HEAVY TAILED ANALYSIS EURANDOM SUMMER 2005 SIDNEY RESNICK School of Operations Research and Industrial Engineering Cornell University Ithaca, NY 14853 USA
[email protected] http://www.orie.cornell.edu/ sid ∼ & Eurandom http://www.eurandom.tue.nl/people/EURANDOM_chair/eurandom_chair.htm 1 60 SIDNEY RESNICK 8. Asymptotic Normality of the Tail Empirical Measure As in Section 7.1, suppose X , j 1 are iid, non-negative random variables with common { j ≥ } distribution F (x), where F¯ RV−α for α > 0. Continue with the notation in (7.1), (7.2), and (7.3). Define the tail empirical∈ process, 1 n n (8.1) W (y)=√k ǫ (y−1/α, ] F¯(b(n/k)y−1/α) n k Xi/b(n/k) ∞ − k i=1 X =√k ν (y−1/α, ] E(ν (y−1/α, ]) . n ∞ − n ∞ Theorem 7. If (7.1), (7.2), and (7.3) hold, then in D[0, ) ∞ W W n ⇒ where W is Brownian motion on [0, ). ∞ Remark 3. Note, because of regular variation, as n , k/n 0, → ∞ → n −α (8.2) Eν (y−1/α, ]= F¯(b(n/k)y−1/α) y−1/α = y. n ∞ k → For applications to such things as the asymptotic normality of the Hill estimator and other estimators derived from the tail empirical measure, we would prefer the centering in (8.1) be y. However, to make this substitution in (8.1) requires knowing or assuming n (8.3) lim √k F¯(b(n/k)y−1/α) y n→∞ k − exists finite. This is one of the origins for the need of second order regular variation.