mineralized sites were based (1989) “ fi ” Somabula Zimbabwe Diamond Sedimentary rocks Schulz on the Chessboard classi cation scheme of mineral deposits proposed carbonado Alluvial–fluvial, et al. by Dill (2010a) to reveal the interrelations to other mineral deposits Plus other nearshore-marine (1993) containing the elements and minerals of subgem quality and, hence, di- precious Modern and paleoplacer rect our thoughts to potential new target areas for exploration. The min- heavy diamond deposits fi minerals eral deposit are drawn on a simpli ed geological map, illustrating the main lithologies, stratigraphic units and tectonic structures to unravel the evolution of primary gemstone deposits in time and space. The geo- 4.29. Pagodite (Table 29 — group 58), prehnite (Table 30 — group 60) and morphological map is to show the control of climate and subaerial and sepiolite deposits (Table 31 — group 61) submarine hydrography on the deposition of secondary gemstone de- posits. All digital maps are designed to be plotted as a paper version of Minerals under consideration: pyrophyllite, vermiculite (groups different scales and to upgrade them for an interactive use as well as 58), prehnite (group 60) and sepiolite (group 61) creating a link to a gemological database. There is little known about high-quality sources of pagodite, prehnite and sepiolite. Acknowledgments It is mostly used by local craftsmen for carvings. We express our gratitude to L. Birsak, publishing director of Ed. 4.30. Jet/gagat (Table 32 group62)andamberdeposits(Table 33 group 63) Hölzel Gesellschaft m.b.H. Nfg KG, Wien, Austria, who granted permis- sion to redraw some of their geoscientific maps for this project. We Minerals under consideration: jet, amber acknowledge with thanks the provision of data and information on Classification scheme: gemstones by A. Olshina, J M. Fetherston, J. Saunders, D. Flint, J. Whitehouse, L. Sutherland, M. O'Brien, M. Dix, B. Neville, B. Rescignano, (1) Sedimentary jet and amber deposits H. Beurlen, L. Thorning, K. Secher, M. Pennanen, Minerals and Metals (1) Jet deposits (62 J) Sector of Natural Resources Canada, E. C. Noah, Geoagency, Kirghizia, (2) Primary amber deposits (63 J) A. Kathewera, S. Khishigsuren, W. Hofmeister, Department of Mines & (3) Reworked amber deposits (63 I) Geology, Kathmandu, Nepal, E. Jonsson, H.A. Hänni, R. Castroviejo, C. High-quality jet and amber are only recorded from some modern Vorster, D. Barnardo, and C. Utha-aroon. Within the BGR cartography coastal areas. department I would like to express my gratitude to M. Ratajcak, M. Toloczyki, and C. Vinnemann. We thank Milan Novák (Masaryk Univer- Whitby Great Britain Jet Sedimentary rocks Dill (2010a, sity, Brno, Czech Republic) for his review of the paper and his valuable Argillites 2010b) comments. We extend our gratitude also to Dan Lovegrove for his sup- Semba Peninsula, Russia Amber Sedimentary rocks Kharin et al. port in getting this paper published in Earth Science Reviews. Darłovo Poland Argillites and arenites (2004)

Table 33 Amber.

Number Locality Country Table 29 Vermiculite. 1 Dominican Republic Dominican Republic 2 Coast of Lincolnshire Great Britain Number Locality Country 3 Coast of Norfolk Great Britain 1ErdenetMongolia4 Coast of Suffolk Great Britain 5 Isle of Wight Great Britain 6SicilyItaly 7ChiapasMexico 8 Hkmati Myanmar, Birma Table 30 9 Hukawng Valley Myanmar, Birma Chlorites plus prehnite. 10 Constanta Romania 11 Samland Russia Number Locality Country 12 Cliffwood USA 1 Flora Valley Australia 13 Point Barrow USA 2 Thomsonite Beach USA 14 Smith Bay USA H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 297

Appendix A. Supplementary data Dill, H.G., 2007. Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe–Ti oxides. Sediment. Geol. 198, 1–27. Dill, H.G., 2010a. The “chessboard” classification scheme of mineral deposits: mineralogy Readers are encouraged to access the supplementary materials re- and geology from aluminum to zirconium. Earth Sci. Rev. 100, 1–420. lated to this article which can be found online at http://dx.doi.org/10. Dill, H.G., 2010b. From heavy mineral analysis to placer exploitation. http://www. scitopics.com/From_heavy_mineral_analysis_to_placer_exploitation.html. 1016/j.earscirev.2013.07.006. Dill, H.G., Ludwig, R.-R., 2008. Geomorphological–sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi). Ore Geol. Rev. 33, 411–434. References Dill, H.G., Weber, B., 2010. Accessory minerals of fluorite and their implication concerning the environment of formation (Nabburg-Wölsendorf fluorite district, SE Germany) — with special reference to fetid fluorite (“Stinkspat”). Ore Geol. Rev. 37, 65–86. Abdelhadi, A., 1999. Türkis aus dem ägyptischen Sinai. Extra-Lapis 16. Dill, H.G., Nasir, S., Al-Saad, H., 2003. Lithological and structural evolution of the northern Allen, P.A., Allen, J.R., 1990. Basin Analysis: Principles and Applications. Blackwell Scientif- sector of the Dukhan Anticline, Qatar, during the early Tertiary: with special reference ic Publications, Oxford (451 pp.). to bounding surfaces of sequence stratigraphical relevance. GeoArabia 8, 201–226. Altherr, R., Okrusch, M., Bank, H., 1982. Corundum and kyanite bearing anatexites from Dill, H.G., Khishigsuren, S., Yo, Majigsuren, Bulgamaa, J., Hongor, O., Hofmeister, W., 2004. The the Precambrian of Tanzania. Lithos 15, 191–197. diamondiferous peridot (olivine)-garnet deposit Shavryn Tsaram, Central Mongolia, Appel, P.W.U., Jensen, A., 1987. A new gem material from Greenland: iridescent with special reference to its placer deposits. Zeitschrift für Gemmologie 53, 87–104. orthoamphibole (nuummite). Gems Gemol. 23, 36–42. Dill, H.G., Ludwig, R.-R., Kathewera, A., Mwenelupembe, J., 2005. A lithofacies terrain Arif, M., Fallick, A.E., Moon, C.J., 1996. The genesis of emeralds and their host rocks from model for the Blantyre Region. Implications for the interpretation of palaeosavanna Swat, northwestern Pakistan: a stable-isotope investigation. Miner. Deposita 31, depositional systems and for environmental geology and economic geology in south- 255–268. ern Malawi. J. Afr. Earth Sci. 41, 341–393. Ayre, J.A., Wyman, D.A., 2003. Origin of diamondiferous lamprophyres in the evolution of Dill, H.G., Khishigsuren, S., Majigsuren, Y.O., Myagmarsuren, S., Bulgamaa, J., 2006. Geo- the Michipicoten and Abitibi greenstone belts. 8th International Kimberlite Confer- morphological studies along a transect from the taiga to the desert in Central ence Abstracts, pp. 137–141. Mongolia—evolution of landforms in the mid-latitude continental interior as a func- Baker, D.W., Groat, L.A., Taylor, R.P., Marshall, D.D., Fallick, A.E., Sherlock, R., 2003. Sap- tion of climate and vegetation. J. Asian Earth Sci. 27, 241–264. phire-bearing ultramafic lamprophyre dike at Yogo Gulch, Montana: trace-element Dill, H.G., Melcher, F., Fuessl, M., Weber, B., 2007. The origin of rutile–ilmenite aggregates geochemistry and implications for flat-slab tectonics. Gem Materials and Mineralogy, (“nigrine”)inalluvial–fluvial placers of the Hagendorf pegmatite province, NE Bavar- Special Session, Geological Association of Canada (abstracts), May 26 to 28, 2003, ia, Germany. Mineral. Petrol. 89, 133–158. Vancouver, Canada. Dill, H.G., Klosa, D., Steyer, G., 2009. The “Donauplatin”: source rock analysis and origin of Bariand, P., Poullen, J.F., 1978. The pegmatites of Laghman, Nuristan, Afghanistan. Mineral. adistalfluvial Au-PGE (gold–platinum-group-element) placer in Central Europe. Rec. 9, 301–308. Mineral. Petrol. 96, 141–161. Barnes, L.C., Towsend, I.J., Robertson, R.S., Scott, D.C., 1992. Opal. South Australia's Gem- Dill, H.G., Weber, B., Botz, R., 2013. Metalliferous duricrusts (“orecretes”) — markers of stone; Handbook No.5 (Revised Edition).Department of Mines and Energy, Geological weathering: a mineralogical and climatic–geomorphological approach to supergene Survey of South Australia (176 pp.). Pb–Zn–Cu–Sb–P mineralization on different parent materials. Neues Jb. Mineral. – Bartley, J.K., Kah, L.C., 2004. Marine carbon reservoir, Corg–Ccarb coupling, and the evolu- Abh. 190, 123 195. tion of the Proterozoic carbon cycle. Geology 32, 129–132. Dobrovol'skaya, M.G., Malov, V.S., Vladykin, N.V., 1985. Platinum and palladium minerals Bartos, P.J., 2005. The Sweet Home rhodochrosite specimen mine, Alma District, Central in charoite-bearing rocks. Dokl. Akad. Nauk SSSR 284, 438–442 (in Russian). Colorado: the porphyry molybdenum–fluorine connection. Geol. Soc. Am. Abstr. Pro- Dreyer, C.J.B., Söhnge, A.P.G., 1992. The crocidolite and amosite deposits of the Republic of grams 37, 316. South Africa and Bophuthatswana. Handbook. Geological Survey, Pretoria, vol. 12. Behr, H.J., Engel, W., Franke, W., Giese, P., Weber, K., 1984. The Variscan belt in Central Eu- Extralapis, 1999. Madagaskar (Das Paradies der Mineralien und Edelsteine). Lapis, 17. C. rope: main structures, geodynamic implications, open questions. Tectonophysics 109, Weise Verlag, München (96 pp.). 15–40. Eyles, N., Januszczak, N., 2004. ‘Zipper-rift’: a tectonic model for Neoproterozoic glacia- Berryman, A.K., Scott Smith, B.H., Jellicoe, B., 2004. Geology and diamond distribution of tions during the breakup of Rodinia after 750 Ma. Earth-Sci. Rev. 65, 1–73. the 140/141 kimberlite, Fort a la Corne, central Saskatchewan, Canada. Lithos 76, Fallick, A.E., Jocelyn, J., Donelly, T., Guy, M., Behan, C., 1985. Origin of agates involcanic 99–114. rocks of Scotland. Nature 313, 672–674. Bevan, A.W.R., 2001. Rare Australian ornamental materials—zebra rock an ornamental Fernando, G.W.A.R., Attanayake, A.N.B., Hofmeister, W., 2005. Corundum–spinel–taafeite– stone from the East Kimberley, Western Australia. Aust. Gemmol. 21, 165–168. scheelite-bearing metasomatites in Bakamuna, Sri Lanka: modelling of its formation. Bieg, U., Nebelsick, J.H., Rasser, M.W., 2007. North Alpine Foreland Basin (Upper Marine Gem-materials and Modern Analytical Methods, GEM.MAT.MAM, Hanoi, 3rd Interna- molasse) of Southwest Germany: sedimentology, stratigraphy and palaeontology. tional Workshop, pp. 117–124. Geo. Alp 4, 149–158. Fisher, J., 2004. Fluorite from the Northern Pennines ore field, England. Rocks Miner. 79, Bilal, E., Horn, A.H., Machado de Mello, F., 2012. P–Li–Be bearing pegmatites of the South 378–398. East Brazil. Int. J. Geosci. 3, 281–288. Flint, D.J., Dubowski, E.A., 1990. Cowell nephrite jade deposits. In: Hughes, F.E. (Ed.), Geology Bingen, B., Demaiffe, D., Delhal, J., 1988. Aluminous granulites of the Archaean Craton of of the Mineral Deposits of Australia and Papua New Guinea: AustralasianInstitute of Kasai (Zaire): petrology and P–T conditions. J. Petrol. 29, 899–919. Mining and Metallurgy, vol.14, pp. 1059–1062. Bremer, H., 1993. Etchplanation, review and comments of Büdel's model. Z. Geomorphol. Fouch, M.J., James, D.E., 2004. Anatomy of an Archaean Craton: seismic structure beneath N.F. Suppl.bd. 92, 189–200. Southern Africa. American Geophysical Union, Spring Meeting 2004, Abstract #T42A-01. Büdel, J., 1977. Klima-Geomorphologie. Gebrüder Bornträger Berlin, Stuttgart (304 pp.). Franke, W., 1989. Variscan plate tectonics in Central Europe — current ideas and open Cairncross, B., Dixon, R., 1995. Minerals of South Africa, Singapore (290 pp.). questions. Tectonophysics 169, 221–228. Canfield, D.E., 2005. The early history of atmospheric oxygen. Ann. Rev. Earth Planet. Sci. Futrell, D., Varricchio, L., 2002. An argument against the terrestrial origin of tektites. Me- 33, 1–36. teorite 8, 34–35. Christiansen, E.H., Sheridan, M.F., Burt, D.M., 1986. The geology and geochemistry of Ce- Galliski, M.A., Lira, R., Dorais, M.J., 2004. Low-pressure differentiation of melanephelinitic nozoic topaz rhyolites from the western United States. Special Paper — Geological So- magma and the origin of ijolite pegmatites at La Madera, Córdoba, Argentina. Can. ciety of America, 205 (82 pp.). Mineral. 42, 1799–1823. Cocks, L.R.M., Torsvik, T.H., 2006. European geography in a global context from the Garnier, V., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Dubessy, J., Banks, D., Vinh, H.Q., Vendian to the end of the Paleozoic. In: Gee, D.G., Stephenson, R.A. (Eds.), European Lhomme, T., Maluski, H., Pêcher, A., Bakhsh, K.A., Long, P.V., Trinh, P.T., Schwarz, D., Lithosphere Dynamics. Geological Society of London Memoirs, 32, pp. 83–95. 2008. Marble-hosted ruby deposits from Central and Southeast Asia: towards a Coenraads, R.R., Vichit, P., Sutherland, F.L., 1995. An unusual sapphire–zircon–magnetite new genetic model. Ore Geol. Rev. 34, 169–191. xenolith from the Chanthaburi gem province, Thailand. Mineral. Mag. 59, 465–479. Giuliani, G., France-Lanord, C., Cheilletz, A., Coget, P., Branquet, Y., Laumomnier, B., 2000. Cook, R.B., 2002. Epidote. Rocks and Minerals, vol. 77:5. Heldref Publications, Washington. Sulfate reduction by organic matter in Colombian Emerald deposits: chemical and DC, pp. 328–332. stable isotope (C, O, H) evidence. Econ. Geol. 95, 1129–1153. Cuitiño, L., 1986. Mineralogía y génesis del yacimiento de lapislázuli Flor de los Andes, Glen, R.A., 2005. The Tasmanides of eastern Australia. Geol. Soc. Lond. Spec. Publ. 246, 23–96. Coquimbo, Norte de Chile. Rev. Geol. Chile 27, 55–67. Glennie, K.W., 2005. The desert of Southeast Arabia. GeoArabia Special Volume, Manama. DaSilvaRosade,M.L.,Conceição,H.,Macambira,M.J.B.,Galarza,M.A.,PringsheimCunha,M., (213 pp.). Menezes, R.C.L., Marinho, M.M., da Cruz Filho, B.E., Rios, C.D., 2007. Neoproterozoic Golani, P.R., 1989. Sillimanite–corundum deposits of Sonapahar, Meghalaya, India: a anorogenic magmatism in the Southern Bahia Alkaline Province of NE Brazil: U–Pb metamorphosed Precambrian paleosol. Precambrian Res. 43, 175–189. and Pb–Pbagesofthebluesodalitesyenites.Lithos97,88–97. Gómez Fernández, F., Méndez Cecilia, A., Rodríguez del Pozo, M.C., López, G., 2000. Delaney, P.J.V., 1996. Gemstones of Brazil: geology and occurrences. Revista Escola de Minas, Geoquímica de elementos minoritarios en galenas de los yacimientos de Zn–Pb del Praca Tiradentes, vol. 20. Editora REM, Ouro Preto, Minas Gerais Brazil (125 pp.). sector sudeste de Picos de Europa (Norte de España). Bol. Mineral. Geol. 111, 33–46. Dill, H.G., 1998. A review of heavy minerals in clastic sediments with case studies from the Goreva, J.S., Ma, C., Rossman, G.R., 2001. Fibrous nanoinclusions in massive rose quartz: alluvial fan through the near-shore marine environments. Earth-Sci. Rev. 45, 103–132. the origin of rose coloration. Am. Mineral. 86, 466–471. Dill, H.G., 2005. Lithofacies terrain analysis in search of continental placer deposits—with Götze, J., Plötze, M., Fuchs, H., Habermann, D., 2001. Origin, spectral characteristics and special reference to gemstone placers and an outlook on near-surface deposits in practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral. Vietnam. In: Hofmeister, W., Quang, V.X., Nghi, T., Dao, N.Q., Khoi, N.T., Haeger, T. Petrol. 71, 225–250. (Eds.), 3rd International Workshop on Gem Materials and Modern Analytical Goudie, A.S., Pye, K., 1983. Chemical Sediments and Geomorphology—Precipitates and Methods, Hanoi, Vietnam, pp. 39–54. Residua in the Near-surface Environment. Academic Press, London (439 pp.). 298 H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299

Gregory-Wodzicki, K.M., 2000. Uplift history of the Central and Northern Andes: a review. Matte, P., 2001. The Variscan collage and orogeny (480 ± 290 Ma) and the tectonic Geol. Soc. Am. Bull. 112, 1091–1105. definition of the Armorica microplate: a review. Terra Nova 13, 122–128. Greiff, S., 1994. Der Rubingneis von Mysore, eine modellgenetische Entwicklung. Ph.D. Meert, J.G., Torsvik, T.H., 2003. The making and unmaking of a supercontinent: Rodinia Thesis Mainz University. revisited. Tectonophysics 375, 261–288. Grew, E.S., 1988. Kornerupine at the Sar-e-Sang, Afghanistan, whiteschist locality: Mercier, A., Debat, P., Saul, J.M., 1999. Exotic origin of the ruby deposits of the Mangari implications for tourmaline–kornerupine distribution in metamorphic rocks. area in SE Kenya. Ore Geol. Rev. 14, 83–104. Am. Mineral. 73, 345–357. Meyer, H.O.A., Mitchell, R.H., 1988. Sapphire-bearing ultramafic lamprophyre from Yogo Gübelin, E.J., 1992. World map of gem deposits. Schweiz. Schweizerische Gemmologische Gulch, Montana; a ouachitite. Can. Mineral. 26, 81–88. Gesellschaft.- Bern, Kümmerly + Frey. Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Gübelin, E., Weibel, M., Woensdregt, C.P., 1986. Some unusual sillimanite cat's-eyes. Gems Petroleum Geology. Springer, Berlin (582 pp.). Gemol. 22, 96–98. Migoń, P., 2006. Granite Landscapes of the World. Oxford University Press, New York Guiraud, R., 1998. Mesozoic rifting and basin inversion along the northern African Tethy- (384 pp.). an margin: an overview. In: MacGregor, D.S., Moody, R.T.J., -Lowes, D.D. (Eds.), Milisenda, C., 1991. Compositional characteristics of the Vijayan Complex. In: Kröner, A. Petroleum Geology of North Africa. London, Geological Society Special Publication, (Ed.), The Crystalline Crust of Sri Lanka. Pt. I. Summary of research of the German- 132, pp. 217–229. Sri Lanka Consortium Geol. Surv. Dept., Sri Lanka Prof. Paper, 5, pp. 135–140. Gurney, J.J., 1989. Kimberlites and related rocks. In: , J. (Ed.), Geol. Soc. Australia Spec. Millsteed, P.W., 2006. Faceting transparent rhodonite from Broken Hill, New South Wales, Pub. No. 14, vol. 2, pp. 935–965. Australia. Gems Gemol. 42, 151–158. Hetman, C.M., 2008. Tuffisitic kimberlite (TK): a Canadian perspective on a distinctive Mitchell, R.H., 1995. The role of petrography and lithogeochemistry in exploration for textural variety of kimberlite. J. Volcanol. Geotherm. Res. 174, 57–67. diamondiferous rocks. J. Geochem. Explor. 53, 339–350. Hoover, D.B., 1992. Topaz. Butterworth-Heinemann, Oxford (240 pp.). Mittwede, S.K., 1994. Primary scapolite in a granitic pegmatite, western Cherokee County, Hughes, R.W., 1990. Corundum. Butterworth-Heinmann, London (314 pp.). South Carolina. Can. Mineral. 32, 617–622. Ingersoll, R.V., 1988. Tectonics of sedimentary basins. Geol. Soc. Am. Bull. 100, Moro, M.C., Cembranos, M.L., Fernandez, A., 2001. Celsian, (Ba, K)-feldspar and cymrite 1704–1719. from SEDEX barite deposits of Zamora, Spain. Can. Mineral. 39, 1039–1051. Jahn, Bor-Ming, Zhang, Zong-Qing, 1984. Archaean granulite gneisses from eastern Hebei Morteani, G., Ackermand, D., 2003. Mineralogy and geochemistry of Al-phosphate and Province, China: rare earth geochemistry and tectonic implications. Contrib. Mineral. Al-borosilicate-bearing metaquartzites of the northern Serra do Espinhaço (State of Petrol. 85, 224–243. Bahia, Brazil). Mineral. Petrol. 80, 59–81. Jaques, A.L., Sun, S.-S., Chappell, B.W., 1989. Geochemistry of the Argyle (AK1) Lamproite Muggeridge, M.T., 1995. Pathfinder sampling techniques for locating primary sources of Pipe, Western Australia. Kimberlites and Related Rocks, Volume 1, Their Origin, Oc- diamond: recovery of indicator minerals, diamonds and geochemical signatures. currence and Emplacement. Proc. 4th International Kimberlite Conference, Perth, J. Geochem. Explor. 53, 183–204. WA, 1986: Geological Society of Australia Special Publication, 14, pp. 170–188. Muñoz-Espadas, M.-J., Lunar, R., Martínez-Frías, J., 2000. The garnet placer deposit from Jaques, A.L., O'Neill, H.St.C, Smith, C.B., Moon, J., 1990. Diamond-bearing peridotite xeno- SE Spain: industrial recovery and geochemical features. Episodes 23, 266–269. liths from the Argyle (AK 1) pipe. Contrib. Mineral. Petrol. 104, 255–276. Neumann, H., Svinndal, S., 1954. The cyprin–thulite deposit at Øvstebø near Kleppan in Jensen, A., Petersen, O.V., 1982. Tugtupite a gemstone from Greenland. Gems Gemol. 18, Sauland, Telemark, Norway. Nor. Geol. Tidsskr. 34, 139–156. 90–94. Noll, C.A., Hall, M., 2006. Normal fault growth and its function on the control of sedi- Johnston, Christopher L., Gunter, Mickey E., Knowles, Charles R., 1991. Sunstone labradorite mentation during basin formation: a case study from field exposures of the Upper from the Ponderosa Mine, Oregon. Gems Gemol. 27, 220–233. Cambrian Owen Conglomerate, West Coast Range, western Tasmania, Australia. Jones, B., Renaut, R.W., 2004. Water content of opal-A: implications for the origin of AAPG Bull. 90, 1609–1630. laminae in geyserite and sinter. J. Sediment. Res. 74, 117–128. Oakes, G., Barron, L.M., Lishmund, S.R., 1996. Alkali basalts and associated volcaniclastic Keller, P.C., 1990. Gemstones formed by high-pressure regional metamorphism: the rocks as a source of sapphire in eastern Australia. Aust. J. Earth Sci. 43, 289–298. jadeite deposits of Tawmaw, Burma. Gemstones and Their Origins. 101–113. O'Donoghue, M., 2006. Gems Their Sources, Descriptions and Identification. Elsevier, Keller, P.C., 1992. Gemstones of East Africa. Geoscience Press, Phoenix, Arizona, U.S.A. Amsterdam (873 pp.). (144 pp.). Orlandi, P., Pezzotta, A., 1997. I minerali dell'Isola d'Elba. In: Novecento Grafico, Bergamo Kharin, G., Emelyanov, E.M., Zagorodnich, A.V., 2004. Paleogene mineral resources of the (Ed.), I minerali dei Giacimenti metalliferi dell'Elba orientale e delle Pegmatiti del SE Baltic Sea and Sambian Peninsula. Z. Angew. Geol. Sonderh. 2, 64–71. Monte Capanne (245 pp.). Khokhryakov, A.F., Pal'yanov, Y.N., Sobolev, N.V., 2002. Crystal morphology as an indicator Paar, W., Roberts, A.C., Topa, D., Zagler, G., Berlepsch, P., Armbruster, Th., 2004. Putzite,

of redox conditions of natural diamond dissolution at the mantle PT parameters. (Cu 4.7 Ag 3.3)GeS 6, a new mineral species from Capillitas, Catamarca, Argentina: Dokl. Earth Sci. 385, 534–537. description and . Can. Mineral. 42, 1757–1769. Kievlenko, E.Y., 2003. Geology of Gems. Ocean Publications Ltd., Littleton, CO (432 pp.). Pesonen, L.J., Elming, S.-Å., Mertanen, S., Pisarevsky, S., D'Agrella-Filho, M.S., Meert, J.G., King, S.D., 2005. Archaean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234, 1–14. , P.W., Abrahamsen, N., Bylund, G., 2003. Assemblies of continents during Kissin, A.J., 1994. Ruby and sapphire from the southern Ural Mountains, Russia. Gems the Proterozoic: Rodinia and beyond. Tectonophysics 375, 289–324. Gemol. 30, 243–252. Peucat, J.J., Vidal, P., -Griffiths, J., Condie, K.C., 1989. Sr, Nd and Pb isotopic systematics Kraft, M., Kampe, A., 1994. Usbekistan. Rohstoffwirtschaftlicher Länderberichte 38, 1–137. in the Archean low- to high-grade transition zone of southern India: syn-accretion vs. Kurat, G., Palme, H., Embey-Isztin, A., Touret, J., Ntaflos, T., Spettel, B., Brandstätten, F., post-accretiongranulites.J.Geol.97,537–550. Palme, C., Dreibus, G., Prinz, M., 1993. Petrology and geochemistry of peridotites and as- Proenza, J., Solé, J., Melgarejo, J.C., 1999. Uvarovite in podiform chromitite: the Moa–Baracoa sociated vein rocks of Zabargad Island, Red Sea, Egypt. Mineral. Petrol. 48, 309–341. ophiolitic Massif Cuba. Can. Mineral. 37, 679–690. Lambert, C., Brown, G., 1994. A brief report on Indonesian opal. Aust. Gemmol. 18, 359–361. Putz, H., 2005. Mineralogy and Genesis of Epithermal Ore Deposits at Capillitas, Catamar- Laurs, B.M., 2000. Update on some Madagascar gem localities. Gems Gemol. 36, 165–167. ca Province, NW Argentina. PhD Thesis University of Salzburg. Laurs, B.M., Rohtert, W.R., Gray, M., 1997. Benitoite from the New Idria District, San Benito Quoc, N.K., Lan, D.H., Hang, N.B., Anh, N.Q., 2005. Spinel and clinohumite of Vietnam. County, California. J. Gems Gemol. 33, 166–187. Gem-materials and Modern Analytical Methods. GEM.MAT.MAM, Hanoi, 3rd Interna- Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., 2005. Igne- tional Workshop, pp. 86–97. ous rocks: a classification and glossary of terms: recommendations of the Interna- Rakotondrazafy, A.F.M., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Rakotosamizanany, S., tional Union of Geological Sciences subcommission on the systematics of igneous Andriamamonjy, A., Ralantoarison, T., Razanatseheno, M., Offant, Y., Garnier, V., rocks, 2nd ed. Cambridge University Press, Cambridge (256 pp.). Maluski, H., Dunaigre, C., Schwarz, D., Ratrimo, V., 2008. Gem corundum deposits Li, X.F., Watanabe, Y., Wang, C., Hirano, H., Zhang, Y., 2007. TheageoftheDonghairock of Madagascar: a review. Ore Geol. Rev. 34, 134–154. crystals (clear quartz), eastern China: constraint from biotite Ar–Ar geochronology. Rapasinghe, M.S., Dissanayake, C.B., 1985. Charnokites and the genesis of gem minerals. Bull. Geol. Surv. Jpn. 58, 1–6. Econ. Geol. 76, 1216–1225. Limtrakun, P., Zaw, K., Ryan, C.G., Mernagh, T.P., 2001. Formation of the Denchai gem sap- Razakamanana, T., Windley, B.F., Ackermand, D., 2001. Sapphirine–kornerupine granu- phires, northern Thailand: evidence from mineral chemistry and fluid/melt inclusion lites from the Precambrian of Southern Madagascar. implications for the evolution characteristics. Mineral. Mag. 65, 725–735. of the deep crust in East Gondwana. Gondwana Res. 4, 752–753. Long, P.V., Guiliani, G., Garnier, V., Ohnenstetter, D., 2005. Gemstones occurrences of Ritts, B.D., Weislogel, A., Graham, S.A., Darby, B.J., 2009. Mesozoic tectonics and sedimen- Vietnam Gem—materials and modern analytical methods. GEM.MAT.MAM, Hanoi, tation of the giant polyphase nonmarine intraplate Ordos Basin, Western North China 3rd International Workshop, pp. 170–181. Block. Int. Geol. Rev. 51, 95–115. MacGregor, D.S., Moody, R.T.J., 1998. Mesozoic and Cenozoic petroleum systems of Russian Academy of Sciences Institute of Geography, 1998. Resources and environment. North Africa. In: MacGregor, D.S., Moody, R.T.J.,Clark-Lowes,D.D.(Eds.),Petro- World Atlas I and II. — Wien, Austrian Institute of East and Southeast European Stud- leum Geology of North Africa. London, Geological Society Special Publication, ies, Hölzel, Vienna (vol. I, 93 tables, volume II, 95 tables). 132, pp. 201–216. Schulz, K.-H., Adelhardt, W., Wagner, H., 1993. Simbabwe. — Rohstoffwirtschaftlicher MacNevin, A.A., 1977. Diamonds in New South Wales. Department of Mines, Geological Länderbericht, 37 (224 pp.). Survey of New South Wales Mineral Resources Report 42. 126. Scotese, C.R., 2002. Paleomap project. http://www.scotese.com/legend.htm. Makhous, M., Galushkin, Y., Lopatin, N., 1997. Burial history and kinetic modeling for Scott Smith, B.H., 2008. Canadian kimberlites: geological characteristics relevant to em- hydrocarbon generation, part II: applying the GALO model to Saharan Basins. AAPG placement. J. Volcanol. Geotherm. Res. 174, 9–19. Bull. 81 (10), 1679–1699. Seifert, A.V., Hyrsl, J., 1999. Sapphire and garnet from Kalalani, Tanga Province, Tanzania. Malisa, E., Muhongo, S., 1990. Tectonic setting of gemstone mineralization in the Protero- Gems Gemol. 35, 108–120. zoic metamorphic terrane of the Mozambique Belt in Tanzania. Precambrian Res. 46, Shigley, J.E., Koivula, J.I., Fryer, C.W., 1987. The occurrence and gemological properties of 167–176. Wessels Mine sugilite. Gems Gemol. 23, 78–89. Marquez-Zavalia, F., Craig, J.R., Solberg, T.N., 1999. Duranusite product of realgar alter- Shigley, J.E., Laurs, B.M., Bram, Janse, A.J.A., Elen, S., Dirlam, D.M., 2010. Gem localities of ation Mina Capillitas Argentina. Can. Mineral. 37, 1255–1259. the 2000s. Gems & Gemology 46, 188–216. H.G. Dill, B. Weber / Earth-Science Reviews 127 (2013) 262–299 299

Sial, A.N., Dall'Agnol, R., Ferreira, V.P., Nardi, L.V.S., Pimentel, M.M., Wiedemann, C.M., Turkington, A.V., Paradise, T.R., 2005. Sandstone weathering. A century of research and 1999. Precambrian granitic magmatism in Brazil. Episodes 22, 191–198. innovation. Geomorphology 67, 229–253. Simandl, G.J., Paradis, S., Diakow, L.J., Wojdak, P.J., Hartley, A.J., 1999. Precious opal in Turner, D., Groat, L.A., Hart, C.J.R., Mortensen, J.K., Linnen, R.L., Giuliani, G., Wengzynowski, the Whitesai Range, West-Central British Columbia, Canada. British Columbia W., 2007. Mineralogical and geochemical study of the true blue aquamarine showing, Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1998, southern Yukon. Can. Mineral. 45, 203–227. pp. 285–293. Vasconcelos, P., Singh, B., 1996. The crystal chemistry and genesis of chrysoprase. Mesozoic Sokolov, M., Martin, R.F., 2007. The geochemical attributes of the amazonitic microcline at Geology of the Eastern Australian Plate Conference, Geological Society of Australia Inc., the Morefield NYF-type pegmatite, Amelia district, Virginia granitic pegmatites: Extended Abstracts No.43, p. 545. the state of the art. International Symposium. 6th–12th May 2007, Porto, Portugal Vassileva, R.D., Bonev, I.K., 2008. Mineralogy of diopside–phlogopite marbles from the (2 pp.). Modi-Khola Valley, the Central Nepal Himalaya. Geochem. Mineral. Petrol. 46, 69–84. Spiridonov, E.M., Alferova, M.S., Fattykhov, T.G., 2006. GemmineralsfromtheSaranovskoye Walton, L., 2004. Exploration criteria for colored gemstone deposits in the Yukon. Yukon chromite deposit, western Urals. J. Gemology 30, 91–102. Geological Survey, Open File 2004-10. (184 pp.). Stampfli, G.M., von Raumer, J.F., Borel, G.D., 2002. Paleozoic evolution of pre-Variscan Waters, D.J., Moore, J.M., 1985. Kornerupine in Mg–Al-rich gneisses from Namaqualand, terranes: from Gondwana to the Variscan collision. Geol. Soc. Am. Spec. Pap. 364, South Africa: mineralogy and evidence for late-metamorphic fluid activity. Contrib. 263–280. Mineral. Petrol. 91, 369–382. Steck, A., Spring, L., Vannay, J.-C., Masson, H., Stutz, E., Bucher, H., Marchant, R., Tièche, J.C., Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for 1993. Geological transect across the Northwestern Himalaya in eastern Ladakh and the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, Lahul (a model for the continental collision of India and Asia). Eclogae Geol. Helv. 175–178. 86, 219–263. Willing, M.J., Stocklmayer, S.M., 2003. A new chrome chalcedony occurrence from Western Streckeisen, A., 1980. Classification and nomenclature of volcanic rocks, lamprophyres, Australia. J. Gemology 28, 265–279. carbonatites and melilitic rocks IUGS subcommission on the systematics of igneous Wilson, R.C.L., 1983. Residual deposits. Surface related weathering processes and mate- rocks. Int. J. Earth Sci. 69, 194–207. rials. Geological Society Special Publication, 11. Blackwell, London (258 pp.). Summerfield, M.A., 1991. Global Geomorphology. John Wiley and Sons Inc., New York Wyche, S., Nelson, D.R., Riganti, A., 2004. 4350–3130 Ma detrital zircons in the southern (537 pp.). cross granite–greenstone terrane, Western Australia: implications for the early evolu- Sutherland, F.L., Hoskin, P.W.O., Fanning, C.M., Coenraads, R.R., 1998. Models of co- tion of the Yilgarn Craton. Aust. J. Earth Sci. 51, 31–45. rundum origin in alkali basaltic terrains: a reappraisal. Contrib. Mineral. Petrol. 133, Yin, An, 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by 356–372. along-strike variation of structural geometry, exhumation history, and foreland sed- Tanner, P.W.G., Bluck, B.J., 1999. Current controversies in the Caledonides. J. Geol. Soc. imentation. Earth Sci. Rev. 76, 1–131. 156, 1137–1141. Yui, T.-F., Yeh, H.-W., Lee, C.W., 1988. Stable isotope studies of nephrite deposits from Thomas, M.F., 1994. Geomorphology in the Tropics. Wiley, Chichester (482 pp.). Fengtian, Taiwan. Geochim. Cosmochim. Acta 52, 593–602. Thomas, M.F., 1995. Models for landform development on passive margins. Some implica- Yui, T., Zaw, K., Limtrakun, K., 2003. Oxygen isotope composition of the Denchai sapphire, tions for relief development in glaciated areas. Geomorphology 12, 3–15. Thailand: a clue to its enigmatic origin. Lithos 67, 155–161. Torsvik,T.H.,Smethurst,M.A.,Meert,J.G.,VanderVoo,R.,McKerrow,W.S.,Brasier,M.D.,Sturt, Zhaochang, S., 1994. Gigantic and supergigantic crystal clusters of iceland-spar calcite, B.A., Walderhaug, H.J., 1996. Continental break-up and collision in the Neoproterozoic mechanism of formation. Carsologica Sin. 13, 383–394 (Chinese with English and Paleozoic — a tale of Baltica and Laurentia. Earth Sci. Rev. 40, 229–258. summary). Tricart, J., Cailleux, A., 1958. Cours de Geomorphologie I. Geomorphologie Structurale.C.D.U., Zorz, M., 1996. The hyalophane occurrence at Zagradski Potok near Busovaca, Bosnia and Paris (252 pp.). Hercegovina. Mineral. Rec. 27, 325–346.

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.