Extremes and Fluid Queues

Total Page:16

File Type:pdf, Size:1020Kb

Extremes and Fluid Queues UvA-DARE (Digital Academic Repository) Extremes and fluid queues Dieker, A.B. Publication date 2006 Document Version Final published version Link to publication Citation for published version (APA): Dieker, A. B. (2006). Extremes and fluid queues. Ponsen & Looijen. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Extremes and uid queues Extremes and uid queues / Antonius Bernardus Dieker, 2006 Proefschrift Universiteit van Amsterdam Met lit. opg. { Met samenvatting in het Nederlands Omslagontwerp door Tobias Baanders Gedrukt door Ponsen & Looijen BV ISBN 90-5776-151-3 Dit onderzoek kwam tot stand met steun van NWO Extremes and uid queues ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magni¯cus prof. mr. P. F. van der Heijden ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op donderdag 9 maart 2006, te 10.00 uur door Antonius Bernardus Dieker geboren te Amsterdam Promotiecommissie: Promotor: prof. dr. M. Mandjes Overige leden: dr. A. A. Balkema prof. dr. ir. O. J. Boxma prof. dr. C. A. J. Klaassen prof. dr. I. Norros prof. dr. T. Rolski dr. ir. W. R. W. Scheinhardt dr. P. J. C. Spreij Faculteit der Natuurwetenschappen, Wiskunde en Informatica Dankwoord Dit boekje is het resultaat van vier jaar zweten. Toen ik aan dit project begon kon ik me nauwelijks voorstellen wat het schrijven ervan allemaal zou behelzen, maar het uiteindelijke resultaat vervult mij met trots. Hoewel alleen mijn naam op de omslag staat, had ik het niet kunnen schrijven zonder de hulp van velen. Graag richt ik het woord tot enkele personen in het bijzonder, en haal enkele speciale herinneringen naar boven. Michel, jij bent zonder twijfel de persoon die de meeste invloed heeft gehad op mijn werk; de hoofdstukken 8, 9, 10 en 14 hebben wij samen geschreven. Niet alleen deze samenwerking heb ik als zeer prettig ervaren, maar ook het vertrouwen dat jij altijd in mij gesteld hebt. De deur stond en staat altijd open voor een uitgebreide discussie over uiteenlopende onderwerpen. Veel dank hiervoor. Dit proefschrift heeft ook erg gepro¯teerd van vele discussies met collega's uit binnen- en buitenland, waarvan ik hier slechts enkelen kan noemen. Hoofdstuk 13 is gezamenlijk werk met Krzy¶s en Tomasz; jullie ben ik in het bijzonder erkentelijk. Bert, jij hebt mij altijd van goede adviezen voorzien. Misja, bedankt voor je ongezouten kritiek op een deel van het manuscript. Verder gaat mijn dank uit naar Thyra en Richard voor alle Twentse inspanningen en het instituut EURANDOM voor de Brabantse gastvrijheid. Ik kan niet aan de afgelopen jaren denken zonder dat mooie herinneringen naar boven komen aan de plaatsen waar dit werk mij heeft gebracht. Ik denk daarbij niet alleen aan de grote conferenties in BraziliÄe en Canada, maar ook aan de werkbezoeken aan Polen en Ierland (waarvoor dank, Krzy¶s, Tomasz en Neil). Een langere tijd heb ik in Parijs doorgebracht, op deze mogelijkheid geattendeerd door Peter. In Parijs heb ik de basis gelegd voor een artikel met Marc [109]. Ren¶e, van alle kamergenoten neem jij een speciale plaats in. Vier jaar lang wist jij het uit te houden tussen mijn ongelooijke troep, waarvoor respect op z'n plaats is. Na ruim twee jaar werd onze kamer aangevuld met Regina; enigszins verrast door de saaie werkomgeving van twee mannen leukte jij de kamer al snel op met een paar planten. Loijc, jou wil ik bedanken voor jouw geduld als ik Frans probeerde te praten. Mijn familie heeft mij van heel dichtbij zien worstelen aan dingen die ik hen nooit precies heb kunnen uitleggen. Pap, mam, Jos, Miranda en Marjon, heel erg bedankt voor alle steun. Jasper, jij weet altijd een lach op m'n gezicht te toveren. Jullie weten dat de afgelopen vier jaar niet altijd zo makkelijk was als dit gelikte boekje doet vermoeden. De wiskundige stellingen en talloze formules uit dit proefschrift verbleken bij mijn grootste ontdekking van de afgelopen vier jaar: Cyndi. Lieverd, ik weet niet hoeveel punten ik je moet geven voor alles wat je voor me hebt gedaan! Ik ben blij dat we samen van Ierland kunnen gaan genieten. Amsterdam, januari 2006 Ton Contents 1 Introduction 1 1.1 The uid queue . 3 1.2 Fluid networks . 6 1.3 Approximations for the input process . 8 1.4 Outline of the thesis . 10 2 Techniques 13 2.1 Regular variation . 13 2.2 Weak convergence . 15 2.3 Large deviations . 17 2.4 Tail asymptotics . 20 A Gaussian queues 23 3 Background on Gaussian processes 25 3.1 Gaussian measures and large-deviation principles . 26 3.2 Two fundamental inequalities . 28 3.3 The double sum method . 29 3.4 Outline of Part A . 32 4 Conditional limit theorems 33 4.1 Introduction . 33 4.2 Queueing results . 36 4.3 Preliminaries . 38 4.4 Weak convergence results . 41 4.5 Proofs for Section 4.2 . 47 4.6 Proof of Proposition 4.5 . 48 5 Extremes of Gaussian processes 51 5.1 Introduction . 51 5.2 Description of the results and assumptions . 53 5.3 Special cases: stationary increments and self-similar processes . 57 5.4 A variant of Pickands' lemma . 64 5.5 Four cases . 67 5.6 Upper bounds . 73 5.7 Lower bounds . 77 iv Contents 6 Reduced-load equivalence 85 6.1 Introduction . 85 6.2 Description of the result . 87 6.3 Examples . 88 6.4 Proof of Theorem 6.2 . 89 B Simulation 93 7 Background on simulation 95 7.1 Importance sampling and asymptotic e±ciency . 96 7.2 Examples: random walks . 98 7.3 Outline of Part B . 101 8 Conditions for asymptotic e±ciency 103 8.1 Introduction . 103 8.2 The Varadhan conditions for e±ciency of exponential twisting . 104 8.3 Comparison with Sadowsky's conditions . 107 8.4 Uniqueness of the exponential twist . 110 8.5 An example . 111 9 Random walks exceeding a nonlinear boundary 113 9.1 Introduction . 113 9.2 Sample-path large deviations and exceedance probabilities . 114 9.3 Path-level twisting . 115 9.4 Step-level twisting . 120 9.5 A comparison . 124 10 Simulation of a Gaussian queue 127 10.1 Introduction . 127 10.2 The bu®er-content probability . 129 10.3 Simulation methods . 133 10.4 Evaluation . 139 10.5 Concluding remarks . 144 10.A Appendix: proofs . 145 C L¶evy-driven uid queues and networks 149 11 Background on L¶evy processes 151 11.1 Random walks . 151 11.2 L¶evy processes . 155 11.3 Outline of Part C . 157 12 Factorization embeddings 159 12.1 Introduction . 159 12.2 On factorization identities . 161 12.3 L¶evy processes with phase-type upward jumps . 164 12.4 Perturbed risk models . 166 12.5 Asymptotics of the maximum . 173 Contents v 13 Quasi-product forms 179 13.1 Introduction . 179 13.2 Splitting times . 181 13.3 The P-distribution of (X; F ) . 184 P 13.4 The k#-distribution of H . 186 13.5 Multidimensional Skorokhod problems . 189 13.6 Tandem networks and priority systems . 194 13.A Appendix: a compound Poisson process with negative drift . 200 14 Extremes of Markov-additive processes 205 14.1 Introduction . 205 14.2 A discrete-time process and its extremes . 207 14.3 Markov-additive processes and their extremes . 223 14.4 The uid queue: theory . 233 14.5 The single queue: examples . 237 14.6 Tandem networks with Markov-additive input . 242 14.7 Concluding remarks . 244 Bibliography 247 Author Index 261 Samenvatting (Summary) 265 About the author 269 CHAPTER 1 Introduction In queueing theory, the main entity is a station where service is provided; examples include counters, call centers, elevators, and tra±c lights. Customers seeking this service arrive at the system, where they wait if the service facility cannot immediately allocate the required amount of service. They depart after being served. In most of these applications, it is intrinsically uncertain at what time customers arrive and how long they need to be served. This explains why probability theory plays an important role in the analysis of queueing systems. In order to design these systems optimally, it is desirable to know how this randomness in- uences the performance of the system. Therefore, it is crucial to study system characteristics that reect this performance. For instance, one may wish to analyze the probability distribu- tions of the queue length or the waiting time of a customer, as a function of the random arrival process and service requirements. The investigation of such a.
Recommended publications
  • Fluid M/M/1 Catastrophic Queue in a Random Environment
    RAIRO-Oper. Res. 55 (2021) S2677{S2690 RAIRO Operations Research https://doi.org/10.1051/ro/2020100 www.rairo-ro.org FLUID M=M=1 CATASTROPHIC QUEUE IN A RANDOM ENVIRONMENT Sherif I. Ammar1;2;∗ Abstract. Our main objective in this study is to investigate the stationary behavior of a fluid catas- trophic queue of M=M=1 in a random multi-phase environment. Occasionally, a queueing system expe- riences a catastrophic failure causing a loss of all current jobs. The system then goes into a process of repair. As soon as the system is repaired, it moves with probability qi ≥ 0 to phase i. In this study, the distribution of the buffer content is determined using the probability generating function. In addition, some numerical results are provided to illustrate the effect of various parameters on the distribution of the buffer content. Mathematics Subject Classification. 90B22, 60K25, 68M20. Received January 12, 2020. Accepted September 8, 2020. 1. Introduction In recent years, studies on queueing systems in a random environment have become extremely important owing to their widespread application in telecommunication systems, advanced computer networks, and manufacturing systems. In addition, studies on fluid queueing systems are regarded as an important class of queueing theory; the interpretation of the behavior of such systems helps us understand and improve the behavior of many applications in our daily life. A fluid queue is an input-output system where a continuous fluid enters and leaves a storage device called a buffer; the system is governed by an external stochastic environment at randomly varying rates. These models have been well established as a valuable mathematical modeling method and have long been used to estimate the performance of certain systems as telecommunication systems, transportation systems, computer networks, and production and inventory systems.
    [Show full text]
  • Heterogeneous Arrival Fluid Model Driven by an M/M/1 Queue with Exponential Vacation Subject to Catastrophe M
    The International journal of analytical and experimental modal analysis ISSN NO:0886-9367 Heterogeneous Arrival Fluid Model Driven by an M/M/1 Queue with Exponential Vacation Subject to Catastrophe 1 2 M. Deepa , Dr. K. Julia Rose Mary 1Research Scholar, Nirmala College For Women 2Asso.Prof.of Mathematics, Nirmala College For Women [email protected] 2 [email protected] Abstract- Fluid model is suitable for modeling traffic network where individual arrival has less impact on the performance of the network. For evaluating the performance measure, it is important to obtain information about the buffer content. This paper studies a fluid model driven by an M/M/1 queue with heterogeneous arrival and exponential vacation subject to catastrophe under steady state conditions. Based on that explicit expression for the Laplace transform of the stationary buffer content distribution with the minimal positive solution to a crucial quadratic equation is obtained .Then the performance measure – mean of the buffer content which is dependent on vacation parameter is obtained .Finally, the parameters effect on the mean buffer content is also illustrated by sensitivity analysis. Keywords- Fluid queue, Heterogeneous arrival, Exponential vacation, Catastrophe and Buffer Content. I. INTRODUCTION A Fluid queue is a mathematical model used to describe fluid level in a reservoir subject to randomly determined periods of filling and emptying the system without interruption called a buffer, according to a randomly varying rate regulated by an external stochastic environment. Such fluid queues are used as a mathematical tool for modeling, for example, to approximate discrete models, model the spread of wildfires in ruin theory and to model high speed data networks, a router, computer networks including call admission control, traffic shaping and modeling of TCP and production and inventory systems.
    [Show full text]
  • Informs 2007 Proceedings
    informs14th ® Applied Probability Conference July 9–11, 2007 Program Monday July 9, 2007 Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8 Track 9 Room CZ 4 CZ 5 CZ 10 CZ 11 CZ 12 CZ 13 CZ 14 CZ 15 CZ 16 9:00am - 9:15am Opening (Room: Blauwe Zaal) 9:15am - 10:15am Plenary - Peter Glynn (Room: Blauwe Zaal) MA Financial Random Fields Rare Event Asymptotic Scheduling Call Centers 1 MDP 1 Retrial Inventory 1 10:45am - 12:15pm Engineering 1 Simulation 1 Analysis 1 Queues Kou Kaj Dupuis Bassamboo / Borst / Koole Feinberg Artalejo Van Houtum Randhawa Wierman Keppo Scheffler Blanchet Lin Gupta Taylor Bispo Machihara Buyukkaramikli DeGuest Ruiz-Medina Glasserman Tezcan Ayesta Jongbloed Van der Laan Nobel Qiu Peng Kaj Juneja Gurvich Wierman Henderson Haijema Shin Timmer Weber Mahmoodi Dupuis Randhawa Winands Koole Feinberg Artalejo Van Houtum 12:45pm - 1.45pm Tutorial Philippe Robert MB Financial Percolation and Simulation 1 Stability of Stoch. Communication Many-server Games 1 Fluid Queues Search 2:00pm - 3:30pm Engineering 2 Related Topics Networks Systems 1 Models 1 Models Schoutens / Van den Berg Henderson Ramanan Choi Armony Economou Adan Klafter Valdivieso Werker Newman Chick Gamarnik Bae Tezcan Economou Dieker Benichou Koch Newman Haas Reiman Kim Jennings Amir Nazarathy Oshanin Scherer Meester Blanchet Williams Park Ward Dube Margolius Eliazar Valdivieso Kurtz Henderson Zachary Roubos Armony Economou Adan Metzler MC Exit Times Interacting Stoch. Prog. Stoch. Netw. & Flow-Level Markov Control Queueing Inventory 2 4:00pm - 5:30pm
    [Show full text]
  • Markov-Modulated and Feedback Fluid Queues
    Markov-modulated and feedback fluid queues Werner Scheinhardt Faculty of Mathematical Sciences University of Twente P.O. Box 217 7500 AE Enschede The Netherlands ISBN 90-3651248-4 MARKOV-MODULATED AND FEEDBACK FLUID QUEUES PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. F.A. van Vught, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 4 december 1998 te 15.00 uur. door Willem Richard Werner Scheinhardt geboren op 24 februari 1969 te Santiago Dit proefschrift is goedgekeurd door de promotor en de assistent promotor, prof. dr. ir. J.H.A. de Smit dr. ir. E.A. van Doorn Voorwoord Aan het eind van dit proefschrift gekomen, rest nog het schrijven van het begin ervan, het voorwoord. Gebruikelijk is om daarin allen te bedanken die op ´e´en of andere wijze aan de totstandkoming van het proefschrift hebben bijgedragen. Graag houd ik deze traditie in ere, en wel omdat de volgende personen dit ten volle verdienen. Uiteraard wil ik beginnen met mijn dagelijks begeleider Erik van Doorn hartelijk te bedanken voor zijn inzet en enthousiasme. Van v´o´or het eerste sollicitatiegesprek tot na het laatste 2-teken was hij intensief betrokken bij mijn doen en laten. Een belangrijk deel van het onderzoek in dit proefschrift is in samenwerking met hem tot stand gekomen. Ook de samenwerking met Dick Kroese was aangenaam en productief. Hij wist vaak antwoorden die ik zelf niet zou hebben gevonden, en leerde mij omgaan met het symbolisch manipulatie-pakket \Mathematica", dat heel wat \tiresome analysis" heeft uitgevoerd.
    [Show full text]
  • EUROPEAN CONFERENCE on QUEUEING THEORY 2016 Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop
    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016 Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop To cite this version: Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop. EUROPEAN CONFERENCE ON QUEUEING THEORY 2016. Jul 2016, Toulouse, France. 72p, 2016. hal- 01368218 HAL Id: hal-01368218 https://hal.archives-ouvertes.fr/hal-01368218 Submitted on 19 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EUROPEAN CONFERENCE ON QUEUEING THEORY 2016 Toulouse July 18 – 20, 2016 Booklet edited by Urtzi Ayesta LAAS-CNRS, France Marko Boon Eindhoven University of Technology, The Netherlands‘ Balakrishna Prabhu LAAS-CNRS, France Rhonda Righter UC Berkeley, USA Maaike Verloop IRIT-CNRS, France 2 Contents 1 Welcome Address 4 2 Organization 5 3 Sponsors 7 4 Program at a Glance 8 5 Plenaries 11 6 Takács Award 13 7 Social Events 15 8 Sessions 16 9 Abstracts 24 10 Author Index 71 3 1 Welcome Address Dear Participant, It is our pleasure to welcome you to the second edition of the European Conference on Queueing Theory (ECQT) to be held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT in Toulouse.
    [Show full text]
  • A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations
    mathematics Article A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations Yi Peng 1 and Jinbiao Wu 2,* 1 School of Mathematical Science, Changsha Normal University, Changsha 410100, China; mailto:[email protected] 2 School of Mathematics and Statistics, Central South University, Changsha 410083, China * Correspondence: [email protected] Received: 24 June 2020; Accepted: 28 July 2020; Published: 29 July 2020 Abstract: Motivated by modelling the data transmission in computer communication networks, we study a Lévy-driven stochastic fluid queueing system where the server may subject to breakdowns and repairs. In addition, the server will leave for a vacation each time when the system is empty. We cast the workload process as a Lévy process modified to have random jumps at two classes of stopping times. By using the properties of Lévy processes and Kella–Whitt martingale method, we derive the limiting distribution of the workload process. Moreover, we investigate the busy period and the correlation structure. Finally, we prove that the stochastic decomposition properties also hold for fluid queues with Lévy input. Keywords: fluid queueing systems; Lévy processes; martingales; queues with Lévy input; server breakdowns and vacations; stochastic decomposition 1. Introduction Lévy processes are very important stochastic processes with stationary and independent increments. They are one of the most important families of stochastic processes arising in many areas of probability theory and stochastic operations research. They cover a number of very important and well-studied stochastic processes as special cases, such as Brownian motion, compound Poisson processes, stable processes and subordinators. Lévy processes are widely used as models in the study of stochastic service systems, insurance risks, stochastic inventory systems, reliability engineering, computer communication systems, stochastic finance systems and so on.
    [Show full text]
  • An Analytical Model Driven by Fluid Queue for Battery Life Time of a User Equipment in LTE-A Networks ∗ Anupam Gautam A,S
    Physical Communication 30 (2018) 213–219 Contents lists available at ScienceDirect Physical Communication journal homepage: www.elsevier.com/locate/phycom Full length article An analytical model driven by fluid queue for battery life time of a user equipment in LTE-A networks ∗ Anupam Gautam a,S. Dharmaraja b, a Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India b Bharti School of Telecommunication Technology and Management, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India article info a b s t r a c t Article history: During the Discontinuous Reception (DRX) mechanism, a User Equipment (UE) turns off most of its Received 13 October 2017 components for a prolonged period. The battery charge of a UE, which is a continuous quantity, arises Received in revised form 28 May 2018 as a fluid model. In this scenario, we represent the system as the reservoir where battery charge gets Accepted 13 August 2018 accumulated or is depleted gradually over the time, subject to a random environment constructed by the Available online 6 September 2018 DRX mechanism. Therefore, the DRX mechanism acts as the background process for the fluid queue model MSC: of the battery charge. In a UE, battery charge available at any time t is considered as the fluid available 00-01 in the reservoir. Different discharging rates are considered for the various states of the DRX mechanism. 99-00 Using the fluid queue model, cumulative distribution function for the battery life of a DRX enabled UE is Keywords: derived. Further, the expression for the mean battery life is obtained and analyzed numerically.
    [Show full text]
  • Optimal Control of a Time-Varying Double-Ended Production Queueing Model
    Stochastic Systems APRIL 8, 2019 OPTIMAL CONTROL OF A TIME-VARYING DOUBLE-ENDED PRODUCTION QUEUEING MODEL By Chihoon Lee∗, Xin Liuy, Yunan Liuz, and Ling Zhangz, Stevens Institute of Technology∗,Clemson Universityy, and North Carolina State University z Motivated by production systems with nonstationary stochastic demand, we study a double-ended queueing model having backorders and customer abandonment. One side of our model stores backorders, and the other side represents inventory. We assume first-come-first- serve instantaneous fulfillment discipline. Our goal is to determine the optimal (nonstationary) production rate over a finite time hori- zon to minimize the costs incurred by the system. In addition to the inventory-related (holding, perishment) and demand-related (wait- ing, abandonment) costs, we consider a cost that penalizes rapid fluctuations of production rates. We develop a deterministic fluid control problem (FCP) that serves as a performance lower bound for the original queueing control problem (QCP). We further consider a high-volume system and construct an asymptotically optimal produc- tion rate for the QCP, under which the FCP lower bound is achieved asymptotically. Demonstrated by numerical examples, the proposed asymptotically optimal production rate successfully captures the time variability of the nonstationary demand. 1. Introduction. One of the fundamental challenges that precludes de- sired dynamic behavior of stochastic systems is that of nonstationarity. For instance, a number of service systems, such as production lines, call centers, hospitals, and online trading, are subject to nonstationarity of customer demand, service times, and staffing levels. In a pharmaceutical industry context, factors such as consumer perceptions (e.g., from advertising, time- since-entry), over-the-counter offerings, on-going market competition may lead to nonstationary demand behavior over time; for instance, Figure 1 in [3] shows monthly prescriptions fluctuation for brand and generic drugs.
    [Show full text]
  • Exact and Approximate Hidden Markov Chain Filters Based on Discrete Observations
    Exact and Approximate Hidden Markov Chain Filters Based on Discrete Observations Nicole B¨auerlea, Igor Gilitschenskib, Uwe D. Hanebeckb aInstitute of Stochastics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany bInstitute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany Abstract We consider a Hidden Markov Model (HMM) where the integrated continuous-time Markov chain can be observed at discrete time points perturbed by a Brownian motion. The aim is to derive a filter for the underlying continuous-time Markov chain. The recursion formula for the discrete-time filter is easy to derive, however involves densities which are very hard to obtain. In this paper we derive exact formulas for the necessary densities in the case the state space of the HMM consists of two elements only. This is done by relating the underlying integrated continuous-time Markov chain to the so-called asymmetric telegraph process and by using recent results on this process. In case the state space consists of more than two elements we present three different ways to approximate the densities for the filter. The first approach is based on the continuous filter problem. The second approach is to derive a PDE for the densities and solve it numerically and the third approach is a crude discrete time approximation of the Markov chain. All three approaches are compared in a numerical study. Keywords: Hidden Markov Model, Discrete Bayesian Filter, Wonham Filter, Asymmetric Telegraph process 1. Introduction We consider a Hidden Markov Model (HMM) where the integrated continuous-time Markov chain can be observed at discrete time points perturbed by a Brownian motion.
    [Show full text]
  • 3 Lecture 3: Queueing Networks and Their Fluid and Diffusion Approximation
    3 Lecture 3: Queueing Networks and their Fluid and Diffusion Approximation • Fluid and diffusion scales • Queueing networks • Fluid and diffusion approximation of Generalized Jackson networks. • Reflected Brownian Motions • Routing in single class queueing networks. • Multi class queueing networks • Stability of policies for MCQN via fluid • Optimization of MCQN — MDP and the fluid model. • Formulation of the fluid problem for a MCQN 3.1 Fluid and diffusion scales As we saw, queues can only be studied under some very detailed assumptions. If we are willing to assume Poisson arrivals and exponetial service we get a very complete description of the queuing process, in which we can study almost every phenomenon of interest by analytic means. However, much of what we see in M/M/1 simply does not describe what goes on in non M/M/1 systems. If we give up the assumption of exponential service time, then it needs to be replaced by a distribution function G. Fortunately, M/G/1 can also be analyzed in moderate detail, and quite a lot can be said about it which does not depend too much on the detailed form of G. In particular, for the M/G/1 system in steady state, we can calculate moments of queue length and waiting times in terms of the same moments plus one of the distribution G, and so we can evaluate performance of M/G/1 without too many details on G, sometimes 2 E(G) and cG suffice. Again, behavior of M/G/1 does not describe what goes on in GI/G/1 systems.
    [Show full text]
  • Linear Stochastic Fluid Networks
    Linear Stochastic Fluid Networks by Offer Kella 1and Ward Whitt 2 April 17, 1997 Revised: February 17, 1998 1Department of Statistics, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel; [email protected] 2Room A117, AT&T Laboratories, 180 Park Avenue, Building 103, Florham Park, NJ 07932-0971, USA; [email protected] Abstract We introduce open stochastic fluid networks that can be regarded as continuous analogs or fluid limits of open networks of infinite-server queues. Random exogenous input may come to any of the queues. At each queue, a cdf-valued stochastic process governs the proportion of the input processed by a given time after arrival. The routing may be deterministic (a specified sequence of successive queue visits) or proportional, i.e., a stochastic transition matrix may govern the proportion of output routed from one queue to another. This stochastic fluid network with deterministic cdf's governing processing at the queues arises as the limit of normalized networks of infinite-server queues with batch arrival processes where the batch sizes grow. In this limit, one can think of each particle having an evolution through the network, depending on its time and place of arrival, but otherwise independent of all other particles. A key property associated with this independence is the linearity: The workload associated with a superposition of inputs, each possibly having its own pattern of flow through the network, is simply the sum of the component workloads. Just like infinite-server queueing models, the tractability makes the linear stochastic fluid network a natural candidate for approximations.
    [Show full text]
  • A General Multitype Branching Process with Age, Memory and Population Dependence Christine Jacob
    A general multitype branching process with age, memory and population dependence Christine Jacob To cite this version: Christine Jacob. A general multitype branching process with age, memory and population dependence. IWAP 2010 V-th. International Workshop on Applied Probability, Jul 2010, Madrid, Spain. hal- 02755517 HAL Id: hal-02755517 https://hal.inrae.fr/hal-02755517 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IWAP 2010 5th International Workshop on Applied Probability BOOK OF ABSTRACTS AND DETAILED PROGRAMME 5-8 July, 2010 Colmenarejo, Madrid, Spain Universidad Carlos III de Madrid, Spain Preface The 5th International Workshop in Applied Probability, IWAP 2010, held in Colmenarejo, Madrid, Spain, has been built on the success of previous meetings. These meetings took place at Sim´onBol´ıvar Univer- sity (Venezuela, 2002), University of Piraeus (Greece, 2004), University of Connecticut (USA, 2006) and University of Technology of Compi`egne(France, 2008). Over 300 researchers in applied probability from all over the world are attending this workshop, making IWAP 2010 one of the largest IWAPs. Currently, IWAP is one of the major international meetings for researchers in Applied Probability.
    [Show full text]