11695003.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apples Catalogue 2019
ADAMS PEARMAIN Herefordshire, England 1862 Oct 15 Nov Mar 14 Adams Pearmain is a an old-fashioned late dessert apple, one of the most popular varieties in Victorian England. It has an attractive 'pearmain' shape. This is a fairly dry apple - which is perhaps not regarded as a desirable attribute today. In spite of this it is actually a very enjoyable apple, with a rich aromatic flavour which in apple terms is usually described as Although it had 'shelf appeal' for the Victorian housewife, its autumnal colouring is probably too subdued to compete with the bright young things of the modern supermarket shelves. Perhaps this is part of its appeal; it recalls a bygone era where subtlety of flavour was appreciated - a lovely apple to savour in front of an open fire on a cold winter's day. Tree hardy. Does will in all soils, even clay. AERLIE RED FLESH (Hidden Rose, Mountain Rose) California 1930’s 19 20 20 Cook Oct 20 15 An amazing red fleshed apple, discovered in Aerlie, Oregon, which may be the best of all red fleshed varieties and indeed would be an outstandingly delicious apple no matter what color the flesh is. A choice seedling, Aerlie Red Flesh has a beautiful yellow skin with pale whitish dots, but it is inside that it excels. Deep rose red flesh, juicy, crisp, hard, sugary and richly flavored, ripening late (October) and keeping throughout the winter. The late Conrad Gemmer, an astute observer of apples with 500 varieties in his collection, rated Hidden Rose an outstanding variety of top quality. -
Variety Description Origin Approximate Ripening Uses
Approximate Variety Description Origin Ripening Uses Yellow Transparent Tart, crisp Imported from Russia by USDA in 1870s Early July All-purpose Lodi Tart, somewhat firm New York, Early 1900s. Montgomery x Transparent. Early July Baking, sauce Pristine Sweet-tart PRI (Purdue Rutgers Illinois) release, 1994. Mid-late July All-purpose Dandee Red Sweet-tart, semi-tender New Ohio variety. An improved PaulaRed type. Early August Eating, cooking Redfree Mildly tart and crunchy PRI release, 1981. Early-mid August Eating Sansa Sweet, crunchy, juicy Japan, 1988. Akane x Gala. Mid August Eating Ginger Gold G. Delicious type, tangier G Delicious seedling found in Virginia, late 1960s. Mid August All-purpose Zestar! Sweet-tart, crunchy, juicy U Minn, 1999. State Fair x MN 1691. Mid August Eating, cooking St Edmund's Pippin Juicy, crisp, rich flavor From Bury St Edmunds, 1870. Mid August Eating, cider Chenango Strawberry Mildly tart, berry flavors 1850s, Chenango County, NY Mid August Eating, cooking Summer Rambo Juicy, tart, aromatic 16th century, Rambure, France. Mid-late August Eating, sauce Honeycrisp Sweet, very crunchy, juicy U Minn, 1991. Unknown parentage. Late Aug.-early Sept. Eating Burgundy Tart, crisp 1974, from NY state Late Aug.-early Sept. All-purpose Blondee Sweet, crunchy, juicy New Ohio apple. Related to Gala. Late Aug.-early Sept. Eating Gala Sweet, crisp New Zealand, 1934. Golden Delicious x Cox Orange. Late Aug.-early Sept. Eating Swiss Gourmet Sweet-tart, juicy Switzerland. Golden x Idared. Late Aug.-early Sept. All-purpose Golden Supreme Sweet, Golden Delcious type Idaho, 1960. Golden Delicious seedling Early September Eating, cooking Pink Pearl Sweet-tart, bright pink flesh California, 1944, developed from Surprise Early September All-purpose Autumn Crisp Juicy, slow to brown Golden Delicious x Monroe. -
Apples: Organic Production Guide
A project of the National Center for Appropriate Technology 1-800-346-9140 • www.attra.ncat.org Apples: Organic Production Guide By Tammy Hinman This publication provides information on organic apple production from recent research and producer and Guy Ames, NCAT experience. Many aspects of apple production are the same whether the grower uses low-spray, organic, Agriculture Specialists or conventional management. Accordingly, this publication focuses on the aspects that differ from Published nonorganic practices—primarily pest and disease control, marketing, and economics. (Information on March 2011 organic weed control and fertility management in orchards is presented in a separate ATTRA publica- © NCAT tion, Tree Fruits: Organic Production Overview.) This publication introduces the major apple insect pests IP020 and diseases and the most effective organic management methods. It also includes farmer profiles of working orchards and a section dealing with economic and marketing considerations. There is an exten- sive list of resources for information and supplies and an appendix on disease-resistant apple varieties. Contents Introduction ......................1 Geographical Factors Affecting Disease and Pest Management ...........3 Insect and Mite Pests .....3 Insect IPM in Apples - Kaolin Clay ........6 Diseases ........................... 14 Mammal and Bird Pests .........................20 Thinning ..........................20 Weed and Orchard Floor Management ......20 Economics and Marketing ........................22 Conclusion -
The Scientific Principles Underpinning Inconsistencies in Cider Quality
The scientific principles underpinning inconsistencies in cider quality Produced by the Tasmanian Institute of Agriculture (TIA) Cider Research Team: Harriet Walker, Joanna Jones, Fiona Kerslake, Anna Carew, Nigel Swarts & Dugald Close Contact Authors Dr Fiona Kerslake Research Fellow Tasmanian Institute of Agriculture 165 Westbury Rd, Prospect, TAS 7250 +61 3 6336 5294 | [email protected] Dr Anna Carew Research Fellow Tasmanian Institute of Agriculture Private Bag 98, Hobart, TAS 7000 +61 0411 894 997 | [email protected] Dr Joanna Jones Research Fellow Tasmanian Institute of Agriculture Private Bag 98, Hobart, TAS 7000 +61 3 6226 2557 | [email protected] The authors acknowledge the contribution of the following individuals and organisations: Cider Tasmania Dr Bob Dambergs Jennifer Lavers Cider Australia Dr Paul Smith Lachlan Girschik Spreyton Cider Co. Dr Keren Bindon Megan Dykman Willie Smiths Cider Harriet Walker Dr Andrew Lea Winemaking Tasmania Hanna Westmore Published by Tasmanian Institute of Agriculture, 2016 DISCLAIMER While the Tasmanian Institute of Agriculture (TIA) takes reasonable steps to ensure that the information in this publi- cation is correct, it provides no warranty or guarantee that information is accurate, complete or up-to-date. TIA will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information contained in this publication. No person should act on the basis of the contents of this publication without first obtaining specific, independent, professional advice. TIA and contributors to this publication may identify products by proprietary or trade names to help readers identify particular types of products. -
Survey of Apple Clones in the United States
Historic, archived document Do not assume content reflects current scientific knowledge, policies, or practices. 5 ARS 34-37-1 May 1963 A Survey of Apple Clones in the United States u. S. DFPT. OF AGRffini r U>2 4 L964 Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE PREFACE This publication reports on surveys of the deciduous fruit and nut clones being maintained at the Federal and State experiment stations in the United States. It will b- published in three c parts: I. Apples, II. Stone Fruit. , UI, Pears, Nuts, and Other Fruits. This survey was conducted at the request of the National Coor- dinating Committee on New Crops. Its purpose is to obtain an indication of the volume of material that would be involved in establishing clonal germ plasm repositories for the use of fruit breeders throughout the country. ACKNOWLEDGMENT Gratitude is expressed for the assistance of H. F. Winters of the New Crops Research Branch, Crops Research Division, Agricultural Research Service, under whose direction the questionnaire was designed and initial distribution made. The author also acknowledges the work of D. D. Dolan, W. R. Langford, W. H. Skrdla, and L. A. Mullen, coordinators of the New Crops Regional Cooperative Program, through whom the data used in this survey were obtained from the State experiment stations. Finally, it is recognized that much extracurricular work was expended by the various experiment stations in completing the questionnaires. : CONTENTS Introduction 1 Germany 298 Key to reporting stations. „ . 4 Soviet Union . 302 Abbreviations used in descriptions .... 6 Sweden . 303 Sports United States selections 304 Baldwin. -
Handling of Apple Transport Techniques and Efficiency Vibration, Damage and Bruising Texture, Firmness and Quality
Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences PUBLISHED BY: B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ACTIVITIES OF WP9 IN THE CENTRE OF EXCELLENCE AGROPHYSICS CONTRACT NO: QLAM-2001-00428 CENTRE OF EXCELLENCE FOR APPLIED PHYSICS IN SUSTAINABLE AGRICULTURE WITH THE th ACRONYM AGROPHYSICS IS FOUNDED UNDER 5 EU FRAMEWORK FOR RESEARCH, TECHNOLOGICAL DEVELOPMENT AND DEMONSTRATION ACTIVITIES GENERAL SUPERVISOR OF THE CENTRE: PROF. DR. RYSZARD T. WALCZAK, MEMBER OF POLISH ACADEMY OF SCIENCES PROJECT COORDINATOR: DR. ENG. ANDRZEJ STĘPNIEWSKI WP9: PHYSICAL METHODS OF EVALUATION OF FRUIT AND VEGETABLE QUALITY LEADER OF WP9: PROF. DR. ENG. BOHDAN DOBRZAŃSKI, JR. REVIEWED BY PROF. DR. ENG. JÓZEF KOWALCZUK TRANSLATED (EXCEPT CHAPTERS: 1, 2, 6-9) BY M.SC. TOMASZ BYLICA THE RESULTS OF STUDY PRESENTED IN THE MONOGRAPH ARE SUPPORTED BY: THE STATE COMMITTEE FOR SCIENTIFIC RESEARCH UNDER GRANT NO. 5 P06F 012 19 AND ORDERED PROJECT NO. PBZ-51-02 RESEARCH INSTITUTE OF POMOLOGY AND FLORICULTURE B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ©Copyright by BOHDAN DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES LUBLIN 2006 ISBN 83-89969-55-6 ST 1 EDITION - ISBN 83-89969-55-6 (IN ENGLISH) 180 COPIES, PRINTED SHEETS (16.8) PRINTED ON ACID-FREE PAPER IN POLAND BY: ALF-GRAF, UL. -
Assessment of Nutritional Parameters of Native Apple
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume LX 3 Number 5, 2012 ASSESSMENT OF NUTRITIONAL PARAMETERS OF NATIVE APPLE CULT IVARS AS NEW GENE SOURCES J. Balík, O. Rop, J. Mlček, P. Híc, M. Horák, V. Řezníček Received: April 6, 2012 Abstract BALÍK, J., ROP, O., MLČEK, J., HÍC, P., HORÁK, M., ŘEZNÍČEK, V.: Assessment of nutritional parameters of native apple cultivars as new gene sources. Acta univ. agric. et silvic. Mendel. Brun., 2012, LX, No. 5, pp. 27– 38 Although there are tens of diff erent apple varieties in Europe, only some of them were purposefully bred and selected in the past. In spite of the fact that they can have outstanding nutritional and technological properties, the majority of them are of only a local importance. The objective of this study was to show and popularize altogether 35 local apple varieties which are typical of the conditions of Central Europe. However, their genetic uniqueness represents an irreplaceable ecological wealth and for that reason these local varieties could become a new and outstanding source of nutrients and food. Today, they can be used not only for direct consumption and in food industry but also as a potential material for further breeding and selection. It was found out in our experiments that the highest content of total acids was shown by the variety ’Citronové zimní’ (6.1 g.kg−1 of fresh matter). As far as the content of pectins was concerned, the highest levels were found out in the variety ’Strymka’ (3.26% in fresh matter). Of minerals, potassium showed the highest levels in fruit; for example, the variety ’Boikovo’ contained 9.70 ppm of this element in dry matter. -
Studies on Some Apple Virus Diseases in New Hampshire Joseph G
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1958 STUDIES ON SOME APPLE VIRUS DISEASES IN NEW HAMPSHIRE JOSEPH G. BARRAT Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation BARRAT, JOSEPH G., "STUDIES ON SOME APPLE VIRUS DISEASES IN NEW HAMPSHIRE" (1958). Doctoral Dissertations. 752. https://scholars.unh.edu/dissertation/752 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Dapple apple symptoms on the fruits of the variety Starking. STUDIES ON SOME APPLE VIRUS DISEASES IN NEW HAMPSHIRE By Joseph G. Barrat B. S., Rhode Island State College, 19*+8 M. S., University of Rhode Island, 1951 A DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Botany May, 1958 This dissertation has been examined and approved. ■?. / T Date ACKNOWLEDGMENTS The writer wishes to express his deep appreciation to Dr. Avery E. Rich for his assistance and permission to develop the study along those lines which seemed most opportune. The writer is indebted to Dr. Albion R. Hodgdon for his taxonomic assistance, Dr. Stuart Dunn for permis sion to use the available space in the light room, Dr, R. A. Kilpatrick for help with the photographs and Dr. W. -
Economic and Social Council
UNITED NATIONS E Economic and Social Distr. Council GENERAL ECE/TRADE/C/WP.7/2007/8 14 August 2007 Original: ENGLISH ECONOMIC COMMISSION FOR EUROPE COMMITTEE ON TRADE Working Party on Agricultural Quality Standards Sixty-third session Geneva, 5–9 November 2007 Item 4(b) of the provisional agenda TEXTS FOR ADOPTION AS REVISED/NEW UNECE STANDARDS Apples Note by the secretariat This text is submitted to the Working Party for approval as a revised Standard for Apples. It is based on document TRADE/WP.7/GE.1/2005/18/Add.2, the text of which was agreed upon at the May 2007 session of the Specialized Section on Standardization of Fresh Fruit and Vegetables. GE.07- (E) ECE/TRADE/C/WP.7/2007/8 Page 2 UNECE STANDARD FFV-50 concerning the marketing and commercial quality control of APPLES I. DEFINITION OF PRODUCE This standard applies to apples of varieties (cultivars) grown from Malus domestica Borkh. to be supplied fresh to the consumer, apples for industrial processing being excluded. II. PROVISIONS CONCERNING QUALITY The purpose of the standard is to define the quality requirements of apples at the export-control stage after preparation and packaging. However, if applied at stages following export, products may show in relation to the requirements of the standard: - a slight lack of freshness and turgidity - for products graded in classes other than the “Extra” class, a slight deterioration due to their development and their tendency to perish. The holder/seller of products may not display such products or offer them for sale, or deliver or market them in any manner other than in conformity with this standard. -
Spectrometric Techniques for Elemental Profile Analysis Associated with Bitter Pit in Apples
Postharvest Biology and Technology 128 (2017) 121–129 Contents lists available at ScienceDirect Postharvest Biology and Technology journal homepage: www.elsevier.com/locate/postharvbio Spectrometric techniques for elemental profile analysis associated with bitter pit in apples a a a,b a Carlos Espinoza Zúñiga , Sanaz Jarolmasjed , Rajeev Sinha , Chongyuan Zhang , c,d c,d a,b, Lee Kalcsits , Amit Dhingra , Sindhuja Sankaran * a Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA b Center for Precision and Automated Agricultural Systems, Department of Biological Systems Engineering, IAREC, Washington State University, Prosser, WA, USA c Department of Horticulture, Washington State University, Pullman, WA, USA d Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, USA A R T I C L E I N F O A B S T R A C T Article history: ‘ ’ ‘ ’ ‘ ’ Received 6 December 2016 Bitter pit and healthy Honeycrisp , Golden Delicious , and Granny Smith apples were collected from Received in revised form 20 February 2017 three commercial orchards. Apples were scanned using Fourier transform infrared (FTIR) and X-ray Accepted 21 February 2017 fluorescence (XRF) spectrometers to associate the elemental profile with bitter pit occurrence in apples. Available online xxx The FTIR spectra were acquired from apple peel and flesh; while XRF spectra were acquired from the apple surface (peel). Destructive elemental analysis was also performed to estimate calcium, magnesium, Keywords: and potassium concentrations in the apples. There were significant differences between healthy and Apple disorder bitter pit affected apples in calcium, magnesium, and potassium concentrations, in addition to Support vector machine magnesium/calcium and potassium/calcium ratios (5% level of significance). -
Sweet Spreads–Butters, Jellies, Jams, Conserves, Marmalades and Preserves–Add Zest to Meals
Sweet spreads–butters, jellies, jams, conserves, marmalades and preserves–add zest to meals. They can be made from fruit that is not completely suitable for canning or freezing. All contain the four essential ingredients needed to make a jellied fruit product–fruit, pectin, acid and sugar. They differ, however, depending upon fruit used, proportion of different ingredients, method of preparation and density of the fruit pulp. Jelly is made from fruit juice and the end product is clear and firm enough to hold its shape when removed from the container. Jam is made from crushed or ground fruit. The end product is less firm than jelly, but still holds its shape. This circular deals with the basics of making jellies and jams, without adding pectin. Recipes for making different spreads can be found in other food preservation cookbooks. Recipes for using added pectin can be found on the pectin package insert sheets. Essential Ingredients Fruit furnishes the flavor and part of the needed pectin and acid. Some irregular and imperfect fruit can be used. Do not use spoiled, moldy or stale fruit. Pectin is the actual gelling substance. The amount of pectin found naturally in fruits depends upon the kind of fruit and degree of ripeness. Underripe fruits have more pectin; as fruit ripens, the pectin changes to a non-gelling form. Usually using 1⁄4 underripe fruit to 3⁄4 fully-ripe fruit makes the best product. Cooking brings out the pectin, but cooking too long destroys it. High pectin fruits are apples, crabapples, quinces, red currants, gooseberries, Eastern Concord grapes, plums and cranberries. -
Äppelklonarkivet I Bergianska Trädgården
Äppelklonarkivet i Bergianska trädgården P. J. Bergius Äppelklonarkivet Bergianska trädgårdens klonarkiv startades 1981 av dåvarande Professor Bergianus Måns Ryberg som var engagerad i Nordiska Genbanken för frukt och bär. Ett 30-tal sorter planterades från början och har genom åren utökats. Idag ingår klonarkiven i verksamheten vid Programmet för Odlad Mångfald (POM). Anledningen till att upprätta denna typ av klonarkiv är att bevara en mångfald av gamla kulturväxter. Modern växtförädling kan innebära framställning av några få men högproducerande sorter. Dessa tenderar att ersätta mångfalden av äldre lokala sorter, som tillsammans utgjort en stor genetisk variation för olika egenskaper. Om man har ett fåtal sorter blir dessa lätt mottagliga för växtsjukdomar. Därför är det viktigt att bevara ett större urval av gammalt sortmaterial som kan behövas för framtida växtförädling. När det gäller de odlade växterna finns dessutom ett stort kulturhisto- riskt värde i att bevara gamla lokala sorter. Dessa kan ha haft stor bety- delse för människors försörjning och spelat en betydande roll i en bygds utveckling. Sorter av äpplen och päron hålls vid liv genom så kallad vegetativ förök- ning. Ursprungligen har varje sort uppstått ur en kärna. Men vill man bevara en speciell sort med dess speciella egenskaper så måste detta ske genom exempelvis ympning. Vid kärnsådd uppstår alltid nya typer. Vid växtförädling av äpplen görs korsningar där båda föräldrarna är kända. Sedan sås en stor mängd kärnor av denna korsning och man får då förhoppningsvis några plantor som ger bra äpplen med nya egenskaper värda att bevara som en ny sort. Det tar 20–30 år att få fram en ny äp- pelsort från korsning till att den finns tillgänglig i handeln.