Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multivariate Poisson Hidden Markov Models for Analysis of Spatial Counts
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Saskatchewan's Research Archive MULTIVARIATE POISSON HIDDEN MARKOV MODELS FOR ANALYSIS OF SPATIAL COUNTS A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Mathematics and Statistics University of Saskatchewan, Saskatoon, SK, Canada by Chandima Piyadharshani Karunanayake @Copyright Chandima Piyadharshani Karunanayake, June 2007. All rights Reserved. PERMISSION TO USE The author has agreed that the libraries of this University may provide the thesis freely available for inspection. Moreover, the author has agreed that permission for copying of the thesis in any manner, entirely or in part, for scholarly purposes may be granted by the Professor or Professors who supervised my thesis work or in their absence, by the Head of the Department of Mathematics and Statistics or the Dean of the College in which the thesis work was done. It is understood that any copying or publication or use of the thesis or parts thereof for finanancial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to the author and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis. Requests for permission to copy or to make other use of any material in the thesis should be addressed to: Head Department of Mathematics and Statistics University of Saskatchewan 106, Wiggins Road Saskatoon, Saskatchewan Canada, S7N 5E6 i ABSTRACT Multivariate count data are found in a variety of fields. -
Regime Heteroskedasticity in Bitcoin: a Comparison of Markov Switching Models
Munich Personal RePEc Archive Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models Chappell, Daniel Birkbeck College, University of London 28 September 2018 Online at https://mpra.ub.uni-muenchen.de/90682/ MPRA Paper No. 90682, posted 24 Dec 2018 06:38 UTC Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models Daniel R. Chappell Department of Economics, Mathematics and Statistics Birkbeck College, University of London [email protected] 28th September 2018 Abstract Markov regime-switching (MRS) models, also known as hidden Markov models (HMM), are used extensively to account for regime heteroskedasticity within the returns of financial assets. However, we believe this paper to be one of the first to apply such methodology to the time series of cryptocurrencies. In light of Moln´arand Thies (2018) demonstrating that the price data of Bitcoin contained seven distinct volatility regimes, we will fit a sample of Bitcoin returns with six m-state MRS estimations, with m ∈ {2,..., 7}. Our aim is to identify the optimal number of states for modelling the regime heteroskedasticity in the price data of Bitcoin. Goodness-of-fit will be judged using three information criteria, namely: Bayesian (BIC); Hannan-Quinn (HQ); and Akaike (AIC). We determined that the restricted 5-state model generated the optimal estima- tion for the sample. In addition, we found evidence of volatility clustering, volatility jumps and asymmetric volatility transitions whilst also inferring the persistence of shocks in the price data of Bitcoin. Keywords Bitcoin; Markov regime-switching; regime heteroskedasticity; volatility transitions. 1 2 List of Tables Table 1. Summary statistics for Bitcoin (23rd April 2014 to 31st May 2018) . -
12 : Conditional Random Fields 1 Hidden Markov Model
10-708: Probabilistic Graphical Models 10-708, Spring 2014 12 : Conditional Random Fields Lecturer: Eric P. Xing Scribes: Qin Gao, Siheng Chen 1 Hidden Markov Model 1.1 General parametric form In hidden Markov model (HMM), we have three sets of parameters, j i transition probability matrix A : p(yt = 1jyt−1 = 1) = ai;j; initialprobabilities : p(y1) ∼ Multinomial(π1; π2; :::; πM ); i emission probabilities : p(xtjyt) ∼ Multinomial(bi;1; bi;2; :::; bi;K ): 1.2 Inference k k The inference can be done with forward algorithm which computes αt ≡ µt−1!t(k) = P (x1; :::; xt−1; xt; yt = 1) recursively by k k X i αt = p(xtjyt = 1) αt−1ai;k; (1) i k k and the backward algorithm which computes βt ≡ µt t+1(k) = P (xt+1; :::; xT jyt = 1) recursively by k X i i βt = ak;ip(xt+1jyt+1 = 1)βt+1: (2) i Another key quantity is the conditional probability of any hidden state given the entire sequence, which can be computed by the dot product of forward message and backward message by, i i i i X i;j γt = p(yt = 1jx1:T ) / αtβt = ξt ; (3) j where we define, i;j i j ξt = p(yt = 1; yt−1 = 1; x1:T ); i j / µt−1!t(yt = 1)µt t+1(yt+1 = 1)p(xt+1jyt+1)p(yt+1jyt); i j i = αtβt+1ai;jp(xt+1jyt+1 = 1): The implementation in Matlab can be vectorized by using, i Bt(i) = p(xtjyt = 1); j i A(i; j) = p(yt+1 = 1jyt = 1): 1 2 12 : Conditional Random Fields The relation of those quantities can be simply written in pseudocode as, T αt = (A αt−1): ∗ Bt; βt = A(βt+1: ∗ Bt+1); T ξt = (αt(βt+1: ∗ Bt+1) ): ∗ A; γt = αt: ∗ βt: 1.3 Learning 1.3.1 Supervised Learning The supervised learning is trivial if only we know the true state path. -
Ergodicity, Decisions, and Partial Information
Ergodicity, Decisions, and Partial Information Ramon van Handel Abstract In the simplest sequential decision problem for an ergodic stochastic pro- cess X, at each time n a decision un is made as a function of past observations X0,...,Xn 1, and a loss l(un,Xn) is incurred. In this setting, it is known that one may choose− (under a mild integrability assumption) a decision strategy whose path- wise time-average loss is asymptotically smaller than that of any other strategy. The corresponding problem in the case of partial information proves to be much more delicate, however: if the process X is not observable, but decisions must be based on the observation of a different process Y, the existence of pathwise optimal strategies is not guaranteed. The aim of this paper is to exhibit connections between pathwise optimal strategies and notions from ergodic theory. The sequential decision problem is developed in the general setting of an ergodic dynamical system (Ω,B,P,T) with partial information Y B. The existence of pathwise optimal strategies grounded in ⊆ two basic properties: the conditional ergodic theory of the dynamical system, and the complexity of the loss function. When the loss function is not too complex, a gen- eral sufficient condition for the existence of pathwise optimal strategies is that the dynamical system is a conditional K-automorphism relative to the past observations n n 0 T Y. If the conditional ergodicity assumption is strengthened, the complexity assumption≥ can be weakened. Several examples demonstrate the interplay between complexity and ergodicity, which does not arise in the case of full information. -
Particle Gibbs for Infinite Hidden Markov Models
Particle Gibbs for Infinite Hidden Markov Models Nilesh Tripuraneni* Shixiang Gu* Hong Ge University of Cambridge University of Cambridge University of Cambridge [email protected] MPI for Intelligent Systems [email protected] [email protected] Zoubin Ghahramani University of Cambridge [email protected] Abstract Infinite Hidden Markov Models (iHMM’s) are an attractive, nonparametric gener- alization of the classical Hidden Markov Model which can automatically infer the number of hidden states in the system. However, due to the infinite-dimensional nature of the transition dynamics, performing inference in the iHMM is difficult. In this paper, we present an infinite-state Particle Gibbs (PG) algorithm to re- sample state trajectories for the iHMM. The proposed algorithm uses an efficient proposal optimized for iHMMs and leverages ancestor sampling to improve the mixing of the standard PG algorithm. Our algorithm demonstrates significant con- vergence improvements on synthetic and real world data sets. 1 Introduction Hidden Markov Models (HMM’s) are among the most widely adopted latent-variable models used to model time-series datasets in the statistics and machine learning communities. They have also been successfully applied in a variety of domains including genomics, language, and finance where sequential data naturally arises [Rabiner, 1989; Bishop, 2006]. One possible disadvantage of the finite-state space HMM framework is that one must a-priori spec- ify the number of latent states K. Standard model selection techniques can be applied to the fi- nite state-space HMM but bear a high computational overhead since they require the repetitive trainingexploration of many HMM’s of different sizes. -
Hidden Markov Models (Particle Filtering)
CSE 473: Artificial Intelligence Spring 2014 Hidden Markov Models & Particle Filtering Hanna Hajishirzi Many slides adapted from Dan Weld, Pieter Abbeel, Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline § Probabilistic sequence models (and inference) § Probability and Uncertainty – Preview § Markov Chains § Hidden Markov Models § Exact Inference § Particle Filters § Applications Example § A robot move in a discrete grid § May fail to move in the desired direction with some probability § Observation from noisy sensor at each time § Is a function of robot position § Goal: Find the robot position (probability that a robot is at a specific position) § Cannot always compute this probability exactly è Approximation methods Here: Approximate a distribution by sampling 3 Hidden Markov Model § State Space Model § Hidden states: Modeled as a Markov Process P(x0), P(xk | xk-1) § Observations: ek P(ek | xk) Position of the robot P(x1|x0) x x x 0 1 … n Observed position from P(e |x ) 0 0 the sensor y0 y1 yn 4 Exact Solution: Forward Algorithm § Filtering is the inference process of finding a distribution over XT given e1 through eT : P( XT | e1:t ) § We first compute P( X1 | e1 ): § For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) § Elapse time: compute P( Xt | e1:t-1 ) § Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t ) Approximate Inference: § Sometimes |X| is too big for exact inference § |X| may be too big to even store B(X) § E.g. when X is continuous § |X|2 may be too big to do updates § Solution: approximate inference by sampling § How robot localization works in practice 6 What is Sampling? § Goal: Approximate the original distribution: § Approximate with Gaussian distribution § Draw samples from a distribution close enough to the original distribution § Here: A general framework for a sampling method 7 Approximate Solution: Perfect Sampling Robot path till time n 1 Time 1 Time n Assume we can sample Particle 1 x0:n from the original distribution . -
Modelling Multi-Object Activity by Gaussian Processes 1
LOY et al.: MODELLING MULTI-OBJECT ACTIVITY BY GAUSSIAN PROCESSES 1 Modelling Multi-object Activity by Gaussian Processes Chen Change Loy School of EECS [email protected] Queen Mary University of London Tao Xiang E1 4NS London, UK [email protected] Shaogang Gong [email protected] Abstract We present a new approach for activity modelling and anomaly detection based on non-parametric Gaussian Process (GP) models. Specifically, GP regression models are formulated to learn non-linear relationships between multi-object activity patterns ob- served from semantically decomposed regions in complex scenes. Predictive distribu- tions are inferred from the regression models to compare with the actual observations for real-time anomaly detection. The use of a flexible, non-parametric model alleviates the difficult problem of selecting appropriate model complexity encountered in parametric models such as Dynamic Bayesian Networks (DBNs). Crucially, our GP models need fewer parameters; they are thus less likely to overfit given sparse data. In addition, our approach is robust to the inevitable noise in activity representation as noise is modelled explicitly in the GP models. Experimental results on a public traffic scene show that our models outperform DBNs in terms of anomaly sensitivity, noise robustness, and flexibil- ity in modelling complex activity. 1 Introduction Activity modelling and automatic anomaly detection in video have received increasing at- tention due to the recent large-scale deployments of surveillance cameras. These tasks are non-trivial because complex activity patterns in a busy public space involve multiple objects interacting with each other over space and time, whilst anomalies are often rare, ambigu- ous and can be easily confused with noise caused by low image quality, unstable lighting condition and occlusion. -
Part 2: Basics of Dirichlet Processes 2.1 Motivation
CS547Q Statistical Modeling with Stochastic Processes Winter 2011 Part 2: Basics of Dirichlet processes Lecturer: Alexandre Bouchard-Cˆot´e Scribe(s): Liangliang Wang Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. Last update: May 17, 2011 2.1 Motivation To motivate the Dirichlet process, let us consider a simple density estimation problem: modeling the height of UBC students. We are going to take a Bayesian approach to this problem, considering the parameters as random variables. In one of the most basic models, one would define a mean and variance random parameter θ = (µ, σ2), and a height random variable normally distributed conditionally on θ, with parameters θ.1 Using a single normal distribution is clearly a defective approach, since for example the male/female sub- populations create a skewness in the distribution, which cannot be capture by normal distributions: The solution suggested by this figure is to use a mixture of two normal distributions, with one set of parameters θc for each sub-population or cluster c ∈ {1, 2}. Pictorially, the model can be described as follows: 1- Generate a male/female relative frequence " " ~ Beta(male prior pseudo counts, female P.C) Mean height 2- Generate the sex of each student for each i for men Mult( ) !(1) x1 x2 x3 xi | " ~ " 3- Generate the mean height of each cluster c !(2) Mean height !(c) ~ N(prior height, how confident prior) for women y1 y2 y3 4- Generate student heights for each i yi | xi, !(1), !(2) ~ N(!(xi) ,variance) 1Yes, this has many problems (heights cannot be negative, normal assumption broken, etc). -
Lectures on Bayesian Nonparametrics: Modeling, Algorithms and Some Theory VIASM Summer School in Hanoi, August 7–14, 2015
Lectures on Bayesian nonparametrics: modeling, algorithms and some theory VIASM summer school in Hanoi, August 7–14, 2015 XuanLong Nguyen University of Michigan Abstract This is an elementary introduction to fundamental concepts of Bayesian nonparametrics, with an emphasis on the modeling and inference using Dirichlet process mixtures and their extensions. I draw partially from the materials of a graduate course jointly taught by Professor Jayaram Sethuraman and myself in Fall 2014 at the University of Michigan. Bayesian nonparametrics is a field which aims to create inference algorithms and statistical models, whose complexity may grow as data size increases. It is an area where probabilists, theoretical and applied statisticians, and machine learning researchers all make meaningful contacts and contributions. With the following choice of materials I hope to take the audience with modest statistical background to a vantage point from where one may begin to see a rich and sweeping panorama of a beautiful area of modern statistics. 1 Statistical inference The main goal of statistics and machine learning is to make inference about some unknown quantity based on observed data. For this purpose, one obtains data X with distribution depending on the unknown quantity, to be denoted by parameter θ. In classical statistics, this distribution is completely specified except for θ. Based on X, one makes statements about θ in some optimal way. This is the basic idea of statistical inference. Machine learning originally approached the inference problem through the lense of the computer science field of artificial intelligence. It was eventually realized that machine learning was built on the same theoretical foundation of mathematical statistics, in addition to carrying a strong emphasis on the development of algorithms. -
Markov-Modulated Marked Poisson Processes for Check-In Data [Draft]
Markov-modulated marked Poisson processes for check-in data [draft] Jiangwei Pan [email protected] Duke University Vinayak Rao [email protected] Purdue University Pankaj K. Agarwal [email protected] Duke University Alan E. Gelfand [email protected] Duke University Abstract Figure 1. Visualizing We develop continuous-time probabilistic mod- the check-in loca- els to study trajectory data consisting of times tions (in the US) and locations of user ‘check-ins’. We model of 500 random these as realizations of a marked point pro- users from the cess, with intensity and mark-distribution mod- FourSquare dataset ulated by a latent Markov jump process (MJP). (Gao et al., 2012). We extend this Markov-modulated marked Pois- son process to include user-heterogeneity by as- be noisy, due to measurement error or human perturbation. signing users vectors of ‘preferred locations’. In many cases, the trajectory sample points are sparse, with Our model extends latent Dirichlet allocation by large gaps between bursts of observations. Furthermore, dropping the bag-of-words assumption, and op- the rate of observations can vary along the trajectory, and erating in continuous time. We show how an ap- can depend on the the user and the location of the trajectory propriate choice of priors allows efficient poste- rior inference. Our experiments demonstrate the Our focus in this paper is on user check-in data; in partic- usefulness of our approach by comparing with ular, we consider a dataset of FourSquare check-ins (Gao various baselines on a variety of tasks. et al., 2012) (see Figure1). This smartphone-based social media tool allows individuals to publicly register visits to interesting places: a check-in is a record of such a visit, 1. -
Forecasting Volatility of Stock Indices with HMM-SV Models
Forecasting Volatility of Stock Indices with HMM-SV Models I· , •• Nkemnole E. B. ,Abass 0.- *Department of Mathematics, University of Lagos, Nigeria. enkemnole(cv,uni lag.edu.ng I, **Department of Computer Sciences, University of Lagos, Nigeria. ,'--., '1 d ~ o Ia baSS(Q!Unl ag.e u.ng- Abstract The use of volatility models to generate volatility forecasts has given vent to a lot of literature. However, it is known that volatility persistence, as indicated by the estimated parameter rp , in Stochastic Volatility (SV) model is typically high. Since future values in SV models are based on the estimation of the parameters, this may lead to poor volatility forecasts. Furthermore. this high persistence, as contended by some writers, is due 10 the structure changes (e.g. shift of volatility levels) in the volatility processes, which SV model cannot capture. This work deals with the problem by bringing in the SV model based on Hidden Markov Models (HMMs), called HMM-SV model. Via hidden states, HMMs allow for periods 'with different volatility levels characterized by the hidden states. Within each state, SV model is applied to model conditional volatility. Empirical analysis shows that our model, not only takes care of the structure changes (hence giving better volatility forecasts), but also helps to establish an proficient forecasting structure for volatility models. Keywords: Forecasting, Hidden Markov model, Stochastic volatility, stock exchange 1.0 Introduction A great deal of attention has been paid to modeling and forecasting the volatility of stock exchange index via stochastic volatility (SV) model in finance, as well as empirical literature. -
Package 'Hiddenmarkov'
Package ‘HiddenMarkov’ April 27, 2021 Title Hidden Markov Models Version 1.8-13 Date 2021-04-27 Author David Harte Maintainer David Harte <[email protected]> Description Contains functions for the analysis of Discrete Time Hidden Markov Mod- els, Markov Modulated GLMs and the Markov Modulated Poisson Process. It includes func- tions for simulation, parameter estimation, and the Viterbi algorithm. See the topic ``Hidden- Markov'' for an introduction to the package, and ``Change Log'' for a list of re- cent changes. The algorithms are based of those of Walter Zucchini. Suggests parallel License GPL (>= 2) URL https://www.statsresearch.co.nz/dsh/sslib/ NeedsCompilation yes Repository CRAN Date/Publication 2021-04-27 13:30:06 UTC R topics documented: HiddenMarkov-package . .2 BaumWelch . .4 bwcontrol . .6 Change Log . .7 compdelta . 10 Demonstration . 11 dthmm . 11 Estep . 17 forwardback . 19 logLik . 21 mchain . 22 mmglm . 23 mmglm-2nd-level-functions . 30 1 2 HiddenMarkov-package mmpp............................................ 31 mmpp-2nd-level-functions . 32 Mstep . 33 neglogLik . 37 probhmm . 41 residuals . 42 simulate . 44 summary . 46 Transform-Parameters . 47 Viterbi . 49 Index 52 HiddenMarkov-package Overview of Package HiddenMarkov Description In this topic we give an overview of the package. Classes of Hidden Markov Models Analysed The classes of models currently fitted by the package are listed below. Each are defined within an object that contains the data, current parameter values, and other model characteristics. Discrete Time Hidden Markov Model: is described under the topic dthmm. This model can be simulated or fitted to data by defining the required model structure within an object of class "dthmm".