Markov-modulated marked Poisson processes for check-in data [draft] Jiangwei Pan
[email protected] Duke University Vinayak Rao
[email protected] Purdue University Pankaj K. Agarwal
[email protected] Duke University Alan E. Gelfand
[email protected] Duke University Abstract Figure 1. Visualizing We develop continuous-time probabilistic mod- the check-in loca- els to study trajectory data consisting of times tions (in the US) and locations of user ‘check-ins’. We model of 500 random these as realizations of a marked point pro- users from the cess, with intensity and mark-distribution mod- FourSquare dataset ulated by a latent Markov jump process (MJP). (Gao et al., 2012). We extend this Markov-modulated marked Pois- son process to include user-heterogeneity by as- be noisy, due to measurement error or human perturbation. signing users vectors of ‘preferred locations’. In many cases, the trajectory sample points are sparse, with Our model extends latent Dirichlet allocation by large gaps between bursts of observations. Furthermore, dropping the bag-of-words assumption, and op- the rate of observations can vary along the trajectory, and erating in continuous time. We show how an ap- can depend on the the user and the location of the trajectory propriate choice of priors allows efficient poste- rior inference. Our experiments demonstrate the Our focus in this paper is on user check-in data; in partic- usefulness of our approach by comparing with ular, we consider a dataset of FourSquare check-ins (Gao various baselines on a variety of tasks. et al., 2012) (see Figure1). This smartphone-based social media tool allows individuals to publicly register visits to interesting places: a check-in is a record of such a visit, 1.