A General Multitype Branching Process with Age, Memory and Population Dependence Christine Jacob

Total Page:16

File Type:pdf, Size:1020Kb

A General Multitype Branching Process with Age, Memory and Population Dependence Christine Jacob A general multitype branching process with age, memory and population dependence Christine Jacob To cite this version: Christine Jacob. A general multitype branching process with age, memory and population dependence. IWAP 2010 V-th. International Workshop on Applied Probability, Jul 2010, Madrid, Spain. hal- 02755517 HAL Id: hal-02755517 https://hal.inrae.fr/hal-02755517 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IWAP 2010 5th International Workshop on Applied Probability BOOK OF ABSTRACTS AND DETAILED PROGRAMME 5-8 July, 2010 Colmenarejo, Madrid, Spain Universidad Carlos III de Madrid, Spain Preface The 5th International Workshop in Applied Probability, IWAP 2010, held in Colmenarejo, Madrid, Spain, has been built on the success of previous meetings. These meetings took place at Sim´onBol´ıvar Univer- sity (Venezuela, 2002), University of Piraeus (Greece, 2004), University of Connecticut (USA, 2006) and University of Technology of Compi`egne(France, 2008). Over 300 researchers in applied probability from all over the world are attending this workshop, making IWAP 2010 one of the largest IWAPs. Currently, IWAP is one of the major international meetings for researchers in Applied Probability. IWAP 2010 covers a wide range of research areas in stochastic processes, statistic and probability; featuring seven invited plenary lectures presented by leading specialists, a large variety of invited sessions, oral contribu- tions, and posters. The conference is co-sponsored by Bernoulli Society and Institute of Mathematical Statistics and supported by Universidad Carlos III de Madrid. The aim of this workshop is to bring together and foster collaboration among scientists engaged in the field, which is becoming more and more important in many real life problems. Many papers presented at the IWAP 2010 concern important topics, having applications in different areas of science and technology. The current volume is divided in two main parts: 1. Detailed programme 2. Book of abstracts We hope you enjoy this information and this meeting. Joseph Glaz and Juan Romo iii Sponsors • Bernoulli - Society for Mathematical Statistics and Probability • Institute of Mathematical Statistics • Universidad Carlos III de Madrid iv Workshop Chairs: Joseph Glaz, University of Connecticut, USA. Juerg Huesler, University of Bern, Switzerland. Markos Koutras, University of Piraeus, Greece. Nikolaos Limnios, Universite Technologie de Compiegne, France. Jose Louis Palacios, Universidad Sim´onBol´ıvar, Venezuela. Juan Romo, Universidad Carlos III de Madrid, Spain. Organizing Committee: Andr´esAlonso Ana Arribas H´ector Ca~nada Ignacio Cascos Mar´ıaDurb´an Alba Franco Raul Jim´enez Rosa Lillo Elisa Molanes Rosario Romera Juan Romo (Chair) Nuria Torrado Universidad Carlos III de Madrid, Spain. Scientific Committee: Vladimir Anisimov, GlaxoSmithKline, Essex, UK. Kostya Borovkov, University of Melbourne, Australia. Ghislaine Gayraud, University of Technology of Compiegne, France. Vladimir Koroliuk, Ukrainian National Academy of Science, Ukraine. Dirk Kroese, University of Queensland, Australia. Claude Lefevre, Universit´eLibre de Bruxelles, Belgium. Nancy Lopes Garc´ıa, University of Campinas, Brazil. G´abor Lugosi, Universidad Pompeu Fabra, Spain. Hosam Mahmoud, George Washington University, USA. Raimondo Manca, University of Rome La Sapienza, Italy. David Perry, University of Haifa, Israel. Marco Scarsini, LUISS, Italy. Moshe Shaked, University of Arizona, USA. Christos H. Skiadas, Technical University of Crete, Greece. Dmitrii Silvestrov, Stockholm University, Sweden. Philippe Vieu, Institut de Math´ematiquesde Toulouse, France. Joseph E. Yukich, Lehigh University, USA. v Contents Programme Table . 1 Detailed Programme . 3 Monday.............................................. 3 Tuesday . 12 Wednesday . 17 Thursday . 25 Abstracts . 29 Plenary Talks . 31 Invited Talks . 35 Contributed Talks . 97 Posters . 137 Authors Index . 143 vii Programme Table Monday Tuesday Wednesday Thursday 09:15 - 09:30 Opening 09:30 - 10:15 Plenary I Plenary III Plenary V Plenary VII 10:15 - 10:45 Long coffee break Long coffee break Long coffee break Long coffee break 10:45 - 12:15 Invited Sessions I Invited Sessions III Invited Sessions V Invited Sessions VII 12:15 - 12:30 Break Break Break Break 12:30 - 14:00 Invited Sessions II Invited Sessions IV Invited Sessions VI Invited Sessions VIII 14:00 - 15:15 Lunch Lunch Lunch Lunch Contributed Contributed 15:15 - 16:15 Plenary IV Sessions I & announcements Sessions III 16:15 - 16:30 Coffee break Visit to San Coffee break Lorenzo del Escorial and Contributed Contributed 16:30 - 17:30 Cocktail Sessions II Sessions IV 17:30 - 17:45 Break Break 17:45 - 18:30 Plenary II Plenary VI Special Poster 18:45 - 19:30 Session Schedule Poster Session according to (cont.) and Tapas Gala Dinner the actiivity table 1 Detailed Programme Monday, July 5th, 2010 9:15 - 9:30 Opening Auditorio Daniel Pe~na- President of Universidad Carlos III de Madrid 9:30 - 10:15 Plenary Talk: Paul Embrechts Auditorio Model uncertainty in financial risk management 10:15 - 10:45 Long coffee break 10:45 - 12:15 Invited Session I-I: Statistical Model-Testing Room 1.0.B02 Organizers: Jos´eR. Berrendero & Javier C´arcamo 10:45 - 11:15 Trimming methods in model validation Pedro C´esar Alvarez´ Esteban 11:15 - 11:45 Multivariate uniformity tests for the case of unknown support Jos´eR. Berrendero 11:45 - 12:15 Linear discrimination under heteroscedasticity Javier C´arcamo .................................................................................................. 10:45 - 12:15 Invited Session I-II: Semi-Markov Chains and Hidden Models Room 1.0.B03 Organizers: Vlad Barbu & Nikolaos Limnios 10:45 - 11:15 Large deviations and their applications to the problem of exit from a domain Adina Oprisan 11:15 - 11:45 Testing hypotheses for semi-Markov processes Vlad Barbu 11:45 - 12:15 A hidden seasonal switching model for high resolution breakpoint rainfall data Peter Thomson .................................................................................................. 10:45 - 12:15 Invited Session I-III: Stochastic Geometry and Stereology Room 1.0.B04 Organizer: Viktor Benes 10:45 - 11:15 Flowers and wedges as new tools for the stereology of particles Luis Cruz-Orive 11:15 - 11:45 CLTs for Poisson hyperplane processes and extremal problems for convex bodies Lothar Heinrich 3 11:45 - 12:15 Moment estimation for inhomogeneous spatial Cox processes Michaela Prokesova .................................................................................................. 10:45 - 12:15 Invited Session I-IV: Issues in Actuarial Sciences and Risk Theory Room 1.0.B05 Organizer: Esther Frostig 10:45 - 11:15 Optimal insurance with counterparty default risk Enrico Biffis 11:15 - 11:45 Finite time ruin probabilities for phase-type claims Konstadinos Politis 11:45 - 12:15 Asymptotic analysis of a risk process with high dividend barrier Esther Frostig .................................................................................................. 10:45 - 12:15 Invited Session I-V: Particle Systems Room 1.0.B06 Organizer: Pablo Ferrari 10:45 - 11:15 A stochastic model of evolution F´abio Machado 11:15 - 11:45 The crossover to the KPZ equation Ana Patricia Gon¸calves 11:45 - 12:15 Kinetically constrained models: non-equilibrium coarsening dynamics Cristina Toninelli .................................................................................................. 10:45 - 12:15 Invited Session I-VI: Spatial Models Room 1.0.B07 Organizer: Wenceslao Gonz´alezManteiga 10:45 - 11:15 Bivariate splines for spatial functional regression and forecasting Serge Guillas 11:15 - 11:45 A coherence-based measure for spatial classification Jorge Mateu 11:45 - 12:15 Cross-covariance functions for multivariate random fields based on latent dimensions Marc Genton .................................................................................................. 10:45 - 12:15 Invited Session I-VII: Application of Stochastic Control Room 1.0.B08 Organizer: Wolfgang J. Runggaldier 10:45 - 11:15 Controlled diffusion processes and full cooperation in environmental topics Wojciech Szatzschneider 11:15 - 11:45 Stochastic iterative dynamic programming applied to optimal control problems H´ector Ca~nada-Jaime 11:45 - 12:15 On optimal investment in a reinsurance context with a point process market model Wolfgang Runggaldier .................................................................................................. 10:45 - 12:15 Invited Session I-VIII: Sequential Analysis Editor's Session Room 1.0.B09 Organizer: Nitis Mukhopadhyay 4 10:45 - 11:00 Announcement of the winner(s) of Abraham Wald Prize in Sequential Anal- ysis 11:00 - 11:30 Two-stage inference methods for \large p, small n" scenarios: Part I Kazuyoshi Yata 11:30 - 12:00 Two-stage inference methods for \large p, small n" scenarios: Part II Makoto Aoshima 12:00 - 12:15 Q & A 12:15 - 12:30 Break 12:30 - 14:00 Invited Session II-I: Model Assessment Room 1.0.B02
Recommended publications
  • Multivariate Poisson Hidden Markov Models for Analysis of Spatial Counts
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Saskatchewan's Research Archive MULTIVARIATE POISSON HIDDEN MARKOV MODELS FOR ANALYSIS OF SPATIAL COUNTS A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Mathematics and Statistics University of Saskatchewan, Saskatoon, SK, Canada by Chandima Piyadharshani Karunanayake @Copyright Chandima Piyadharshani Karunanayake, June 2007. All rights Reserved. PERMISSION TO USE The author has agreed that the libraries of this University may provide the thesis freely available for inspection. Moreover, the author has agreed that permission for copying of the thesis in any manner, entirely or in part, for scholarly purposes may be granted by the Professor or Professors who supervised my thesis work or in their absence, by the Head of the Department of Mathematics and Statistics or the Dean of the College in which the thesis work was done. It is understood that any copying or publication or use of the thesis or parts thereof for finanancial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to the author and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis. Requests for permission to copy or to make other use of any material in the thesis should be addressed to: Head Department of Mathematics and Statistics University of Saskatchewan 106, Wiggins Road Saskatoon, Saskatchewan Canada, S7N 5E6 i ABSTRACT Multivariate count data are found in a variety of fields.
    [Show full text]
  • Regime Heteroskedasticity in Bitcoin: a Comparison of Markov Switching Models
    Munich Personal RePEc Archive Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models Chappell, Daniel Birkbeck College, University of London 28 September 2018 Online at https://mpra.ub.uni-muenchen.de/90682/ MPRA Paper No. 90682, posted 24 Dec 2018 06:38 UTC Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models Daniel R. Chappell Department of Economics, Mathematics and Statistics Birkbeck College, University of London [email protected] 28th September 2018 Abstract Markov regime-switching (MRS) models, also known as hidden Markov models (HMM), are used extensively to account for regime heteroskedasticity within the returns of financial assets. However, we believe this paper to be one of the first to apply such methodology to the time series of cryptocurrencies. In light of Moln´arand Thies (2018) demonstrating that the price data of Bitcoin contained seven distinct volatility regimes, we will fit a sample of Bitcoin returns with six m-state MRS estimations, with m ∈ {2,..., 7}. Our aim is to identify the optimal number of states for modelling the regime heteroskedasticity in the price data of Bitcoin. Goodness-of-fit will be judged using three information criteria, namely: Bayesian (BIC); Hannan-Quinn (HQ); and Akaike (AIC). We determined that the restricted 5-state model generated the optimal estima- tion for the sample. In addition, we found evidence of volatility clustering, volatility jumps and asymmetric volatility transitions whilst also inferring the persistence of shocks in the price data of Bitcoin. Keywords Bitcoin; Markov regime-switching; regime heteroskedasticity; volatility transitions. 1 2 List of Tables Table 1. Summary statistics for Bitcoin (23rd April 2014 to 31st May 2018) .
    [Show full text]
  • Methods of Monte Carlo Simulation II
    Methods of Monte Carlo Simulation II Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2014 Ulm, 2014 2 Contents 1 SomeSimpleStochasticProcesses 7 1.1 StochasticProcesses . 7 1.2 RandomWalks .......................... 7 1.2.1 BernoulliProcesses . 7 1.2.2 RandomWalks ...................... 10 1.2.3 ProbabilitiesofRandomWalks . 13 1.2.4 Distribution of Xn .................... 13 1.2.5 FirstPassageTime . 14 2 Estimators 17 2.1 Bias, Variance, the Central Limit Theorem and Mean Square Error................................ 19 2.2 Non-AsymptoticErrorBounds. 22 2.3 Big O and Little o Notation ................... 23 3 Markov Chains 25 3.1 SimulatingMarkovChains . 28 3.1.1 Drawing from a Discrete Uniform Distribution . 28 3.1.2 Drawing From A Discrete Distribution on a Small State Space ........................... 28 3.1.3 SimulatingaMarkovChain . 28 3.2 Communication .......................... 29 3.3 TheStrongMarkovProperty . 30 3.4 RecurrenceandTransience . 31 3.4.1 RecurrenceofRandomWalks . 33 3.5 InvariantDistributions . 34 3.6 LimitingDistribution. 36 3.7 Reversibility............................ 37 4 The Poisson Process 39 4.1 Point Processes on [0, )..................... 39 ∞ 3 4 CONTENTS 4.2 PoissonProcess .......................... 41 4.2.1 Order Statistics and the Distribution of Arrival Times 44 4.2.2 DistributionofArrivalTimes . 45 4.3 SimulatingPoissonProcesses. 46 4.3.1 Using the Infinitesimal Definition to Simulate Approx- imately .......................... 46 4.3.2 SimulatingtheArrivalTimes . 47 4.3.3 SimulatingtheInter-ArrivalTimes . 48 4.4 InhomogenousPoissonProcesses. 48 4.5 Simulating an Inhomogenous Poisson Process . 49 4.5.1 Acceptance-Rejection. 49 4.5.2 Infinitesimal Approach (Approximate) . 50 4.6 CompoundPoissonProcesses . 51 5 ContinuousTimeMarkovChains 53 5.1 TransitionFunction. 53 5.2 InfinitesimalGenerator . 54 5.3 ContinuousTimeMarkovChains .
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • Poisson Processes Stochastic Processes
    Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written as −λt f (t) = λe 1(0;+1)(t) We summarize the above by T ∼ exp(λ): The cumulative distribution function of a exponential random variable is −λt F (t) = P(T ≤ t) = 1 − e 1(0;+1)(t) And the tail, expectation and variance are P(T > t) = e−λt ; E[T ] = λ−1; and Var(T ) = E[T ] = λ−2 The exponential random variable has the lack of memory property P(T > t + sjT > t) = P(T > s) Exponencial races In what follows, T1;:::; Tn are independent r.v., with Ti ∼ exp(λi ). P1: min(T1;:::; Tn) ∼ exp(λ1 + ··· + λn) . P2 λ1 P(T1 < T2) = λ1 + λ2 P3: λi P(Ti = min(T1;:::; Tn)) = λ1 + ··· + λn P4: If λi = λ and Sn = T1 + ··· + Tn ∼ Γ(n; λ). That is, Sn has probability density function (λs)n−1 f (s) = λe−λs 1 (s) Sn (n − 1)! (0;+1) The Poisson Process as a renewal process Let T1; T2;::: be a sequence of i.i.d. nonnegative r.v. (interarrival times). Define the arrival times Sn = T1 + ··· + Tn if n ≥ 1 and S0 = 0: The process N(t) = maxfn : Sn ≤ tg; is called Renewal Process. If the common distribution of the times is the exponential distribution with rate λ then process is called Poisson Process of with rate λ. Lemma. N(t) ∼ Poisson(λt) and N(t + s) − N(s); t ≥ 0; is a Poisson process independent of N(s); t ≥ 0 The Poisson Process as a L´evy Process A stochastic process fX (t); t ≥ 0g is a L´evyProcess if it verifies the following properties: 1.
    [Show full text]
  • 12 : Conditional Random Fields 1 Hidden Markov Model
    10-708: Probabilistic Graphical Models 10-708, Spring 2014 12 : Conditional Random Fields Lecturer: Eric P. Xing Scribes: Qin Gao, Siheng Chen 1 Hidden Markov Model 1.1 General parametric form In hidden Markov model (HMM), we have three sets of parameters, j i transition probability matrix A : p(yt = 1jyt−1 = 1) = ai;j; initialprobabilities : p(y1) ∼ Multinomial(π1; π2; :::; πM ); i emission probabilities : p(xtjyt) ∼ Multinomial(bi;1; bi;2; :::; bi;K ): 1.2 Inference k k The inference can be done with forward algorithm which computes αt ≡ µt−1!t(k) = P (x1; :::; xt−1; xt; yt = 1) recursively by k k X i αt = p(xtjyt = 1) αt−1ai;k; (1) i k k and the backward algorithm which computes βt ≡ µt t+1(k) = P (xt+1; :::; xT jyt = 1) recursively by k X i i βt = ak;ip(xt+1jyt+1 = 1)βt+1: (2) i Another key quantity is the conditional probability of any hidden state given the entire sequence, which can be computed by the dot product of forward message and backward message by, i i i i X i;j γt = p(yt = 1jx1:T ) / αtβt = ξt ; (3) j where we define, i;j i j ξt = p(yt = 1; yt−1 = 1; x1:T ); i j / µt−1!t(yt = 1)µt t+1(yt+1 = 1)p(xt+1jyt+1)p(yt+1jyt); i j i = αtβt+1ai;jp(xt+1jyt+1 = 1): The implementation in Matlab can be vectorized by using, i Bt(i) = p(xtjyt = 1); j i A(i; j) = p(yt+1 = 1jyt = 1): 1 2 12 : Conditional Random Fields The relation of those quantities can be simply written in pseudocode as, T αt = (A αt−1): ∗ Bt; βt = A(βt+1: ∗ Bt+1); T ξt = (αt(βt+1: ∗ Bt+1) ): ∗ A; γt = αt: ∗ βt: 1.3 Learning 1.3.1 Supervised Learning The supervised learning is trivial if only we know the true state path.
    [Show full text]
  • Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing
    Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Achal Awasthi, B.S. Graduate Program in Department of Statistics The Ohio State University 2018 Master's Examination Committee: Radu Herbei,Ph.D., Advisor Laura S. Kubatko, Ph.D. c Copyright by Achal Awasthi 2018 Abstract In this thesis, we propose a generalized Heston model as a tool to estimate volatil- ity. We have used Approximate Bayesian Computing to estimate the parameters of the generalized Heston model. This model was used to examine the daily closing prices of the Shanghai Stock Exchange and the NIKKEI 225 indices. We found that this model was a good fit for shorter time periods around financial crisis. For longer time periods, this model failed to capture the volatility in detail. ii This is dedicated to my grandmothers, Radhika and Prabha, who have had a significant impact in my life. iii Acknowledgments I would like to thank my thesis supervisor, Dr. Radu Herbei, for his help and his availability all along the development of this project. I am also grateful to Dr. Laura Kubatko for accepting to be part of the defense committee. My gratitude goes to my parents, without their support and education I would not have had the chance to study worldwide. I would also like to express my gratitude towards my uncles, Kuldeep and Tapan, and Mr. Richard Rose for helping me transition smoothly to life in a different country.
    [Show full text]
  • Birth and Death Process in Mean Field Type Interaction
    BIRTH AND DEATH PROCESS IN MEAN FIELD TYPE INTERACTION MARIE-NOÉMIE THAI ABSTRACT. Theaim ofthispaperis to study theasymptoticbehaviorofa system of birth and death processes in mean field type interaction in discrete space. We first establish the exponential convergence of the particle system to equilibrium for a suitable Wasserstein coupling distance. The approach provides an explicit quantitative estimate on the rate of convergence. We prove next a uniform propagation of chaos property. As a consequence, we show that the limit of the associated empirical distribution, which is the solution of a nonlinear differential equation, converges exponentially fast to equilibrium. This paper can be seen as a discrete version of the particle approximation of the McKean-Vlasov equations and is inspired from previous works of Malrieu and al and Caputo, Dai Pra and Posta. AMS 2000 Mathematical Subject Classification: 60K35, 60K25, 60J27, 60B10, 37A25. Keywords: Interacting particle system - mean field - coupling - Wasserstein distance - propagation of chaos. CONTENTS 1. Introduction 1 Long time behavior of the particle system 4 Propagation of chaos 5 Longtimebehaviorofthenonlinearprocess 7 2. Proof of Theorem1.1 7 3. Proof of Theorem1.2 12 4. Proof of Theorem1.5 15 5. Appendix 16 References 18 1. INTRODUCTION The concept of mean field interaction arised in statistical physics with Kac [17] and then arXiv:1510.03238v1 [math.PR] 12 Oct 2015 McKean [21] in order to describe the collisions between particles in a gas, and has later been applied in other areas such as biology or communication networks. A particle system is in mean field interaction when the system acts over one fixed particle through the em- pirical measure of the system.
    [Show full text]
  • Fluid M/M/1 Catastrophic Queue in a Random Environment
    RAIRO-Oper. Res. 55 (2021) S2677{S2690 RAIRO Operations Research https://doi.org/10.1051/ro/2020100 www.rairo-ro.org FLUID M=M=1 CATASTROPHIC QUEUE IN A RANDOM ENVIRONMENT Sherif I. Ammar1;2;∗ Abstract. Our main objective in this study is to investigate the stationary behavior of a fluid catas- trophic queue of M=M=1 in a random multi-phase environment. Occasionally, a queueing system expe- riences a catastrophic failure causing a loss of all current jobs. The system then goes into a process of repair. As soon as the system is repaired, it moves with probability qi ≥ 0 to phase i. In this study, the distribution of the buffer content is determined using the probability generating function. In addition, some numerical results are provided to illustrate the effect of various parameters on the distribution of the buffer content. Mathematics Subject Classification. 90B22, 60K25, 68M20. Received January 12, 2020. Accepted September 8, 2020. 1. Introduction In recent years, studies on queueing systems in a random environment have become extremely important owing to their widespread application in telecommunication systems, advanced computer networks, and manufacturing systems. In addition, studies on fluid queueing systems are regarded as an important class of queueing theory; the interpretation of the behavior of such systems helps us understand and improve the behavior of many applications in our daily life. A fluid queue is an input-output system where a continuous fluid enters and leaves a storage device called a buffer; the system is governed by an external stochastic environment at randomly varying rates. These models have been well established as a valuable mathematical modeling method and have long been used to estimate the performance of certain systems as telecommunication systems, transportation systems, computer networks, and production and inventory systems.
    [Show full text]
  • Stochastic Processes and Applications Mongolia 2015
    NATIONAL UNIVERSITY OF MONGOLIA Stochastic Processes and Applications Mongolia 2015 27th July - 7th August 2015 National University of Mongolia Ulan Bator Mongolia National University of Mongolia 1 1 Basic information Venue: The meeting will take place at the National University of Mongolia. The map below shows the campus of the University which is located in the North-Eastern block relative to the Government Palace and Chinggis Khaan Square (see the red circle with arrow indicating main entrance in map below) in the very heart of down-town Ulan Bator. • All lectures, contributed talks and tutorials will be held in the Room 320 at 3rd floor, Main building, NUM. • Registration and Opening Ceremony will be held in the Academic Hall (Round Hall) at 2nd floor of the Main building. • The welcome reception will be held at the 2nd floor of the Broadway restaurant pub which is just on the West side of Chinggis Khaan Square (see the blue circle in map below). NATIONAL UNIVERSITY OF MONGOLIA 2 National University of Mongolia 1 Facilities: The main venue is equipped with an electronic beamer, a blackboard and some movable white- boards. There will also be magic whiteboards which can be used on any vertical surface. White-board pens and chalk will be provided. Breaks: Refreshments will be served between talks (see timetable below) at the conference venue. Lunches: Arrangements for lunches will be announced at the start of the meeting. Accommodation: Various places are being used for accommodation. The main accommodation are indi- cated on the map below relative to the National University (red circle): The Puma Imperial Hotel (purple circle), H9 Hotel (black circle), Ulanbaatar Hotel (blue circle), Student Dormitories (green circle) Mentoring: A mentoring scheme will be running which sees more experienced academics linked with small groups of junior researchers.
    [Show full text]
  • Partnership As Experimentation: Business Organization and Survival in Egypt, 1910–1949
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Discussion Papers Economic Growth Center 5-1-2017 Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949 Cihan Artunç Timothy Guinnane Follow this and additional works at: https://elischolar.library.yale.edu/egcenter-discussion-paper-series Recommended Citation Artunç, Cihan and Guinnane, Timothy, "Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949" (2017). Discussion Papers. 1065. https://elischolar.library.yale.edu/egcenter-discussion-paper-series/1065 This Discussion Paper is brought to you for free and open access by the Economic Growth Center at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208269 New Haven, CT 06520-8269 http://www.econ.yale.edu/~egcenter Economic Growth Center Discussion Paper No. 1057 Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949 Cihan Artunç University of Arizona Timothy W. Guinnane Yale University Notes: Center discussion papers are preliminary materials circulated to stimulate discussion and critical comments. This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection: https://ssrn.com/abstract=2973315 Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949 Cihan Artunç⇤ Timothy W. Guinnane† This Draft: May 2017 Abstract The relationship between legal forms of firm organization and economic develop- ment remains poorly understood. Recent research disputes the view that the joint-stock corporation played a crucial role in historical economic development, but retains the view that the costless firm dissolution implicit in non-corporate forms is detrimental to investment.
    [Show full text]
  • A University of Sussex Phd Thesis Available Online Via Sussex
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA Mailan Trinh A thesis submitted for the degree of Doctor of Philosophy University of Sussex March 2018 UNIVERSITY OF SUSSEX MAILAN TRINH A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA SUMMARY The thesis is devoted to non-stationary point process models as generalizations of the standard homogeneous Poisson process. The work can be divided in two parts. In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP) by applying a random time change to the standard Poisson process. We character- ize the FNPP by deriving its non-local governing equation. We further compute moments and covariance of the process and discuss the distribution of the arrival times. Moreover, we give both finite-dimensional and functional limit theorems for the FNPP and the corresponding fractional non-homogeneous compound Poisson process. The limit theorems are derived by using martingale methods, regular vari- ation properties and Anscombe's theorem.
    [Show full text]