Metabolic, Hormonal and Performance Effects of Isomaltulose Ingestion Before Prolonged Aerobic Exercise: a Double-Blind, Randomised, Cross-Over Trial Hannah L

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic, Hormonal and Performance Effects of Isomaltulose Ingestion Before Prolonged Aerobic Exercise: a Double-Blind, Randomised, Cross-Over Trial Hannah L Notbohm et al. Journal of the International Society of Sports Nutrition (2021) 18:38 https://doi.org/10.1186/s12970-021-00439-z RESEARCH ARTICLE Open Access Metabolic, hormonal and performance effects of isomaltulose ingestion before prolonged aerobic exercise: a double-blind, randomised, cross-over trial Hannah L. Notbohm1, Joshua F. Feuerbacher1, Finn Papendorf1, Nils Friese1, Mats W. Jacobs1, Hans-Georg Predel2, Jonas Zacher2, Wilhelm Bloch1 and Moritz Schumann1* Abstract Background: Isomaltulose has been discussed as a low glycaemic carbohydrate but evidence concerning performance benefits and physiological responses has produced varying results. Therefore, we primarily aimed to investigate the effects of isomaltulose ingestion compared to glucose and maltodextrin on fat and carbohydrate oxidation rates, blood glucose levels and serum hormone concentrations of insulin and glucose-dependent insulinotropic polypeptide (GIP). As secondary aims, we assessed running performance and gastrointestinal discomfort. Methods: Twenty-one male recreational endurance runners performed a 70-min constant load trial at 70% maximal running speed (Vmax), followed by a time to exhaustion (TTE) test at 85% Vmax after ingesting either 50 g isomaltulose, maltodextrin or glucose. Fat and carbohydrate oxidation rates were calculated from spiroergometric data. Venous blood samples for measurement of GIP and insulin were drawn before, after the constant load trial and after the TTE. Capillary blood samples for glucose concentrations and subjective feeling of gastrointestinal discomfort were collected every 10 min during the constant load trial. (Continued on next page) * Correspondence: [email protected] 1Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany Full list of author information is available at the end of the article © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Notbohm et al. Journal of the International Society of Sports Nutrition (2021) 18:38 Page 2 of 10 (Continued from previous page) Results: No between-condition differences were observed in the area under the curve analysis of fat (p = 0.576) and carbohydrate oxidation rates (p = 0.887). Isomaltulose ingestion led to lower baseline postprandial concentrations of blood glucose compared to maltodextrin (percent change [95% confidence interval], − 16.7% [− 21.8,-11.6], p < 0.001) and glucose (− 11.5% [− 17.3,-5.7], p = 0.001). Similarly, insulin and GIP concentrations were also lower following isomaltulose ingestion compared to maltodextrin (− 40.3% [− 50.5,-30.0], p = 0.001 and − 69.1% [− 74.3,-63.8], p < 0.001, respectively) and glucose (− 32.6% [− 43.9,-21.2], p = 0.012 and − 55.8% [− 70.7,-40.9], p < 0.001, respectively). Furthermore, glucose fluctuation was lower after isomaltulose ingestion compared to maltodextrin (− 26.0% [− 34.2,-17.8], p < 0.001) and glucose (− 17.4% [− 29.1,-5.6], p < 0.001). However, during and after exercise, no between-condition differences for glucose (p = 0.872), insulin (p = 0.503) and GIP (p = 0.244) were observed. No between-condition differences were found for TTE (p = 0.876) or gastrointestinal discomfort (p = 0.119). Conclusion: Isomaltulose ingestion led to lower baseline postprandial concentrations of glucose, insulin and GIP compared to maltodextrin and glucose. Consequently, blood glucose fluctuations were lower during treadmill running after isomaltulose ingestion, while no between-condition differences were observed for CHO and fat oxidation rates, treadmill running performance and gastrointestinal discomfort. Further research is required to provide specific guidelines on supplementing isomaltulose in performance and health settings. Keywords: Glucose, GIP, Insulin, Fat oxidation, Glycaemic index, Endurance exercise, Carbohydrate oxidation, Running Introduction studied, however in exercise settings, especially in For prolonged endurance exercise, carbohydrates repre- healthy runners, knowledge on these effects is more lim- sent one of the main energy sources [1, 2]. Carbohydrates ited. Oral administration of isomaltulose has previously differ in respect to their glycaemic index (GI), i.e. they are been shown to result in lower postprandial blood glu- classified based on their postprandial glucose responses cose and insulin concentrations in healthy and type 2 [3]. Food sources with a lower GI show lower postprandial diabetes mellitus (T2DM) patients [11, 15–17]. During glucose concentrations, as well as a decreased insulin re- exercise, insulin concentrations were shown to be lower sponse [4]. Furthermore, insulin is known to be a major following isomaltulose ingestion throughout a 150 min suppressor of fat oxidation [5], therefore increased fat oxi- cycling trial [18] or not differ during 60 min of cycling dation rates after low-glycaemic meals before exercise [19] compared to sucrose or maltodextrin respectively. have been observed [6]. Consequently, low GI carbohy- The associations of blood glucose, insulin and GIP se- drate sources have been suggested to be beneficial for en- cretion after isomaltulose ingestion have been studied in durance performance due to the preservation of muscle resting conditions [16, 20], however to the best of our glycogen, sustained carbohydrate availability and mainten- knowledge these kinetics have not yet been investigated ance of euglycaemia [4, 6–8], which have been shown to in exercise settings. A reduced secretion of insulin and prevent central fatigue [9]. GIP during exercise would be beneficial to maintain One of the recently investigated low GI carbohydrate constant blood glucose concentrations and prevent sources is isomaltulose, which is a dissacharide com- hyperinsulinaemia. Consequently, these possible effects posed of α-1,6-linked glucose and fructose. The rate of may also explain differences observed in altered sub- hydrolysis and absorption compared to sucrose is con- strate utilisation and improved performance in pro- siderably reduced (up to 85%) [10] due to the α-1,6- longed endurance exercise when comparing isomaltulose glycosidic bond, however, a full absorption is still achiev- and sucrose energy substrates. able [11]. Results regarding altered substrate utilisation However, also only a few exercise studies have focused during exercise after isomaltulose ingestion remain am- on endurance performance and substrate utilisation after biguous. Some studies reported increased fat oxidation isomaltulose ingestion in both healthy and T1DM indi- and lower carbohydrate oxidation at least at some point viduals. The results have been inconclusive, possibly be- during cycling trials (150 min at 50% Wmax [12]or90 cause the glycaemic index or load has previously been min at 60% VO2peak [13]) while others showed no dif- shown not to affect endurance performance or metabolic ference in a short incremental running trial in persons responses, when conditions were matched for carbohy- with Type I Diabetes (T1DM) [14]. drate and energy [21]. Nevertheless, when matched for Effects of isomaltulose ingestion on resting blood glu- carbohydrate intake, one study has found improved time cose and hormone concentrations have been well trial performance after cycling for 90 min at 70% Notbohm et al. Journal of the International Society of Sports Nutrition (2021) 18:38 Page 3 of 10 VO2max following isomaltulose ingestion [13], while Experimental design others have found no difference in cycling and soccer This double-blind randomized-crossover study consisted specific exercise [14, 19, 22] or even impaired cycling of four separate testing sessions: A preliminary ramp test performance [12]. In addition, due to the slow absorp- to assess peak oxygen uptake (VO2peak) and maximal tion rate in the small intestine, isomaltulose has been treadmill running speed (Vmax), as well as three separate suggested to cause gastrointestinal discomfort when experimental trials. The experimental trials were per- ingested during 2 h cycling at 60% Wmax [12], however formed in a randomised and counterbalanced order and other trials have produced contrasting results, when ≤50 consisted of a 70-min constant workload test followed g were ingested before cycling [19] or soccer specific ex- by a time to exhaustion test (TTE). The trials were per- ercise [22]. These inconsistent findings may be partly ex- formed after ingesting either isomaltulose, maltodextrin plained by differences in the timing and the amount of or glucose (Fig.
Recommended publications
  • The Comparative Effect on Satiety and Subsequent Energy Intake of Ingesting Sucrose Or Isomaltulose Sweetened Trifle: a Randomized Crossover Trial
    nutrients Article The Comparative Effect on Satiety and Subsequent Energy Intake of Ingesting Sucrose or Isomaltulose Sweetened Trifle: A Randomized Crossover Trial Fiona E. Kendall, Olivia Marchand, Jillian J. Haszard and Bernard J. Venn * Department of Human Nutrition, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] (F.E.K.); [email protected] (O.M.); [email protected] (J.J.H.) * Correspondence: [email protected]; Tel.: +64-3-479-5068 Received: 25 September 2018; Accepted: 13 October 2018; Published: 15 October 2018 Abstract: The effect that blood glucose concentration has on feelings of satiety is unclear. Our aims were to assess satiety and subsequent energy intake following the ingestion of trifle sweetened with sucrose or isomaltulose whilst measuring plasma glucose concentration to confirm glycemic differences between trifles. Seventy-seven healthy adults participated in a double-blind crossover trial where trifle sweetened with sucrose or isomaltulose was consumed on separate days with a two-week washout. Blood was sampled at the baseline, 1 and 2 h postprandially, and satiety assessed using visual analogue scales (VAS). Weighed diet records were taken on test days. A statistically significant difference in blood glucose concentration between trifles was found at 60 min following consumption, with the isomaltulose trifle having a 0.69 mmol/L (95% confidence interval (CI): −1.07, −0.31) lower concentration when compared with the sucrose trifle. Mean satiety response by area-under-the-curve (AUC) was not significantly different between trifles. Mean (SD) appetite scores for the sucrose and isomaltulose trifles were 4493 (2393) and 4527 (2590) mm·min, respectively, with a between trifle difference of −9 (95% CI: −589, 572) mm·min.
    [Show full text]
  • FDA Finalizes Allulose Guidance and Requests Information on Other Sugars Metabolized Differently Than Traditional Sugars
    FDA Finalizes Allulose Guidance and Requests Information on Other Sugars Metabolized Differently Than Traditional Sugars October 19, 2020 Food, Drug, and Device FDA has taken two notable actions regarding the sugars declaration in the Nutrition Facts Label (NFL) and Supplement Facts Label (SFL). On Friday, the agency released a final guidance regarding the declaration of allulose, confirming that this monosaccharide need not be included in the declaration of “Total Sugars” or “Added Sugars,” though it must be included in the “Total Carbohydrates” declaration in the NFL. Today, FDA published a Federal Register notice requesting information about and comments on the nutrition labeling of other sugars that are metabolized differently than traditional sugars. We briefly summarize both documents below to help inform stakeholder comments on the notice, which are due to FDA by December 18, 2020. Allulose Final Guidance Allulose, or D-psicose, is a monosaccharide that can be used as a substitute for traditional sugar in food and beverage products. For purposes of nutrition labeling, FDA has generally 1 defined nutrients based on their chemical structure.0F Accordingly, when FDA updated its NFL and SFL regulations in 2016, the agency reiterated the definition of “Total Sugars” as the sum of 2 all free monosaccharides and disaccharides (e.g. glucose, fructose, and sucrose).1F FDA also added to these regulations a definition of “Added Sugars” – sugars added during the processing 3 of food, or packaged as such – and required their declaration in the NFL and SFL.2F Although the agency recognized that there are sugars that are metabolized differently than traditional sugars, FDA did not make a determination at that time as to whether allulose should be excluded from “Total Carbohydrate,” “Total Sugars,” or “Added Sugars” Declarations.
    [Show full text]
  • Carbohydrates and Health Report (ISBN 9780117082847)
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 The scientific basis for healthful carbohydrate profile Lisa M. Lamothe, Kim-Anne Lê, Rania Abou Samra, Olivier Roger, Hilary Green & Katherine Macé To cite this article: Lisa M. Lamothe, Kim-Anne Lê, Rania Abou Samra, Olivier Roger, Hilary Green & Katherine Macé (2017): The scientific basis for healthful carbohydrate profile, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1392287 To link to this article: https://doi.org/10.1080/10408398.2017.1392287 © 2017 The Author(s). Published with license by Taylor & Francis Group, LLC© Lisa M. Lamothe, Kim-Anne Lê, Rania Abou Samra, Olivier Roger, Hilary Green, and Katherine Macé Published online: 30 Nov 2017. Submit your article to this journal Article views: 859 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [Texas A&M University Libraries] Date: 09 January 2018, At: 10:24 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2017.1392287 The scientific basis for healthful carbohydrate profile Lisa M. Lamothe, Kim-Anne Le,^ Rania Abou Samra, Olivier Roger, Hilary Green, and Katherine Mace Nestle Research Center, Vers chez les Blanc, CP44, 1000 Lausanne 26, Switzerland ABSTRACT KEYWORDS Dietary guidelines indicate that complex carbohydrates should provide around half of the calories in a Dental caries; Obesity; Type 2 balanced diet, while sugars (i.e., simple carbohydrates) should be limited to no more than 5–10% of total diabetes; Cardiovascular energy intake.
    [Show full text]
  • High-Calorie, High-Protein Diet with Fiber for Patients with Diabetes Contains Isomaltulose, Which Contributes to Better Glycaemic Control
    High-Calorie, High-Protein Diet with fiber for patients with diabetes Contains isomaltulose, which contributes to better glycaemic control. For tube feeding. Calorie density: 1.20 Kcal/ml P/CH/Fat/Fiber = 22/40/35/3 Osmolarity: 315 mOsmol/l 50 NEUTRAL FLAVOUR 12X500 ml C.I. 504958 Vanilla Scent NEUTRAL FLAVOUR SUITABLE FOR CELIAC PATIENTS High-Calorie, High-Protein Diet High-Calorie, High-Protein 51 NUTRITION FACTS 100 ml 500 ml VITAMINS 100 ml 500 ml Energy 503/120 2515/600 kJ/kcal Vitamin A 64 320 µg-RE Total Fat 4.7 23.3 g Vitamin D 0.6 3 µg Of which: Saturated 1.04 5.2 g Vitamin K 6 30 µg MCT 0.7 3.5 g Vitamin C 6.4 32 mg Monounsaturated 2.3 11.7 g Thiamin 0.09 0.4 mg Polyunsaturated 1.1 5.6 g Riboflavin 0.1 0.5 mg ω-3 0.33 1.65 g Vitamin B6 0.1 0.5 mg ω-6 0.75 3.75 g Niacin 1.3 6.5 mg NE ω-6/ω-3 ratio: 2.27/1 Folic acid 16 80 µg Total Carbohydrates 12 60 g Vitamin B12 0.2 1 µg Of which: Sugars 2.5 12.5 g Pantothenic acid 0.5 2.5 mg Lactose 0.28 1.4 g Biotin 4 20 µg Dietary Fiber 1.8 9 g Vitamin E 1 5 mg α-TE Protein 6.6 33 g Inositol 15 75 mg Salt 0.28 1.4 g Choline 15 75 mg MINERALS 100 ml 500 ml Osmolaridad: 315 mOsmol/l Osmolality: 389 mOsm/kg Sodium 111 555 mg Viscosidad: 55.6 cps OH Chloride 45 225 mg It contains Isomaltulose (glucose O HO Isomaltulose Potassium 133 665 mg disaccharide and fructose: 1.2 g / 100 ml) HO OH Calcium 110 550 mg Low lactose content (not suitable for O OH Phosphorous 95 475 mg persons with galactosemia) O HO Magnesium 20 100 mg Low salt content (0.28 g / 100 ml) Iron 1.1 5.6 mg Gluten free HO OH Zinc 0.8 4 mg Without sucrose Copper 0.08 0.4 mg Vanilla scent to soften the effects of possible reflux Iodine 12 60 µg Selenium 4.4 22 µg NUTRITIONAL INFORMATION: Manganese 0.16 0.8 mg The standard dose (1,500 ml/day) contains 99 g of protein, Chromium 18 90 µg 180 g of carbohydrates, 69.9 g of fat, 27 g of fiber, 1,800 Molybdenum 4.2 21.1 µg kcal and provides 100% of the RDA (Recommended Dietary Fluoride 0.23 1.15 mg Allowance) of vitamins and minerals.
    [Show full text]
  • Final Assessment Report Application A578
    3-07 23 May 2007 FINAL ASSESSMENT REPORT APPLICATION A578 ISOMALTULOSE AS A NOVEL FOOD For information on matters relating to this Assessment Report or the assessment process generally, please refer to http://www.foodstandards.gov.au/standardsdevelopment/ Executive Summary FSANZ received an application from PALATINIT GmbH on 27 April 2006 to amend Standard 1.5.1 – Novel Foods, of the Australia New Zealand Food Standards Code (the Code) to approve the use of isomaltulose as a novel food. Isomaltulose is a disaccharide comprised of glucose and fructose joined by an α-1,6 glycosidic bond. Isomaltulose is naturally present at very low levels in sugar cane juice and honey. Under the current food standards, novel foods are required to undergo a pre-market safety assessment, as per Standard 1.5.1 - Novel Foods. Isomaltulose is considered to be a non- traditional food because there is no history of significant human consumption in Australia or New Zealand. Based on the potential for increased consumption patterns if isomaltulose were used as a food ingredient, and the fact that the safety of isomaltulose had not yet been determined, isomaltulose is considered to be a novel food and is accordingly considered under Standard 1.5.1. The objective of this assessment is to determine whether it is appropriate to amend the Code to permit the use of isomaltulose as a novel food. Such an amendment would need to be consistent with the section 10 objectives of the FSANZ Act. The safety assessment and dietary exposure assessment indicate that isomaltulose poses no public health and safety concern to the vast majority of consumers.
    [Show full text]
  • Approval Report – Application A1123 Isomalto-Oligosaccharide As A
    16 May 2017 [13–17] Approval report – Application A1123 Isomalto-oligosaccharide as a Novel Food Food Standards Australia New Zealand (FSANZ) assessed an Application made by Essence Group Pty Ltd via FJ Fleming Food Consulting Pty Ltd to permit isomalto-oligosaccharide as a novel food for use as an alternative (lower calorie) sweetener and bulk filler in a range of general purpose and special purpose foods, and prepared a draft food regulatory measure. On 13 December 2016, FSANZ sought submissions on a draft variation and published an associated report. FSANZ received six submissions. FSANZ approved the draft variation on 3 May 2017. The Australia and New Zealand Ministerial Forum on Food Regulation was notified of FSANZ’s decision on 15 May 2017. This Report is provided pursuant to paragraph 33(1)(b) of the Food Standards Australia New Zealand Act 1991 (the FSANZ Act). i Table of contents EXECUTIVE SUMMARY ......................................................................................................................... 3 INTRODUCTION ..................................................................................................................................... 5 1.1 THE APPLICANT ......................................................................................................................... 5 1.2 THE APPLICATION ...................................................................................................................... 5 1.3 CURRENT STANDARDS ..............................................................................................................
    [Show full text]
  • Rapid HPLC Method for Determination of Isomaltulose in The
    foods Article ArticleRapid HPLC Method for Determination of RapidIsomaltulose HPLC Methodin the Presence for Determination of Glucose, of Sucrose, Isomaltuloseand Maltodextrins in the in Presence Dietary of Supplements Glucose, Sucrose, and Maltodextrins in Dietary Supplements Tomáš Crha and Jiří Pazourek * Tomáš Crha and Jiˇrí Pazourek * Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-612 00 Brno, DepartmentCzech Republic; of Chemical [email protected] Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-612* Correspondence: 00 Brno, Czech pazourekj@ph Republic; [email protected]; Tel.: +420-54156-2940 * Correspondence: [email protected]; Tel.: +420-54156-2940 Received: 19 July 2020; Accepted: 15 August 2020; Published: 24 August 2020 Received: 19 July 2020; Accepted: 15 August 2020; Published: 24 August 2020 Abstract: This paper presents a rapid HPLC method for the separation of isomaltulose (also known Abstract:as Palatinose)This paper from presents other acommon rapid HPLC edible method carb forohydrates the separation such ofas isomaltulose sucrose, glucose, (also known and asmaltodextrins, Palatinose) from which other are common commonly edible present carbohydrates in food and such dietary as sucrose, supplements. glucose, and This maltodextrins, method was whichapplied are to commonly determine present isomaltulose in food and in dietaryselected supplements. food supplements This method for special was applied diets toand determine athletic isomaltuloseperformance. inDue selected to the selectivity food supplements of the separation for special system, diets this and method athletic can performance. also be used for Due rapid to theprofiling selectivity analysis of the of separationmono-, di-, system, and oligosaccharides this method can in alsofood be.
    [Show full text]
  • Sugar Matrix
    Based on perfact’s database holding ingredients for over 250,000 products, we found that almost 300 names for sugar that appear on food labels aren’t covered by the “56 names of sugar” and SugarScience’s 61 names of sugar. The exact number depends on how one counts. This document aims to be a basis to help draw the lines between what should be considered “sugar” within the scope of those lists – and what shouldn’t. Diagram elements ANNOTATED ALTERNATIVE NAME Molecular Source Product sugar or sugar alcohol Diagram element constituting a dietary / functional fiber Molecular Source Product sugar or sugar alcohol Diagram elements explicitly ANNOTATED on 56/61 lists ALTERNATIVE NAME Molecular Source Product sugar or sugar alcohol Diagram elements explicitly or implicitly on 56/61 lists (e.g. because listed by one of its alternative name) Molecular Source Product sugar or sugar alcohol Production pathways Most common Less common This is a working document in progress. Current as of February 2019 Polysaccharides Disaccharides Monosaccharides Sugar alcohols Heat under pressure with hydrogen and Raney-nickel Feed with glucose Ribose Ribitol Ribose syrup Ribitol syrup Bacillus spp. Treat with acid E 967 E 460 Xylose Xylitol E 460I, MCC, CELLULOSE GEL, Treat with acid, pulp, and bleach Xylose syrup Xylitol syrup MICROCELLULOSE Heat under pressure with hydrogen and Raney-nickel Woody plant Cellulose Microcrystalline parts cellulose Wood Treat with acid or enzymes Treat with acid, pulp, and bleach Feed with glucose/sucrose Curdlan Agrobacterium Feed
    [Show full text]
  • A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians
    nutrients Article A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians Christiani Jeyakumar Henry 1,2,*, Bhupinder Kaur 1, Rina Yu Chin Quek 1 and Stefan Gerardus Camps 1 1 Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore; [email protected] (B.K.); [email protected] (R.Y.C.Q.); [email protected] (S.G.C.) 2 Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore * Correspondence: [email protected]; Tel.: +65-6407-0793 Received: 31 March 2017; Accepted: 5 May 2017; Published: 9 May 2017 Abstract: Low glycaemic index (GI) foods minimize large blood glucose fluctuations and have been advocated to enhance fat oxidation and may contribute to weight management. We determined whether the inclusion of isomaltulose compared to sucrose in a low/high GI meal sequence can modulate the glycaemic response and substrate oxidation in an Asian population. Twenty Chinese men (body mass index (BMI): 17–28 kg/m2) followed a 24 h low GI (isomaltulose, PalatinoseTM) or high GI (sucrose) diet in a randomized double-blind, controlled cross-over design. Treatment meals included dinner (day 1), breakfast, lunch, and snack (day 2). Continuous glucose monitoring provided incremental area under the curve (iAUC) and mean amplitude of glycaemic excursion (MAGE) and 10 h indirect calorimetry (whole body calorimeter) (day 2) provided energy expenditure and substrate oxidation.
    [Show full text]
  • Federal Register/Vol. 72, No. 179/Monday, September 17, 2007
    Federal Register / Vol. 72, No. 179 / Monday, September 17, 2007 / Rules and Regulations 52783 § 181.74 [Amended] place it appears and, in its place, adding • Federal eRulemaking Portal: http:// the term ‘‘CBP’’. www.regulations.gov. Follow the I 8. In § 181.74: instructions for submitting comments. Jayson P. Ahern, I a. Paragraph (a) is amended by • Agency Web site: http:// removing the citation to Acting Commissioner, U.S. Customs and www.fda.gov/dockets/ecomments. Border Protection. ‘‘181.72(a)(2)(iii)’’ and adding in its Follow the instructions for submitting place the citation to ‘‘181.72(a)(3)(iii)’’, Approved: September 10, 2007. comments on the agency Web site. and by removing the word ‘‘Customs’’ Timothy E. Skud, Written Submissions and, in its place, adding the term Deputy Assistant Secretary of the Treasury. Submit written submissions in the ‘‘CBP’’. [FR Doc. 07–4551 Filed 9–14–07; 8:45 am] following ways: • I BILLING CODE 9111–14–P FAX: 301–827–6870. b. Paragraphs (b) and (c) are amended • Mail/Hand delivery/Courier [For by removing the term ‘‘Customs’’ each paper, disk, or CD–ROM submissions]: place it appears and, in its place, adding Division of Dockets Management (HFA– the term ‘‘CBP’’. DEPARTMENT OF HEALTH AND 305), Food and Drug Administration, I c. In paragraph (d) introductory text, HUMAN SERVICES 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. the reference to ‘‘Customs officer’’ is Food and Drug Administration removed and the term ‘‘CBP officer’’ is To ensure more timely processing of comments, FDA is no longer accepting added in its place; and the two 21 CFR Part 101 references to ‘‘Customs’’ which follow comments submitted to the agency by e- mail.
    [Show full text]
  • Innovative Ingredients to Address Glycaemic Response
    INNOVATIVE INGREDIENTS TO ADDRESS GLYCAEMIC RESPONSE 1 In light of the public health concerns surrounding high incidence of diabetes and metabolic syndrome there is a critical need to manage blood glucose. The food and beverage industry can play an immense role in developing products which will serve this need via designing products to have a lower glycaemic response. This document will review: • The size of diabetes epidemic • The importance of managing blood glucose • The role of dietary interventions • Specific ingredients that can help reduce the blood glucose response in food products such as fibres, rare sugars, and low and non-nutritive sweeteners (NNS) Defining glycaemic response Various terms used to describe blood glucose changes can cause confusion. Table 1 details these definitions for numerous terms used to describe blood glucose - glycaemic response, glycaemic index, and glycaemic load. In this document, we will be referring to the clinical endpoint of glycaemic response. Table 1. Definitions of terms used to describe blood glucose responses to dietary components1. Glycaemic response (GR) Glycaemic index (GI) Glycaemic load (GL) • Post-prandial blood glucose • Representing quality of • GL = GI x available carbohydrate in response caused when a food carbohydrate. a given amount of food that contains carbohydrate is • % GR caused by a food containing consumed. • Available carbohydrates, and GL, 50 g of carbohydrate vs 50 g of the can be expresed as: • Also considered the change in reference carbohydrate (glucose blood glucose concentration over solution or white bread). • g per serving; time and represented as the area • Foods having carbohydrate • g per 100 g food; under the curve (AUC).
    [Show full text]
  • Why Sugar Is Added to Food: Food Science 101 Kara R
    Why Sugar Is Added to Food: Food Science 101 Kara R. Goldfein and Joanne L. Slavin Abstract: Avoiding too much sugar is an accepted dietary guidance throughout the world. The U.S. Nutrition Facts panel includes information on total sugars in foods. A focus on added sugars is linked to the concept of discretionary calories and decreasing consumption of added sugars or free sugars as a means to assist a consumer to identify foods that are nutrient-dense. On March 14, 2014, the U.S. Food and Drug Administration proposed that including “added sugars” declaration on the Nutrition Facts panel would be another tool to help consumers reduce excessive discretionary calorie intake from added sugars. Through deductive reasoning, labeling added sugars is one tactic to potentially curb the obesity epidemic in the United States. This review discusses the functions of sugar in food and shows that the methods used to replace added sugars in foods can result in no reduction in calorie content or improvement in nutrient density. Without clear benefit to the consumer for added sugars labeling, this review highlights the complex business obstacles, costs, and consumer confusion resulting from the proposed rule. Keywords: food labeling, nutrition facts, public health, sucrose, sugars Introduction labels. Given the recent public attention on added sugars, it was The obesity epidemic in the United States has been a key pub- not a surprise to see that “added sugars” is one of the suggested lic health issue due to the high rate of obesity and the increased changes. FDA is proposing the mandatory declaration of added healthcare cost associated with it.
    [Show full text]