Introduction to Empirical Processes and Semiparametric Inference1

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Empirical Processes and Semiparametric Inference1 This is page i Printer: Opaque this Introduction to Empirical Processes and Semiparametric Inference1 Michael R. Kosorok August 2006 1c 2006 SPRINGER SCIENCE+BUSINESS MEDIA, INC. All rights re- served. Permission is granted to print a copy of this preliminary version for non- commercial purposes but not to distribute it in printed or electronic form. The author would appreciate notification of typos and other suggestions for improve- ment. ii This is page iii Printer: Opaque this Preface The goal of this book is to introduce statisticians, and other researchers with a background in mathematical statistics, to empirical processes and semiparametric inference. These powerful research techniques are surpris- ingly useful for studying large sample properties of statistical estimates from realistically complex models as well as for developing new and im- proved approaches to statistical inference. This book is more a textbook than a research monograph, although some new results are presented in later chapters. The level of the book is more introductory than the seminal work of van der Vaart and Wellner (1996). In fact, another purpose of this work is to help readers prepare for the mathematically advanced van der Vaart and Wellner text, as well as for the semiparametric inference work of Bickel, Klaassen, Ritov and Wellner (1997). These two books, along with Pollard (1990) and chapters 19 and 25 of van der Vaart (1998), formulate a very complete and successful elucida- tion of modern empirical process methods. The present book owes much by the way of inspiration, concept, and notation to these previous works. What is perhaps new is the introductory, gradual and unified way this book introduces the reader to the field. The book consists of three parts. The first part is an overview which concisely covers the basic concepts in both empirical processes and semi- parametric inference, while avoiding many technicalities. The second part is devoted to empirical processes, while the third part is devoted to semi- parametric efficiency and inference. In each of the last two parts, the sec- ond chapter (after the introductory chapter) is devoted to the relevant mathematical concepts and techniques. For example, an overview of metric iv Preface spaces—which are necessary to the study of weak convergence—is included in the second chapter of the second part. Thus the book is largely self con- tained. In addition, a chapter devoted to case studies is included at the end of each of the three parts of the book. These case studies explore in detail practical examples which illustrate applications of theoretical concepts. The impetus for this work came from a course the author gave in the Department of Statistics at the University of Wisconsin-Madison, during the Spring semester of 2001. Accordingly, the book is designed to be used as a text in a one or two semester sequence in empirical processes and semiparametric inference. In a one semester course, some of the material would need to be skipped. Students should have had at least half a year of graduate level probability as well as a year of graduate level mathematical statistics. This is page v Printer: Opaque this Contents Preface iii IOverview 1 1 Introduction 3 2 An Overview of Empirical Processes 9 2.1TheMainFeatures....................... 9 2.2 Empirical Process Techniques . 13 2.2.1 StochasticConvergence................ 13 2.2.2 Entropy for Glivenko-Cantelli and Donsker Theorems 16 2.2.3 Bootstrapping Empirical Processes . 19 2.2.4 The Functional Delta Method . 21 2.2.5 Z-Estimators...................... 24 2.2.6 M-Estimators . 28 2.3OtherTopics.......................... 30 2.4Exercises............................ 31 2.5Notes.............................. 32 3 Overview of Semiparametric Inference 33 3.1 Semiparametric Models and Efficiency . 33 3.2 Score Functions and Estimating Equations . 37 3.3MaximumLikelihoodEstimation............... 42 vi Contents 3.4OtherTopics.......................... 45 3.5Exercises............................ 46 3.6Notes.............................. 46 4 Case Studies I 47 4.1LinearRegression........................ 48 4.1.1 MeanZeroResiduals.................. 48 4.1.2 MedianZeroResiduals................. 50 4.2CountingProcessRegression................. 52 4.2.1 The General Case . 53 4.2.2 TheCoxModel..................... 56 4.3TheKaplan-MeierEstimator................. 58 4.4 Efficient Estimating Equations for Regression . 60 4.4.1 SimpleLinearRegression............... 64 4.4.2 A Poisson Mixture Regression Model . 66 4.5 Partly Linear Logistic Regression . 67 4.6Exercises............................ 69 4.7Notes.............................. 70 II Empirical Processes 71 5 Introduction to Empirical Processes 73 6 Preliminaries for Empirical Processes 77 6.1MetricSpaces.......................... 77 6.2OuterExpectation....................... 84 6.3 Linear Operators and Functional Differentiation . 89 6.4Proofs.............................. 92 6.5Exercises............................ 95 6.6Notes.............................. 98 7 Stochastic Convergence 99 7.1 Stochastic Processes in Metric Spaces . 99 7.2WeakConvergence....................... 103 7.2.1 GeneralTheory..................... 103 7.2.2 Spaces of Bounded Functions . 109 7.3OtherModesofConvergence................. 111 7.4Proofs.............................. 116 7.5Exercises............................ 121 7.6Notes.............................. 122 8 Empirical Process Methods 123 8.1 Maximal Inequalities . 124 8.1.1 Orlicz Norms and Maxima . 124 Contents vii 8.1.2 Maximal Inequalities for Processes . 127 8.2 The Symmetrization Inequality and Measurability . 134 8.3Glivenko-CantelliResults................... 140 8.4DonskerResults......................... 143 8.5Exercises............................ 147 8.6Notes.............................. 148 9 Entropy Calculations 149 9.1UniformEntropy........................ 150 9.1.1 VC-Classes....................... 150 9.1.2 BUEI-Classes...................... 156 9.2BracketingEntropy....................... 160 9.3 Glivenko-Cantelli Preservation . 162 9.4DonskerPreservation...................... 165 9.5Proofs.............................. 167 9.6Exercises............................ 170 9.7Notes.............................. 171 10 Bootstrapping Empirical Processes 173 10.1 The Bootstrap for Donsker Classes . 174 10.1.1 An Unconditional Multiplier Central Limit Theorem 175 10.1.2 Conditional Multiplier Central Limit Theorems . 177 10.1.3 Bootstrap Central Limit Theorems . 181 10.1.4 Continuous Mapping Results . 183 10.2 The Bootstrap for Glivenko-Cantelli Classes . 187 10.3 A Simple Z-Estimator Master Theorem . 190 10.4Proofs.............................. 192 10.5Exercises............................ 198 10.6Notes.............................. 199 11 Additional Empirical Process Results 201 11.1 Bounding Moments and Tail Probabilities . 202 11.2SequencesofFunctions..................... 204 11.3ContiguousAlternatives.................... 208 11.4 Sums of Independent but not Identically Distributed Stochas- ticProcesses.......................... 211 11.4.1CentralLimitTheorems................ 211 11.4.2BootstrapResults................... 215 11.5 Function Classes Changing with n .............. 216 11.6DependentObservations.................... 220 11.7Proofs.............................. 223 11.8Exercises............................ 226 11.9Notes.............................. 226 12 The Functional Delta Method 227 viii Contents 12.1 Main Results and Proofs . 227 12.2Examples............................ 229 12.2.1Composition...................... 229 12.2.2Integration....................... 230 12.2.3 Product Integration . 234 12.2.4Inversion........................ 238 12.2.5OtherMappings.................... 241 12.3Exercises............................ 241 12.4Notes.............................. 242 13 Z-Estimators 243 13.1Consistency........................... 244 13.2WeakConvergence....................... 245 13.2.1TheGeneralSetting.................. 245 13.2.2UsingDonskerClasses................. 246 13.2.3 A Master Theorem and the Bootstrap . 247 13.3UsingtheDeltaMethod.................... 249 13.4Exercises............................ 253 13.5Notes.............................. 253 14 M-Estimators 255 14.1TheArgmaxTheorem..................... 256 14.2Consistency........................... 258 14.3RateofConvergence...................... 259 14.4 Regular Euclidean M-Estimators . 261 14.5 Non-Regular Examples . 263 14.5.1 A Change-Point Model . 263 14.5.2 Monotone Density Estimation . 268 14.6Exercises............................ 271 14.7Notes.............................. 272 15 Case Studies II 273 III Semiparametric Inference 275 16 Introduction to Semiparametric Inference 277 17 Preliminaries for Semiparametric Inference 279 18 Semiparametric Models and Efficiency 281 19 Score Functions and Estimating Equations 283 20 Maximum Likelihood Estimation and Inference 285 Contents ix 21 Semiparametric M-Estimation 287 22 Case Studies III 289 References 291 List of Symbols 297 This is page 1 Printer: Opaque this Part I Overview 2 This is page 3 Printer: Opaque this 1 Introduction Both empirical processes and semiparametric inference techniques have be- come increasingly important tools for solving statistical estimation and inference problems. These tools are particularly important when the sta- tistical model for the data at hand is semiparametric, in that it has one or more unknown component which is a function, measure or some other infinite dimensional quantity. Semiparametric models
Recommended publications
  • On the Mean Speed of Convergence of Empirical and Occupation Measures in Wasserstein Distance Emmanuel Boissard, Thibaut Le Gouic
    On the mean speed of convergence of empirical and occupation measures in Wasserstein distance Emmanuel Boissard, Thibaut Le Gouic To cite this version: Emmanuel Boissard, Thibaut Le Gouic. On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2014, 10.1214/12-AIHP517. hal-01291298 HAL Id: hal-01291298 https://hal.archives-ouvertes.fr/hal-01291298 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ON THE MEAN SPEED OF CONVERGENCE OF EMPIRICAL AND OCCUPATION MEASURES IN WASSERSTEIN DISTANCE EMMANUEL BOISSARD AND THIBAUT LE GOUIC Abstract. In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably highlighted in the example of infinite-dimensional Gaussian measures.
    [Show full text]
  • Instrumental Regression in Partially Linear Models
    10-167 Research Group: Econometrics and Statistics September, 2009 Instrumental Regression in Partially Linear Models JEAN-PIERRE FLORENS, JAN JOHANNES AND SEBASTIEN VAN BELLEGEM INSTRUMENTAL REGRESSION IN PARTIALLY LINEAR MODELS∗ Jean-Pierre Florens1 Jan Johannes2 Sebastien´ Van Bellegem3 First version: January 24, 2008. This version: September 10, 2009 Abstract We consider the semiparametric regression Xtβ+φ(Z) where β and φ( ) are unknown · slope coefficient vector and function, and where the variables (X,Z) are endogeneous. We propose necessary and sufficient conditions for the identification of the parameters in the presence of instrumental variables. We also focus on the estimation of β. An incorrect parameterization of φ may generally lead to an inconsistent estimator of β, whereas even consistent nonparametric estimators for φ imply a slow rate of convergence of the estimator of β. An additional complication is that the solution of the equation necessitates the inversion of a compact operator that has to be estimated nonparametri- cally. In general this inversion is not stable, thus the estimation of β is ill-posed. In this paper, a √n-consistent estimator for β is derived under mild assumptions. One of these assumptions is given by the so-called source condition that is explicitly interprated in the paper. Finally we show that the estimator achieves the semiparametric efficiency bound, even if the model is heteroscedastic. Monte Carlo simulations demonstrate the reasonable performance of the estimation procedure on finite samples. Keywords: Partially linear model, semiparametric regression, instrumental variables, endo- geneity, ill-posed inverse problem, Tikhonov regularization, root-N consistent estimation, semiparametric efficiency bound JEL classifications: Primary C14; secondary C30 ∗We are grateful to R.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • Birth and Death Process in Mean Field Type Interaction
    BIRTH AND DEATH PROCESS IN MEAN FIELD TYPE INTERACTION MARIE-NOÉMIE THAI ABSTRACT. Theaim ofthispaperis to study theasymptoticbehaviorofa system of birth and death processes in mean field type interaction in discrete space. We first establish the exponential convergence of the particle system to equilibrium for a suitable Wasserstein coupling distance. The approach provides an explicit quantitative estimate on the rate of convergence. We prove next a uniform propagation of chaos property. As a consequence, we show that the limit of the associated empirical distribution, which is the solution of a nonlinear differential equation, converges exponentially fast to equilibrium. This paper can be seen as a discrete version of the particle approximation of the McKean-Vlasov equations and is inspired from previous works of Malrieu and al and Caputo, Dai Pra and Posta. AMS 2000 Mathematical Subject Classification: 60K35, 60K25, 60J27, 60B10, 37A25. Keywords: Interacting particle system - mean field - coupling - Wasserstein distance - propagation of chaos. CONTENTS 1. Introduction 1 Long time behavior of the particle system 4 Propagation of chaos 5 Longtimebehaviorofthenonlinearprocess 7 2. Proof of Theorem1.1 7 3. Proof of Theorem1.2 12 4. Proof of Theorem1.5 15 5. Appendix 16 References 18 1. INTRODUCTION The concept of mean field interaction arised in statistical physics with Kac [17] and then arXiv:1510.03238v1 [math.PR] 12 Oct 2015 McKean [21] in order to describe the collisions between particles in a gas, and has later been applied in other areas such as biology or communication networks. A particle system is in mean field interaction when the system acts over one fixed particle through the em- pirical measure of the system.
    [Show full text]
  • 1 Introduction
    The analysis of marked and weighted empirical processes of estimated residuals Vanessa Berenguer-Rico Department of Economics; University of Oxford; Oxford; OX1 3UQ; UK and Mansfield College; Oxford; OX1 3TF [email protected] Søren Johansen Department of Economics; University of Copenhagen and CREATES; Department of Economics and Business; Aarhus University [email protected] Bent Nielsen1 Department of Economics; University of Oxford; Oxford; OX1 3UQ; UK and Nuffield College; Oxford; OX1 1NF; U.K. bent.nielsen@nuffield.ox.ac.uk 29 April 2019 Summary An extended and improved theory is presented for marked and weighted empirical processes of residuals of time series regressions. The theory is motivated by 1- step Huber-skip estimators, where a set of good observations are selected using an initial estimator and an updated estimator is found by applying least squares to the selected observations. In this case, the weights and marks represent powers of the regressors and the regression errors, respectively. The inclusion of marks is a non-trivial extention to previous theory and requires refined martingale arguments. Keywords 1-step Huber-skip; Non-stationarity; Robust Statistics; Stationarity. 1 Introduction We consider marked and weighted empirical processes of residuals from a linear time series regression. Such processes are sums of products of an adapted weight, a mark that is a power of the innovations and an indicator for the residuals belonging to a half line. They have previously been studied by Johansen & Nielsen (2016a) - JN16 henceforth - generalising results by Koul & Ossiander (1994) and Koul (2002) for processes without marks. The results presented extend and improve upon expansions previously given in JN16, while correcting a mistake in the argument, simplifying proofs and allowing weaker conditions on the innovation distribution and regressors.
    [Show full text]
  • Arxiv:1609.06421V4 [Math.ST] 26 Sep 2019 Semiparametric Identification and Fisher Information∗
    Semiparametric Identification and Fisher Information∗ Juan Carlos Escanciano† Universidad Carlos III de Madrid September 25th, 2019 Abstract This paper provides a systematic approach to semiparametric identification that is based on statistical information as a measure of its “quality”. Identification can be regular or irregular, depending on whether the Fisher information for the parameter is positive or zero, respectively. I first characterize these cases in models with densities linear in a nonparametric parameter. I then introduce a novel “generalized Fisher information”. If positive, it implies (possibly irregular) identification when other conditions hold. If zero, it implies impossibility results on rates of estimation. Three examples illustrate the applicability of the general results. First, I find necessary conditions for semiparametric regular identification in a structural model for unemployment duration with two spells and nonparametric heterogeneity. Second, I show irregular identification of the median willingness to pay in contingent valuation studies. Finally, I study identification of the discount factor and average measures of risk aversion in a nonparametric Euler Equation with nonparametric measurement error in consumption. Keywords: Identification; Semiparametric Models; Fisher Information. arXiv:1609.06421v4 [math.ST] 26 Sep 2019 JEL classification: C14; C31; C33; C35 ∗First version: September 20th, 2016. †Department of Economics, Universidad Carlos III de Madrid, email: [email protected]. Research funded by the Spanish Programa de Generaci´on de Conocimiento, reference number PGC2018-096732-B-I00. I thank Michael Jansson, Ulrich M¨uller, Whitney Newey, Jack Porter, Pedro Sant’Anna, Ruli Xiao, and seminar par- ticipants at BC, Indiana, MIT, Texas A&M, UBC, Vanderbilt and participants of the 2018 Conference on Identification in Econometrics for useful comments.
    [Show full text]
  • Analysis of Error Propagation in Particle Filters with Approximation
    The Annals of Applied Probability 2011, Vol. 21, No. 6, 2343–2378 DOI: 10.1214/11-AAP760 c Institute of Mathematical Statistics, 2011 ANALYSIS OF ERROR PROPAGATION IN PARTICLE FILTERS WITH APPROXIMATION1 By Boris N. Oreshkin and Mark J. Coates McGill University This paper examines the impact of approximation steps that be- come necessary when particle filters are implemented on resource- constrained platforms. We consider particle filters that perform in- termittent approximation, either by subsampling the particles or by generating a parametric approximation. For such algorithms, we de- rive time-uniform bounds on the weak-sense Lp error and present associated exponential inequalities. We motivate the theoretical anal- ysis by considering the leader node particle filter and present numeri- cal experiments exploring its performance and the relationship to the error bounds. 1. Introduction. Particle filters have proven to be an effective approach for addressing difficult tracking problems [8]. Since they are more compu- tationally demanding and require more memory than most other filtering algorithms, they are really only a valid choice for challenging problems, for which other well-established techniques perform poorly. Such problems in- volve dynamics and/or observation models that are substantially nonlinear and non-Gaussian. A particle filter maintains a set of “particles” that are candidate state values of the system (e.g., the position and velocity of an object). The filter evaluates how well individual particles correspond to the dynamic model and set of observations, and updates weights accordingly. The set of weighted particles provides a pointwise approximation to the filtering distribution, which represents the posterior probability of the state.
    [Show full text]
  • Semiparametric Efficiency
    Faculteit Wetenschappen Vakgroep Toegepaste Wiskunde en Informatica Semiparametric Efficiency Karel Vermeulen Prof. Dr. S. Vansteelandt Proefschrift ingediend tot het behalen van de graad van Master in de Wiskunde, afstudeerrichting Toegepaste Wiskunde Academiejaar 2010-2011 To my parents, my brother Lukas To my best friend Sara A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to the first man whom you meet on the street::: David Hilbert Preface My interest in semiparametric theory awoke several years ago, two and a half to be precise. That time, I was in my third year of mathematics. I had to choose a subject for my Bachelor thesis. My decision was: A geometrical approach to the asymptotic efficiency of estimators, based on the monograph by Anastasios Tsiatis, [35], under the supervision of Prof. Dr. Stijn Vansteelandt. In this manner, I entered the world of semiparametric efficiency. However, at that point I did not know it was just the beginning. Shortly after I wrote this Bachelor thesis, Prof. Dr. Stijn Vansteelandt asked me to be involved in research on semiparametric inference for so called probabilistic index models, in the context of a one month student job. Under his guidance, I applied semiparametric estimation theory to this setting and obtained the semiparametric efficiency bound to which efficiency of estimators in this model can be measured. Some results of this research are contained within this thesis. While short, this experience really convinced me I wanted to write a thesis in semiparametric efficiency. That feeling was only more encouraged after following the course Causality and Missing Data, taught by Prof.
    [Show full text]
  • The Tail Empirical Process of Regularly Varying Functions of Geometrically Ergodic Markov Chains Rafal Kulik, Philippe Soulier, Olivier Wintenberger
    The tail empirical process of regularly varying functions of geometrically ergodic Markov chains Rafal Kulik, Philippe Soulier, Olivier Wintenberger To cite this version: Rafal Kulik, Philippe Soulier, Olivier Wintenberger. The tail empirical process of regularly vary- ing functions of geometrically ergodic Markov chains. Stochastic Processes and their Applications, Elsevier, 2019, 129 (11), pp.4209-4238. 10.1016/j.spa.2018.11.014. hal-01228825v2 HAL Id: hal-01228825 https://hal.archives-ouvertes.fr/hal-01228825v2 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The tail empirical process of regularly varying functions of geometrically ergodic Markov chains Rafa lKulik∗ Philippe Soulier† Olivier Wintenberger‡ September 21, 2018 Abstract We consider a stationary regularly varying time series which can be expressed as a function of a geometrically ergodic Markov chain. We obtain practical con- ditions for the weak convergence of the tail array sums and feasible estimators of cluster statistics. These conditions include the so-called geometric drift or Foster- Lyapunov condition and can be easily checked for most usual time series models with a Markovian structure. We illustrate these conditions on several models and statis- tical applications.
    [Show full text]
  • Efficient Estimation in Single Index Models Through Smoothing Splines
    arXiv: 1612.00068 Efficient Estimation in Single Index Models through Smoothing splines Arun K. Kuchibhotla and Rohit K. Patra University of Pennsylvania and University of Florida e-mail: [email protected]; [email protected] Abstract: We consider estimation and inference in a single index regression model with an unknown but smooth link function. In contrast to the standard approach of using kernels or regression splines, we use smoothing splines to estimate the smooth link function. We develop a method to compute the penalized least squares estimators (PLSEs) of the para- metric and the nonparametric components given independent and identically distributed (i.i.d.) data. We prove the consistency and find the rates of convergence of the estimators. We establish asymptotic normality under under mild assumption and prove asymptotic effi- ciency of the parametric component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of the PLSEs are also investigated. Keywords and phrases: least favorable submodel, penalized least squares, semiparamet- ric model. 1. Introduction Consider a regression model where one observes i.i.d. copies of the predictor X ∈ Rd and the response Y ∈ R and is interested in estimating the regression function E(Y |X = ·). In nonpara- metric regression E(Y |X = ·) is generally assumed to satisfy some smoothness assumptions (e.g., twice continuously differentiable), but no assumptions are made on the form of dependence on X. While nonparametric models offer flexibility in modeling, the price for this flexibility can be high for two main reasons: the estimation precision decreases rapidly as d increases (“curse of dimensionality”) and the estimator can be hard to interpret when d > 1.
    [Show full text]
  • Specification Tests for the Error Distribution in GARCH Models
    Computational Statistics and Data Analysis 56 (2012) 3587–3598 Contents lists available at SciVerse ScienceDirect Computational Statistics and Data Analysis journal homepage: www.elsevier.com/locate/csda Specification tests for the error distribution in GARCH models B. Klar a,∗, F. Lindner a, S.G. Meintanis b a Institut für Stochastik, Karlsruhe Institute of Technology (KIT), Kaiserstraße 89, 76133 Karlsruhe, Germany b Department of Economics, National and Kapodistrian University of Athens, 8 Pesmazoglou Street, 105 59 Athens, Greece article info a b s t r a c t Article history: Goodness-of-fit and symmetry tests are proposed for the innovation distribution in Received 19 November 2009 generalized autoregressive conditionally heteroscedastic models. The tests utilize an Received in revised form 18 May 2010 integrated distance involving the empirical characteristic function (or the empirical Laplace Accepted 19 May 2010 transform) computed from properly standardized observations. A bootstrap version of Available online 12 June 2010 the tests serves the purpose of studying the small sample behaviour of the proclaimed procedures in comparison with more classical approaches. Finally, all tests are applied to Keywords: some financial data sets. GARCH model Goodness-of-fit test ' 2010 Elsevier B.V. All rights reserved. Symmetry test Empirical characteristic function Bootstrap test 1. Introduction Suppose that a process is driven by a generalized autoregressive conditionally heteroscedastic (GARCH) model of specific order. This class of models was introduced by Bollerslev(1986), and despite the fact that certain properties of GARCH processes make no use of the particular form of the innovation distribution (see, for example, the stationarity conditions mentioned later in this section), GARCH models with Gaussian innovations have been considered.
    [Show full text]
  • Nonparametric Bayes: Inference Under Nonignorable Missingness and Model Selection
    NONPARAMETRIC BAYES: INFERENCE UNDER NONIGNORABLE MISSINGNESS AND MODEL SELECTION By ANTONIO LINERO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 c 2015 Antonio Linero Dedicated to Mike and Hani for their gracious support, and Katie for her patience! ACKNOWLEDGMENTS I would first like to convey my sincerest gratitude to my advisers, Professor Michael J. Daniels and Professor Hani Doss, for their help and encouragement. I have been fortunate to have two excellent mentors to bounce ideas off of, and to offer assurances when I doubted my work. They have provided me with every opportunity to succeed, and it has been an honor to work with them. I would also like to thank my committee members, Professor Malay Ghosh who always had an open door and Professor Arunava Banerjee for providing a valuable Machine Learning perspective. Outside of my committee, I am grateful to Professor Daniel O. Scharfstein for his insights into the missing data problem and for giving me the opportunity to visit Johns Hopkins. I am also particularly grateful to Professor Ron Randles, whose Introduction to Mathematical Statistics course provided the initial inspiration for me to pursue Statistics, and to Professor Andrew Rosalsky for providing me with a deep appreciation of Probability. Lastly, I would like to thank my partner Katie for her inspiration and patience, and my parents, without whose support I would not have had the opportunity to succeed. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................4 LIST OF TABLES.....................................8 LIST OF FIGURES....................................9 ABSTRACT.......................................
    [Show full text]