Dactylosporangium and Some Other Filamentous Actinomycetes

Total Page:16

File Type:pdf, Size:1020Kb

Dactylosporangium and Some Other Filamentous Actinomycetes Biosystematics of the Genus Dactylosporangium and Some Other Filamentous Actinomycetes Byung-Yong Kim (BSc., MSc. Agricultural Chemistry, Korea University, Korea) Thesis submitted in accordance with the requirements of the Newcastle University for the Degree of Doctor of Philosophy November 2010 School of Biology, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom Dedicated to my mother who devoted her life to our family, and to my brother who led me into science "Whenever I found out anything remarkable, I have thought it my duty to put down my discovery on paper, so that all ingenious people might be informed thereof." - Antonie van Leeuwenhoek, Letter of June 12, 1716 “Freedom of thought is best promoted by the gradual illumination of men’s minds, which follows from the advance of science.”- Charles Darwin, Letter of October 13, 1880 ii Abstract This study tested the hypothesis that a relationship exists between taxonomic diversity and antibiotic resistance patterns of filamentous actinomycetes. To this end, 200 filamentous actinomycetes were selectively isolated from a hay meadow soil and assigned to groups based on pigments formed on oatmeal and peptone-yeast extract-iron agars. Forty-four representatives of the colour-groups were assigned to the genera Dactylosporangium, Micromonospora and Streptomyces based on complete 16S rRNA gene sequence analyses. In general, the position of these isolates in the phylogenetic trees correlated with corresponding antibiotic resistance patterns. A significant correlation was found between phylogenetic trees based on 16S rRNA gene and vanHAX gene cluster sequences of nine vancomycin-resistant Streptomyces isolates. These findings provide tangible evidence that antibiotic resistance patterns of filamentous actinomycetes contain information which can be used to design novel media for the selective isolation of rare and uncommon, commercially significant actinomycetes, such as those belonging to the genus Dactylosporangium, a member of the family Micromonosporaceae. A culture-independent, nested PCR procedure based on genus-specific oligonucleotide primers detected the presence of Dactylosporangium strains in 14 out of 21 environmental samples. Clones generated from the 14 positive samples formed novel phyletic lines in the Dactylosporangium 16S rRNA gene tree. Presumptive dactylosporangiae were isolated from 7 of these samples using a medium designed to be selective for members of the genus Dactylosporangium. One hundred and two out of 219 representative presumptive dactylosporangiae were considered to be bona fide members of the genus Dactylosporangium as they gave PCR amplification products with primers specific for this taxon. Representatives of the Dactylsporangium isolates formed distinct phyletic lines in the Dactylosporangium 16S rRNA gene tree were designated as new species, namely Dactylosporangium luridum sp. nov. and Dactylosporangium luteum sp. nov., based on a polyphasic study. Similarly, “Dactylosporangium salmoneum” NRRL B-16294 was validly described as a new species, Dactylosporangium salmoneum sp. nov., nom. rev. In addition, “Dactylosporangium variesporum” NRRL B-16296 was transferred to the genus Saccharothrix as Saccharothrix variisporea corrig. (ex. Tomita et al. 1977) sp. nov., nom. rev. Some of the representative Dactylosporangium isolates inhibited the growth of Bacillus subtilis, Kocuria rhyzophila and Staphylococcus aureus strains, suggesting that novel Dactylosporangium strains might be a rich source of novel antibiotics. Verrucosispora maris AB-18-032, another member of the family Micromonosporaceae, produces atrop-abyssomicin C, the first natural inhibitor of the para-aminobenzoic acid pathway. The self-protective mechanism of this strain was sought by conjugating an atrop-abyssomicin C sensitive Streptomyces griseus strain against a genomic DNA library prepared from V. maris AB-18-032. Seven resultant resistant exconjugants were screened for atrop-abyssomicin C resistance genes using four designed PCR primers. The failure to detect PCR amplification products suggests that the resistance shown by the exconjugants is conferred by mutation within the S. griseus strain or by cloning of unidentified resistance genes from the V. maris strain. iii Acknowledgements I would like to express my deepest gratitude to my supervisor Prof. Michael Goodfellow MBE who has supported me with respect to both academic and private issues during my stay at Newcastle. This project would never have been accomplished without his consideration, encouragement and guidance. I am also grateful to Dr. Jem Stach and Dr. Gabriel Uguru for their valuable discussions and many helpful suggestions. I am very indebted to Prof. Hans-Peter Fiedler (University of Tübingen), Prof. David Labeda (USDA-ARS), Prof. David Hopwood (John Innes Centre) and Dr. Hee-Jeon Hong (University of Cambridge) for their advice and support. I would also like to thank all of the staff in the school of Biology, notably Dr. Heather Finlayson, Dr. Ian Singleton, Ms. Jan Fife, Mr. David Moir, Mr. Roger Furness, Ms. Nikki Morton and Ms. Deborah Bond for their many kindnesses and help. I am especially grateful to my former supervisors, Prof. Won-Gi Bang, Prof. In-Geol Choi and Dr. Heesang Song (Korea University), and to Prof. Jongsik Chun (Seoul National University) for their encouragement. My sincere gratitude goes to my colleagues in KACC (Korean Agricultural Culture Collection), Dr. Soon-Wo Kwon, Dr. Hang-Yeon Weon and Dr. Jaekyeong Song for their assistance and support. My Laboratory Managers, Mrs. Roselyn Brown and Mrs. Miriam Earnshaw shared their extensive experience of laboratory work and their wisdom of life with me. Indeed, my Newcastle life would have failed without them. I am grateful to laboratory members: Amanda, Ankur, Annie, Ashley, Cathy, Jeni, Liz, Madhav, Porntipa, Rakesh, Sanjay, Tiago, Yash and Yashodhara for helpful discussions and assistances, and to my colleagues in China: Dr. Hong Jiang, Dr. Kui Hong, Dr. Wen-Jun Li, Qingyi and Dylan. I also owe lots of thanks to my best friends, Daeik and Jonghun who have always stood by me as pillars of strength. I gratefully acknowledge financial support from the Newcastle University for an Overseas Research Student (ORS) Award, an International Postgraduate Scholarship (NUIPS) and for childcare funding. I am also indebted to the National Institute for International Education of the Korean Government (NIIED) for a National Scholarship. Attendance at several academic conferences was supported by the Society of General Microbiology. I take deep pleasure in thanking my dear wife, Munja and our two lovely sons, Soo- Young and Junyoung for their love and patience during this tough journey. Finally, this study and all my achievements are dedicated to my mother, brother and four sisters who have always been my source of energy. It is through their selfless sacrifices that I have made it this far. iv Author’s Declaration Except where acknowledgement has been given, this dissertation is the original work of the author. The material presented has never been submitted to the Newcastle University or to any other educational establishment for purposes of obtaining a higher degree. November 2010 Byung-Yong Kim v Publications Related to the Thesis Publications: Byung-Yong Kim, James E. M. Stach, Hang-Yeon Weon, Soon-Wo Kwon and Michael Goodfellow (2010). Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. International Journal of Systematic and Evolutionary Microbiology 60, 1813-1823. Byung-Yong Kim, Roselyn Brown, David P. Labeda and Michael Goodfellow (2010). Reclassification of ‘Dactylosporangium variesporum’ as Saccharothrix variisporea corrig. (ex Tomita et al. 1977) sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology (In press). Byung-Yong Kim, Jenileima Devi Kshetrimayum and Michael Goodfellow (2010) Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Environmental Microbiology (submitted). Oral presentation: Byung-Yong Kim (2009). Detection, Selective Isolation and Characterisation of Dactylosporangium Strains. 15th International Symposium on Biology of Actinomycetes, Shanghai, China. Poster presentations: Byung-Yong Kim, Roselyn Brown, James E. M. Stach and Michael Goodfellow (2009). Taxonomic Approach to the Soil Resistome. Society of General Microbiology, Harrogate, UK. Byung-Yong Kim, Roselyn Brown, James E. M. Stach, Anthony G. O’Donnell and Michael Goodfellow (2007). Systematic Approach to Antibiotic Resistance of Actinomycetes isolated from Soil. 11th International Conference on Culture Collection, Goslar, Germany. Byung-Yong Kim, James E. M. Stach, Anthony G. O’Donnell and Michael Goodfellow (2007). Diversity of Antibiotic-Resistant Actinomycetes in Soil. 14th International Symposium on Biology of Actinomycetes, Newcastle upon Tyne, UK. vi Abbreviation bp Base pair ng Nanogram μl Microliter 10× Tenfold concentration no. Number M Molar nt Nucleotide v/v Volume/volume w/v Weight/volume rpm Revolutions per minute dNTP Deoxynucleoside triphosphate DMSO Dimethylsulfoxide EDTA Ethylenediamine tetraacetic acid FAME Fatty acid methyl ester %G+C Percentage of guanine and cytosine RNase Ribonuclease rRNA Ribosomal RNA PCR Polymerase Chain Reaction Taq DNA Polymerase Thermus aquaticus DNA polymerase SSM Simple matching coefficient
Recommended publications
  • Quantitative and Qualitative Evaluation of the Impact of the G2 Enhancer
    bioRxiv preprint doi: https://doi.org/10.1101/365395; this version posted July 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Quantitative and qualitative evaluation of the impact of the G2 2 enhancer, bead sizes and lysing tubes on the bacterial community 3 composition during DNA extraction from recalcitrant soil core 4 samples based on community sequencing and qPCR 5 6 Alex Gobbi1¶, Rui G. Santini2¶, Elisa Filippi1, Lea Ellegaard-Jensen1, Carsten S. 7 Jacobsen1, Lars H. Hansen1* 8 9 1 Department of Environmental Science, Aarhus University, Roskilde, Denmark 10 2 Natural History Museum, Centre for GeoGenetics, University of Copenhagen, Copenhagen, 11 Denmark 12 13 14 * Corresponding author 15 E-mail: [email protected] (LHH) 16 17 18 ¶ These authors contributed equally to this work. 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/365395; this version posted July 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 Soil DNA extraction encounters numerous challenges that can affect both yield and 23 purity of the recovered DNA. Clay particles lead to reduced DNA extraction efficiency, 24 and PCR inhibitors from the soil matrix can negatively affect downstream analyses 25 when applying DNA sequencing.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Selective Isolation, Characterisation and Identification of Streptosporangia
    SELECTIVE ISOLATION, CHARACTERISATION AND IDENTIFICATION OF STREPTOSPORANGIA Thesissubmitted in accordancewith the requirementsof theUniversity of Newcastleupon Tyne for the Degreeof Doctor of Philosophy by Hong-Joong Kim B. Sc. NEWCASTLE UNIVERSITY LIBRARY ____________________________ 093 51117 X ------------------------------- fn L:L, Iýý:, - L. 51-ý CJ - Departmentof Microbiology, The Medical School,University of Newcastleupon Tyne December1993 CONTENTS ACKNOWLEDGEMENTS Page Number PUBLICATIONS SUMMARY INTRODUCTION A. AIMS 1 B. AN HISTORICAL SURVEY OF THE GENUS STREPTOSPORANGIUM 5 C. NUMERICAL SYSTEMATICS 17 D. MOLECULAR SYSTEMATICS 35 E. CHARACTERISATION OF STREPTOSPORANGIA 41 F. SELECTIVE ISOLATION OF STREPTOSPORANGIA 62 MATERIALS AND METHODS A. SELECTIVE ISOLATION, ENUMERATION AND 75 CHARACTERISATION OF STREPTOSPORANGIA B. NUMERICAL IDENTIFICATION 85 C. SEQUENCING OF 5S RIBOSOMAL RNA 101 D. PYROLYSIS MASS SPECTROMETRY 103 E. RAPID ENZYME TESTS 113 RESULTS A. SELECTIVE ISOLATION, ENUMERATION AND 122 CHARACTERISATION OF STREPTOSPORANGIA B. NUMERICAL IDENTIFICATION OF STREPTOSPORANGIA 142 C. PYROLYSIS MASS SPECTROMETRY 178 D. 5S RIBOSOMAL RNA SEQUENCING 185 E. RAPID ENZYME TESTS 190 DISCUSSION A. SELECTIVE ISOLATION 197 B. CLASSIFICATION 202 C. IDENTIFICATION 208 D. FUTURE STUDIES 215 REFERENCES 220 APPENDICES A. TAXON PROGRAM 286 B. MEDIA AND REAGENTS 292 C. RAW DATA OF PRACTICAL EVALUATION 295 D. RAW DATA OF IDENTIFICATION 297 E. RAW DATA OF RAPID ENZYME TESTS 300 ACKNOWLEDGEMENTS I would like to sincerely thank my supervisor, Professor Michael Goodfellow for his assistance,guidance and patienceduring the course of this study. I am greatly indebted to Dr. Yong-Ha Park of the Genetic Engineering Research Institute in Daejon, Korea for his encouragement, for giving me the opportunity to extend my taxonomic experience and for carrying out the 5S rRNA sequencing studies.
    [Show full text]
  • Using Community Analysis to Explore Bacterial Indicators for Disease
    www.nature.com/scientificreports OPEN Using community analysis to explore bacterial indicators for disease suppression of tobacco Received: 08 February 2016 Accepted: 20 October 2016 bacterial wilt Published: 18 November 2016 Xiaojiao Liu, Shuting Zhang, Qipeng Jiang, Yani Bai, Guihua Shen, Shili Li & Wei Ding Although bacterial communities play important roles in the suppression of pathogenic diseases and crop production, little is known about the bacterial communities associated with bacterial wilt. Based on 16S rRNA gene sequencing, statistical analyses of microbial communities in disease-suppressive and disease-conducive soils from three districts during the vegetation period of tobacco showed that Proteobacteria was the dominant phylum, followed by Acidobacteria. Only samples from September were significantly correlated to disease factors. Fifteen indicators from taxa found in September (1 class, 2 orders, 3 families and 9 genera) were identified in the screen as being associated with disease suppression, and 10 of those were verified for potential disease suppression in March.Kaistobacter appeared to be the genus with the most potential for disease suppression. Elucidating microbially mediated natural disease suppression is fundamental to understanding microecosystem responses to sustainable farming and provides a possible approach for modeling disease-suppressive indicators. Here, using cluster analysis, MRPP testing, LEfSe and specific filters for a Venn diagram, we provide insight into identifying possible indicators of disease
    [Show full text]
  • Diversity and Taxonomic Novelty of Actinobacteria Isolated from The
    Diversity and taxonomic novelty of Actinobacteria isolated from the Atacama Desert and their potential to produce antibiotics Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Vorgelegt von Alvaro S. Villalobos Kiel 2018 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: Prof. Dr. Ute Hentschel Humeida Tag der mündlichen Prüfung: Zum Druck genehmigt: 03.12.2018 gez. Prof. Dr. Frank Kempken, Dekan Table of contents Summary .......................................................................................................................................... 1 Zusammenfassung ............................................................................................................................ 2 Introduction ...................................................................................................................................... 3 Geological and climatic background of Atacama Desert ............................................................. 3 Microbiology of Atacama Desert ................................................................................................. 5 Natural products from Atacama Desert ........................................................................................ 9 References .................................................................................................................................. 12 Aim of the thesis ...........................................................................................................................
    [Show full text]
  • Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
    Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr.
    [Show full text]
  • Rare Actinobacteria: a Possible Solution for Antimicrobial Drug Resistance in Egypt
    Mini Review JOJ Nurse Health Care Volume 6 Issue 4 - March 2018 Copyright © All rights are reserved by Dina Hatem Amin DOI: 10.19080/JOJNHC.2018.06.555695 Rare Actinobacteria: A Possible Solution for Antimicrobial Drug Resistance in Egypt Dina Hatem Amin* Department of Microbiology, Ain shams University, Egypt Submission: December 04, 2017; Published: March 15, 2018 *Corresponding author: Dina Hatem Amin, Department of Microbiology, Faculty of Science, Ain shams University, Cairo, Egypt, Email: Mini Review rare actinobacteria. Currently, it is fundamental to discover new “For every action, there is an equal and opposite reaction” antibiotics from distinct strains against multidrug resistant Newton’s Third Law of Motion. We can apply this rule on the pathogens. Since unusual natural products with new structures overuse of antibiotics and the emergence of antimicrobial will have valuable biological activities Koehn and Carter, Baltz, drug resistance. In the meantime, the uncontrolled practices of Amin et al. [6-8]. antibiotics mainly triggered this problem in both developed and developing countries. The intensity of antimicrobial resistance Rare Actinobacteria has a great potential to produce novel in developing countries is generally higher because of the excess antibiotics [8-12]. My previous work focused on exploring an antibiotics usage. unordinary group of Actinobacteria, which is known as Rare Antibiotics resistant pathogens are recognized as a gigantic actinomycetes isolates from Egyptian soils and antimicrobial worldwide public health threat, and they have vital effects Actinobacteria [13]. I successfully isolated and identified rare potential of this unique group against some food and blood borne concerning morbidity, mortality and elevation of healthcare costs Yong et al.
    [Show full text]
  • Clostridium Pacaense: a New Species Within the Genus Clostridium
    NEW SPECIES Clostridium pacaense: a new species within the genus Clostridium M. Hosny1, R. Abou Abdallah2, J. Bou Khalil1, A. Fontanini1, E. Baptiste1, N. Armstrong1 and B. La Scola1 1) Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection and 2) Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Vecteurs—Infections Tropicales et Méditerrannéennes (VITROME), Service de Santé des Armées, IHU-Méditerranée Infection, Marseille, France Abstract Using the strategy of taxonogenomics, we described Clostridium pacaense sp. nov. strain Marseille-P3100T, a Gram-variable, nonmotile, spore- forming anaerobic bacillus. This strain was isolated from a 3.3-month-old Senegalese girl with clinical aspects of marasmus. The closest species based on 16S ribosomal RNA was Clostridium aldenense, with a similarity of 98.4%. The genome length was 2 672 129 bp, with a 50% GC content; 2360 proteins were predicted. Finally, predominant fatty acids were hexadecanoic acid, tetradecanoic acid and 9-hexadecenoic acid. © 2019 The Authors. Published by Elsevier Ltd. Keywords: Clostridium pacaense, culturomics, taxonogenomics Original Submission: 16 October 2018; Revised Submission: 21 December 2018; Accepted: 21 December 2018 Article published online: 31 December 2018 mammalian gastrointestinal tract microbiomes [7]. Culturomics Corresponding author: B. La Scola, Pôle des Maladies Infectieuses, combined with taxonogenomics is an important tool for the Aix-Marseille Université, IRD, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection isolation and characterization of new bacterial species.
    [Show full text]
  • Alloactinosynnema Sp
    University of New Mexico UNM Digital Repository Chemistry ETDs Electronic Theses and Dissertations Summer 7-11-2017 AN INTEGRATED BIOINFORMATIC/ EXPERIMENTAL APPROACH FOR DISCOVERING NOVEL TYPE II POLYKETIDES ENCODED IN ACTINOBACTERIAL GENOMES Wubin Gao University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds Part of the Bioinformatics Commons, Chemistry Commons, and the Other Microbiology Commons Recommended Citation Gao, Wubin. "AN INTEGRATED BIOINFORMATIC/EXPERIMENTAL APPROACH FOR DISCOVERING NOVEL TYPE II POLYKETIDES ENCODED IN ACTINOBACTERIAL GENOMES." (2017). https://digitalrepository.unm.edu/chem_etds/73 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Chemistry ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Wubin Gao Candidate Chemistry and Chemical Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Jeremy S. Edwards, Chairperson Charles E. Melançon III, Advisor Lina Cui Changjian (Jim) Feng i AN INTEGRATED BIOINFORMATIC/EXPERIMENTAL APPROACH FOR DISCOVERING NOVEL TYPE II POLYKETIDES ENCODED IN ACTINOBACTERIAL GENOMES by WUBIN GAO B.S., Bioengineering, China University of Mining and Technology, Beijing, 2012 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Chemistry The University of New Mexico Albuquerque, New Mexico July 2017 ii DEDICATION This dissertation is dedicated to my altruistic parents, Wannian Gao and Saifeng Li, who never stopped encouraging me to learn more and always supported my decisions on study and life.
    [Show full text]
  • Actinomycetes Isolated from Wetland and Hill Paddy During the Warm and Cool Seasons in Sarawak, East Malaysia
    ACTINOMYCETES ISOLATED FROM WETLAND AND HILL PADDY DURING THE WARM AND COOL SEASONS IN SARAWAK, EAST MALAYSIA Ann Anni Basik*, Holed Juboi, Sunita Sara Gill Shamsul, Jean-Jacques Sanglier and Tiong Chia Yeo Address(es): Ann Anni Basik 1 Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2020.9.4.774-780 ARTICLE INFO ABSTRACT Received 12. 3. 2018 As part of the Natural Product Discovery programme at Sarawak Biodiversity Centre (SBC), our study targeted isolation and evaluation Revised 4. 9. 2019 of actinomycetes diversity from paddy rice fields. Samples from two types of paddy farming system practiced in Sarawak, wet land and Accepted 11. 9. 2019 hill paddy, were collected and processed leading to the selection of 578 strains distributed among 24 genera and 10 families. Analysis Published 3. 2. 2020 using phylogenetic clustering indicated a total of 159 taxonomic units (TU). The taxonomic position and the ranking of the TU allowed their classification in 4 novel species, 61 putative novel species and 94 known species or species of uncertain position. The high genus diversity and percentage of novel or putative novel species demonstrate the biodiversity potential of Sarawak ecosystems, even in man- Regular article managed ecosystems. Keywords: paddy field, actinomycetes, ranking, taxonomic unit INTRODUCTION sequence identity (Gevers et al., 2005). However, species can be differentiated at a level of 98.2 – 99 % 16S rRNA similarity (Kim et al., 2014). Isolation of rare actinomycetes from paddy rice (Oryza sativa L.) field in the Apart from the commonly collected soil samples, rhizospheric soil and roots were Kuching Division, Sarawak were made to evaluate their diversity and also included for the isolation of actinomycetes in this project.
    [Show full text]
  • Buku Ini Tidak Diperjualbelikan. Buku Ini Tidak Diperjualbelikan
    diperjualbelikan. tidak ini Buku diperjualbelikan. tidak ini Buku diperjualbelikan. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, tidak or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied ini in critical reviews and certain other noncommercial uses permitted by copyright law. Buku LIPI Press Buku ini tidak diperjualbelikan. © 2016 Indonesian Institute of Sciences (LIPI) Research Center for Biotechnology Cataloging in Publication Exploring Indonesian Microbial Genetic Resources for Industrial Application/Endang Sukara and Puspita Lisdiyanti (Eds.).–Jakarta: LIPI Press, 2016. xii + 221 hlm.; 14,8 x 21 cm ISBN 978-979-799-864-6 1. Microbes 2. Industrial application 3. Indonesia 660.62 Copy editor : Martinus Helmiawan Proofreader : Noviastuti Putri Indrasari and Sarwendah Puspita Dewi Layouter : Nur Aly and Rahma Hilma Taslima Cover designer : Dhevi E. I. R. Mahelingga First Edition : December 2016 Published by: LIPI Press, member of Ikapi Jln. Gondangdia Lama 39, Menteng, Jakarta 10350 Phone: (021) 314 0228, 314 6942 Fax.: (021) 314 4591 E-mail: [email protected] LIPI Press @lipi_press diperjualbelikan. tidak ini Buku Contents Editorial Note ..................................................................................................... vii Foreword .............................................................................................................
    [Show full text]
  • Exploring the Application of Ecological Theory to the Human Gut Microbiota Using Complex Defined Microbial Communities As Models
    Exploring the application of ecological theory to the human gut microbiota using complex defined microbial communities as models by Kaitlyn Oliphant A Thesis presented to the The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Kaitlyn Oliphant, December, 2018 ABSTRACT EXPLORING THE APPLICATION OF ECOLOGICAL THEORY TO THE HUMAN GUT MICROBIOTA USING COMPLEX DEFINED MICROBIAL COMMUNITIES AS MODELS Kaitlyn Oliphant Advisor: University of Guelph, 2018 Dr. Emma Allen-Vercoe The ecosystem of microorganisms that inhabit the human gastrointestinal tract, termed the gut microbiota, critically maintains host homeostasis. Alterations in species structure and metabolic behaviour of the gut microbiota are thus unsurprisingly exhibited in patients of gastrointestinal disorders when compared to the healthy population. Therefore, strategies that aim to remediate such gut microbiota through microbial supplementation have been attempted, with variable clinical success. Clearly, more knowledge of how to assemble a health promoting gut microbiota is required, which could be drawn upon from the framework of ecological theory. Current theories suggest that the forces driving microbial community assembly include historical contingency, dispersal limitation, stochasticity and environmental selection. Environmental selection additionally encompasses habitat filtering, i.e., host-microbe interactions, and species assortment, i.e., microbe-microbe interactions. I propose to explore the application of this theory to the human gut microbiota, and I hypothesize that microbial ecological theory can be replicated utilizing complex defined microbial communities. To address my hypothesis, I first built upon existing methods to assess microbial community composition and behaviour, then applied such tools to human fecal-derived defined microbial communities cultured in bioreactors, for example, by using marker gene sequencing and metabonomics.
    [Show full text]