Exploring the Application of Ecological Theory to the Human Gut Microbiota Using Complex Defined Microbial Communities As Models

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Application of Ecological Theory to the Human Gut Microbiota Using Complex Defined Microbial Communities As Models Exploring the application of ecological theory to the human gut microbiota using complex defined microbial communities as models by Kaitlyn Oliphant A Thesis presented to the The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Kaitlyn Oliphant, December, 2018 ABSTRACT EXPLORING THE APPLICATION OF ECOLOGICAL THEORY TO THE HUMAN GUT MICROBIOTA USING COMPLEX DEFINED MICROBIAL COMMUNITIES AS MODELS Kaitlyn Oliphant Advisor: University of Guelph, 2018 Dr. Emma Allen-Vercoe The ecosystem of microorganisms that inhabit the human gastrointestinal tract, termed the gut microbiota, critically maintains host homeostasis. Alterations in species structure and metabolic behaviour of the gut microbiota are thus unsurprisingly exhibited in patients of gastrointestinal disorders when compared to the healthy population. Therefore, strategies that aim to remediate such gut microbiota through microbial supplementation have been attempted, with variable clinical success. Clearly, more knowledge of how to assemble a health promoting gut microbiota is required, which could be drawn upon from the framework of ecological theory. Current theories suggest that the forces driving microbial community assembly include historical contingency, dispersal limitation, stochasticity and environmental selection. Environmental selection additionally encompasses habitat filtering, i.e., host-microbe interactions, and species assortment, i.e., microbe-microbe interactions. I propose to explore the application of this theory to the human gut microbiota, and I hypothesize that microbial ecological theory can be replicated utilizing complex defined microbial communities. To address my hypothesis, I first built upon existing methods to assess microbial community composition and behaviour, then applied such tools to human fecal-derived defined microbial communities cultured in bioreactors, for example, by using marker gene sequencing and metabonomics. I determined that stochasticity is an important influencer of species structure within the gut microbiota, whereas dietary interventions greatly impacted the metabolic behaviour. Additionally, habitat filtering predominated over species assortment. This assertion was based on the lack of competitive exclusion observed when beneficial microbes were added to an ulcerative colitis-associated microbial community with and without prior antibiotic treatment. The few unique functionalities that were provided by these microbes upon integration are related to starch and mucin degradation. Also, there was not a discernible overall difference between a microbial community and its non-coevolved species matched counterpart, in which each species was derived from a separate donor. However, the existence of species assortment was not precluded, since certain species that relied upon cross-feeding for polysaccharide utilization failed to integrate into the non-coevolved microbial community. Together, this work would suggest that successful modulation of the gut microbiota would involve providing microbes as coevolved guilds that can colonize niches ubiquitous amongst the human population. Acknowledgements The completion of the work presented in this thesis would not be possible without the mentorship, collaboration, consultation, instruction, funding and support I had received from many individuals and institutions throughout my doctorate studies. Particularly, I would like to acknowledge the following: Ph.D. Supervisor: Dr. Emma Allen-Vercoe Advisory Committee: Dr. Lucy Mutharia, Dr. Kari Dunfield, Dr. France-Isabelle Auzanneau Dr. Emma Allen-Vercoe Laboratory Personnel: Dr. Julie McDonald, Mr. Ian Brown, Dr. Kathleen Schroeter, Ms. Erin Bolte, Dr. Mike Toh, Dr. Kyla Cochrane, Dr. Christian Carlucci, Dr. Rafael Peixoto, Dr. Valeria Parreira, Mr. Chris Ambrose, Ms. Michelle Daigneault, Ms. Sandi Yen, Ms. Avery Robinson, Ms. Caroline Ganobis, Ms. Simone Renwick, Mr. Jacob Wilde, Ms. Mbita Nakazwe, Mr. AJ Stirling, Mr. Joseph Ciufo, Mr. Keith Sherriff, Ms. Emily Mercer, Ms. Isra Hussein Collaborators: Dr. Martin von Bergen, Dr. Elena Verdu, Dr. Oliver Kohlbacher Dr. Martin von Bergen Laboratory Personnel: Dr. Dirk Wissenbach, Dr. Robert Starke, Dr. Nico Jehmlich, Dr. Ulrike Rolle-Kampczyk, Mr. Sven Haange, Ms. Stephanie Schäpe, Dr. Henrike Höke, Dr. Sven Baumann, Ms. Dominique Türkowsky, Mr. Hannes Petruschke, Mr. Geoffroy Saint-Genis, Mr. Patrick Lohmann, Dr. Matthias Bernt, Ms. Kathleen Eismann, Dr. Jean Froment, Ms. Oliva Pleβow Consultants: Dr. Greg Gloor and Dr. Jean Macklaim, Dr. Marc Aucoin, Dr. Cezar Khursigara Dr. Cezar Khursigara Laboratory Personnel: Ms. Sherise Charles, Ms. Mara Goodyear, Dr. Alison Berezuk, Mr. Mitch Demelo, Ms. Nicole Garnier, Ms. Erin Anderson, Ms. Madison Wright Teaching Faculty: Dr. Wendy Keenleyside, Dr. Roselynn Stevenson, Dr. Lucy Mutharia (again), Ms. Debra Flett Advanced Analysis Center Staff: Dr. Sameer Al-Abdul-Wahid, Mr. Jeff Gross Funding Agencies: Canadian Institutes of Health Research, Ontario Ministry of Training, College and Universities, National Science and Research Council of Canada, University of Guelph Thank you. iii Table of Contents ABSTRACT .................................................................................................................................................. ii Acknowledgements ...................................................................................................................................... iii List of Tables .............................................................................................................................................. vii List of Figures ............................................................................................................................................ viii List of Abbreviations ................................................................................................................................... ix Chapter 1 - Introduction ................................................................................................................................ 1 1.1 The Human Gut Microbiota .......................................................................................................... 1 1.1.1 Strategies for modification of the human gut microbiota to enhance health......................... 1 1.1.2 Composition of the human gut microbiota ............................................................................ 3 1.1.3 Functions of the human gut microbiota .............................................................................. 14 1.1.4 Modulators of the human gut microbiota ............................................................................ 22 1.2 Ecological Theory and the Human Gut Microbiota .................................................................... 24 1.2.1 Assembly ............................................................................................................................. 25 1.2.2 Diversity and evolution of the human gut microbiota......................................................... 30 1.3 Study of the Human Gut Microbiota ........................................................................................... 34 1.3.1 Model systems .................................................................................................................... 34 1.3.2 Gut microbial ecosystem analysis methods ........................................................................ 37 1.4 Overview of thesis work and overall hypothesis ........................................................................ 41 Chapter 2 – 1H-NMR spectroscopy vs. LC-MS/MS ................................................................................... 43 2.1 Article Information ..................................................................................................................... 44 2.2 Abstract ....................................................................................................................................... 45 2.3 Introduction ................................................................................................................................. 45 2.4 Relevance for human health, potential for mechanistic insights, and feasibility define the strengths of model systems ..................................................................................................................... 47 2.5 Metabolic interaction as a key feature of microbiome:host interaction ...................................... 49 2.6 NMR and MS .............................................................................................................................. 50 2.7 Metabolomics detects many spectral features and 50 metabolites detected by NMR result in the same quality of group separation ............................................................................................................ 51 2.8 Targeted validation ..................................................................................................................... 58 2.9 Perspectives for metabolic flux and for linking community activity to the composition of the consortium............................................................................................................................................... 61 2.10 Conclusion .................................................................................................................................
Recommended publications
  • Amino Acid Catabolism in Staphylococcus Aureus
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-16-2016 Amino Acid Catabolism in Staphylococcus aureus Cortney Halsey University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Bacteriology Commons Recommended Citation Halsey, Cortney, "Amino Acid Catabolism in Staphylococcus aureus" (2016). Theses & Dissertations. 160. https://digitalcommons.unmc.edu/etd/160 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. Amino Acid Catabolism in Staphylococcus aureus By Cortney R. Halsey A DISSERTATION Presented to the Faculty of The Graduate College in the University of Nebraska In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Pathology and Microbiology Under the Supervision of Dr. Paul D. Fey University of Nebraska Medical Center Omaha, Nebraska October 2016 Supervisory Committee: Kenneth Bayles, Ph.D. Steven Carson, Ph.D. Paul Dunman, Ph.D. Rakesh Singh, Ph.D. ii Acknowledgements First and foremost, I would like to thank my mentor, Dr. Paul Fey, whose patience and support over the past six years has been critical to my success as a graduate student. Paul has given me opportunities to grow as a scientist and person, for which I will be forever thankful. I would also like to thank Dr. Ken Bayles, Dr. Steven Carson, Dr. Paul Dunman, and Dr. Rakesh Singh for serving on my supervisory committee.
    [Show full text]
  • Clostridium Pacaense: a New Species Within the Genus Clostridium
    NEW SPECIES Clostridium pacaense: a new species within the genus Clostridium M. Hosny1, R. Abou Abdallah2, J. Bou Khalil1, A. Fontanini1, E. Baptiste1, N. Armstrong1 and B. La Scola1 1) Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection and 2) Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Vecteurs—Infections Tropicales et Méditerrannéennes (VITROME), Service de Santé des Armées, IHU-Méditerranée Infection, Marseille, France Abstract Using the strategy of taxonogenomics, we described Clostridium pacaense sp. nov. strain Marseille-P3100T, a Gram-variable, nonmotile, spore- forming anaerobic bacillus. This strain was isolated from a 3.3-month-old Senegalese girl with clinical aspects of marasmus. The closest species based on 16S ribosomal RNA was Clostridium aldenense, with a similarity of 98.4%. The genome length was 2 672 129 bp, with a 50% GC content; 2360 proteins were predicted. Finally, predominant fatty acids were hexadecanoic acid, tetradecanoic acid and 9-hexadecenoic acid. © 2019 The Authors. Published by Elsevier Ltd. Keywords: Clostridium pacaense, culturomics, taxonogenomics Original Submission: 16 October 2018; Revised Submission: 21 December 2018; Accepted: 21 December 2018 Article published online: 31 December 2018 mammalian gastrointestinal tract microbiomes [7]. Culturomics Corresponding author: B. La Scola, Pôle des Maladies Infectieuses, combined with taxonogenomics is an important tool for the Aix-Marseille Université, IRD, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection isolation and characterization of new bacterial species.
    [Show full text]
  • Bacterial Selenoproteins: a Role in Pathogenesis and Targets for Antimicrobial Development
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development Sarah Rosario University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Rosario, Sarah, "Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development" (2009). Electronic Theses and Dissertations, 2004-2019. 3822. https://stars.library.ucf.edu/etd/3822 BACTERIAL SELENOPROTEINS: A ROLE IN PATHOGENESIS AND TARGETS FOR ANTIMICROBIAL DEVELOPMENT. by SARAH E. ROSARIO B.S. Florida State University, 2000 M.P.H. University of South Florida, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: William T. Self © 2009 Sarah E. Rosario ii ABSTRACT Selenoproteins are unique proteins in which selenocysteine is inserted into the polypeptide chain by highly specialized translational machinery. They exist within all three kingdoms of life. The functions of these proteins in biology are still being defined. In particular, the importance of selenoproteins in pathogenic microorganisms has received little attention. We first established that a nosocomial pathogen, Clostridium difficile, utilizes a selenoenzyme dependent pathway for energy metabolism.
    [Show full text]
  • PDF (Download : 298)
    J Neurogastroenterol Motil, Vol. 27 No. 3 July, 2021 pISSN: 2093-0879 eISSN: 2093-0887 https://doi.org/10.5056/jnm20208 JNM Journal of Neurogastroenterology and Motility Review Roles of Sex Hormones and Gender in the Gut Microbiota Kichul Yoon1 and Nayoung Kim2,3* 1Department of Internal Medicine, Wonkwang University Sanbon Medical Center, Gunpo, Gyeonggi-do, Korea; 2Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea; and 3Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea The distribution of gut microbiota varies according to age (childhood, puberty, pregnancy, menopause, and old age) and sex. Gut microbiota are known to contribute to gastrointestinal (GI) diseases such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer; however, the exact etiology remains elusive. Recently, sex and gender differences in GI diseases and their relation to gut microbiota has been suggested. Furthermore, the metabolism of estrogen and androgen was reported to be related to the gut microbiome. As gut microbiome is involved in the excretion and circulation process of sex hormones, the concept of “microgenderome” indicating the role of sex hormone on the gut microbiota has been suggested. However, further research is needed for this concept to be universally accepted. In this review, we summarize sex- and gender-differences in gut microbiota and the interplay of microbiota and GI diseases, focusing on sex hormones. We also describe the metabolic role of the microbiota in this regard. Finally, current subjects, such as medication including probiotics, are briefly discussed. (J Neurogastroenterol Motil 2021;27:314-325) Key Words Gastrointestinal diseases; Gender; Gut; Microbiota; Sex hormones ferent between genders, that is, higher in women than in men.
    [Show full text]
  • Sex Differences in Colonization of Gut Microbiota from a Man with Short
    www.nature.com/scientificreports OPEN Sex differences in colonization of gut microbiota from a man with short-term vegetarian and inulin- Received: 28 June 2016 Accepted: 11 October 2016 supplemented diet in germ-free Published: 31 October 2016 mice Jing-jing Wang1, Jing Wang2, Xiao-yan Pang2, Li-ping Zhao2, Ling Tian1,* & Xing-peng Wang1,* Gnotobiotic mouse model is generally used to evaluate the efficacy of gut microbiota. Sex differences of gut microbiota are acknowledged, yet the effect of recipient’s gender on the bacterial colonization remains unclear. Here we inoculated male and female germ-free C57BL/6J mice with fecal bacteria from a man with short-term vegetarian and inulin-supplemented diet. We sequenced bacterial 16S rRNA genes V3-V4 region from donor’s feces and recipient’s colonic content. Shannon diversity index showed female recipients have higher bacteria diversity than males. Weighted UniFrac principal coordinates analysis revealed the overall structures of male recipient’s gut microbiota were significantly separated from those of females, and closer to the donor. Redundancy analysis identified 46 operational taxonomic units (OTUs) differed between the sexes. The relative abundance of 13 OTUs were higher in males, such as Parabacteroides distasonis and Blautia faecis, while 33 OTUs were overrepresented in females, including Clostridium groups and Escherichia fergusonii/Shigella sonnei. Moreover, the interactions of these differential OTUs were sexually distinct. These findings demonstrated that the intestine of male and female mice preferred to accommodate microbiota differently. Therefore, it is necessary to designate the gender of gnotobiotic mice for complete evaluation of modulatory effects of gut microbiota from human feces upon diseases.
    [Show full text]
  • Paweł Mateusz Mordaka Reductions Using Clostridium Sporogenes
    Department of Chemical and Environmental Engineering Paweł Mateusz Mordaka Reductions using Clostridium sporogenes Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy December 2013 ABSTRACT Pawel Mateusz Mordaka Reductions using Clostridium sporogenes Clostridium sporogenes was previously shown to be an extraordinary source for unusual reductases. It can catalyze reduction of wide a range of substrates such as nitroalkenes, enoates and nitro compounds, and can be used to generate chiral products. In preliminary studies, the ClosTron gene knock-out system for Clostridia was used to inactivate the fldZ gene assumed to encode the enzyme responsible for reduction of cinnamic acid in the reductive branch of L-phenylalanine fermentation via the Stickland reaction. Biotransformations with the fldZ mutant showed that C. sporogenes possesses multiple enzymatic activities, reducing enoates, β,β- and α,β-disubstituted nitroalkenes with different yields and enantioselectivities. The fldZ reductase was found to be responsible for reduction of cinnamic acid, (E)-1-nitro-2-phenylpropene, (E)-2-nitro-1- phenylpropene and β-nitrostyrene. However, the mutant could still reduce (E)-2-nitro-1- phenylpropene, β-nitrostyrene and cinnamic acid confirming the presence of other C=C double bond reductases in C. sporogenes. The analysis of the C. sporogenes genome sequence allowed identification of two hypothetical genes encoding proteins with homology to flavin-containing C=C double bond reductases, fldZ 2-enoate reductase and OYE-like reductase, which were subsequently cloned, overexpressed in E. coli under anaerobic conditions and tested for reduction of unsaturated compounds. The activity tests showed that fldZ possesses a narrow substrate range and can reduce only aromatic enoates such as cinnamic acid or p-coumaric acid.
    [Show full text]
  • W O 2017/079450 Al 11 May 2017 (11.05.2017) W IPOI PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/079450 Al 11 May 2017 (11.05.2017) W IPOI PCT (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K35/741 (2015.01) A61K 35/744 (2015.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 35/745 (2015.01) A61K35/74 (2015.01) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, C12N1/20 (2006.01) A61K 9/48 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 45/06 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US2016/060353 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 3 November 2016 (03.11.2016) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated,for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/250,277 3 November 2015 (03.11.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicants: THE BRIGHAM AND WOMEN'S HOS- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, PITAL [US/US]; 75 Francis Street, Boston, Massachusetts SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 02115 (US).
    [Show full text]
  • PHYSIOLOGICAL and ECOLOGICAL INVESTIGATIONS of CLOSTRIDIUM DIFFICILE by Catherine D. R
    PHYSIOLOGICAL AND ECOLOGICAL INVESTIGATIONS OF CLOSTRIDIUM DIFFICILE By Catherine D. Robinson A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Microbiology and Molecular Genetics- Doctor of Philosophy 2014 ABSTRACT PHYSIOLOGICAL AND ECOLOGICAL INVESTIGATIONS OF CLOSTRIDIUM DIFFICILE By Catherine D. Robinson Disease caused by Clostridium difficile is currently the most prevalent nosocomial infection and leading cause of antibiotic-associated diarrhea. It is clear that the intestinal microbiota plays a role in preventing C. difficile infection in the absence of antibiotics; however, the mechanisms involved in this protective function are poorly understood. Since antibiotic administration is an inducing factor of C. difficile infection, treatment employing antibiotics often results in recurrent disease, yet it is still the primary line of treatment. Therefore, a central goal of research in this area is to better define the role of the intestinal microbiota in suppression of disease, and ultimately develop alternative ways to prevent and treat C. difficile infection. In this thesis, I present a novel in vitro model that was developed to study complex fecal communities. This in vitro model is a continuous-culture system that utilizes arrays of small-volume reactors; it is unique in its simple set-up and high replication. We adapted this model to operate as a C. difficile infection model, where in vivo C. difficile invasion dynamics are replicated in that the fecal communities established in the reactors are resistant to C. difficile growth unless disrupted by antibiotic administration. We then go on to use this model to show that newly emerged, epidemic strains of C.
    [Show full text]
  • Bacterial Involvements in Ulcerative Colitis: Molecular and Microbiological Studies
    BACTERIAL INVOLVEMENTS IN ULCERATIVE COLITIS: MOLECULAR AND MICROBIOLOGICAL STUDIES Samia Alkhalil A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth Institute of Biomedical and biomolecular Sciences School of Pharmacy and Biomedical Sciences October 2017 AUTHORS’ DECLARATION I declare that whilst registered as a candidate for the degree of Doctor of Philosophy at University of Portsmouth, I have not been registered as a candidate for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Samia Alkhalil I ABSTRACT Inflammatory bowel disease (IBD) is a series of disorders characterised by chronic intestinal inflammation, with the principal examples being Crohn’s Disease (CD) and ulcerative colitis (UC). A paradigm of these disorders is that the composition of the colon microbiota changes, with increases in bacterial numbers and a reduction in diversity, particularly within the Firmicutes. Sulfate reducing bacteria (SRB) are believed to be involved in the etiology of these disorders, because they produce hydrogen sulfide which may be a causative agent of epithelial inflammation, although little supportive evidence exists for this possibility. The purpose of this study was (1) to detect and compare the relative levels of gut bacterial populations among patients suffering from ulcerative colitis and healthy individuals using PCR-DGGE, sequence analysis and biochip technology; (2) develop a rapid detection method for SRBs and (3) determine the susceptibility of Desulfovibrio indonesiensis in biofilms to Manuka honey with and without antibiotic treatment.
    [Show full text]
  • Microbiota and Drug Response in Inflammatory Bowel Disease
    pathogens Review Microbiota and Drug Response in Inflammatory Bowel Disease Martina Franzin 1,† , Katja Stefanˇciˇc 2,† , Marianna Lucafò 3, Giuliana Decorti 1,3,* and Gabriele Stocco 2 1 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] 2 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (K.S.); [email protected] (G.S.) 3 Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-3785362 † The authors contributed equally to the manuscript. Abstract: A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in Citation: Franzin, M.; Stefanˇciˇc,K.; the treatment of IBD can be either beneficial or disadvantageous.
    [Show full text]
  • Discovery and Characterization of a Prominent Gut Microbial Glycyl Radical Enzyme Responsible for 4-Hydroxyproline Metabolism
    Discovery and Characterization of a Prominent Gut Microbial Glycyl Radical Enzyme Responsible for 4-Hydroxyproline Metabolism The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Huang, Yue. 2019. Discovery and Characterization of a Prominent Gut Microbial Glycyl Radical Enzyme Responsible for 4- Hydroxyproline Metabolism. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41121269 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Discovery and characterization of a prominent gut microbial glycyl radical enzyme responsible for 4-hydroxyproline metabolism A dissertation presented by Yue Huang to the Committee on Higher Degrees in Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemical Biology Harvard University Cambridge, Massachusetts October 2018 © 2018 – Yue Huang All rights reserved Dissertation advisor: Professor Emily P. Balskus Yue Huang Discovery and characterization of a prominent gut microbial glycyl radical enzyme responsible for 4-hydroxyproline metabolism Abstract The human gut is one of the most densely populated microbial habitat on Earth and the gut microbiota is extremely important in maintaining health and disease states. Advances in sequencing technologies have enabled us to gain a better understanding of microbiome compositions, but the majority of microbial genes are not functionally annotated. Therefore, the molecular basis by which gut microbes influence human health remains largely unknown.
    [Show full text]
  • ( 12 ) United States Patent
    US010265349B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 265 ,349 B2 Chatila et al. (45 ) Date of Patent: Apr. 23 , 2019 ( 54 ) THERAPEUTIC MICROBIOTA FOR THE (56 ) References Cited TREATMENT AND /OR PREVENTION OF FOOD ALLERGY U . S . PATENT DOCUMENTS 5 , 225 , 202 A 7 / 1993 Hodges ( 71) Applicants : THE BRIGHAM AND WOMEN ' S 5 , 733 ,575 A 3 / 1998 Mehra HOSPITAL , INC . , Boston , MA (US ) ; 5 , 951 ,977 A 9 / 1999 Nisbet CHILDREN ' S MEDICAL CENTER 6 , 139 , 875 A 10 /2000 Adams 6 ,420 ,473 B1 7 / 2002 Chittamuru CORPORATION , Boston , MA (US ) 6 ,455 ,052 B1 9 / 2002 Marcussen 6 , 569, 457 B2 5 /2003 Ullah (72 ) Inventors : Talal A . Chatila , Belmont, MA (US ) ; 8 , 460, 648 B2 6 / 2013 Borody 8 ,486 ,668 B2 7 / 2013 Ritter Lynn Bry , Jamaica Plain , MA (US ); 9 ,011 , 834 B1 4 / 2015 McKenzie et al . Georg Gerber , Boston , MA (US ) ; Azza 9 ,408 , 872 B2 8 / 2016 Borody Abdel -Gadir , Boston , MA (US ) ; Rima 9 , 433 ,652 B2 9 / 2016 Honda et al . Rachid , Belmont, MA (US ) 9 ,642 , 882 B2 5 / 2017 Honda et al. 9 ,662 , 381 B2 5 / 2017 Honda et al . 10 ,052 , 353 B2 8 / 2018 Honda et al . (73 ) Assignees : THE BRIGHAM AND WOMEN ' S 2008 /0131556 A16 / 2008 De Simone et al . HOSPITAL , INC. , Boston , MA (US ) ; 2014 / 0341921 Al 11/ 2014 Honda et al. CHILDREN ' S MEDICAL CENTER 2015 / 0004130 A11 / 2015 Faber 2016 / 0158294 AL 6 /2016 Von Maltzahn et al . CORPORATION , Boston , MA (US ) 2016 / 0317653 AL 11/ 2016 Cook et al.
    [Show full text]