Selective Isolation, Characterisation and Identification of Streptosporangia

Total Page:16

File Type:pdf, Size:1020Kb

Selective Isolation, Characterisation and Identification of Streptosporangia SELECTIVE ISOLATION, CHARACTERISATION AND IDENTIFICATION OF STREPTOSPORANGIA Thesissubmitted in accordancewith the requirementsof theUniversity of Newcastleupon Tyne for the Degreeof Doctor of Philosophy by Hong-Joong Kim B. Sc. NEWCASTLE UNIVERSITY LIBRARY ____________________________ 093 51117 X ------------------------------- fn L:L, Iýý:, - L. 51-ý CJ - Departmentof Microbiology, The Medical School,University of Newcastleupon Tyne December1993 CONTENTS ACKNOWLEDGEMENTS Page Number PUBLICATIONS SUMMARY INTRODUCTION A. AIMS 1 B. AN HISTORICAL SURVEY OF THE GENUS STREPTOSPORANGIUM 5 C. NUMERICAL SYSTEMATICS 17 D. MOLECULAR SYSTEMATICS 35 E. CHARACTERISATION OF STREPTOSPORANGIA 41 F. SELECTIVE ISOLATION OF STREPTOSPORANGIA 62 MATERIALS AND METHODS A. SELECTIVE ISOLATION, ENUMERATION AND 75 CHARACTERISATION OF STREPTOSPORANGIA B. NUMERICAL IDENTIFICATION 85 C. SEQUENCING OF 5S RIBOSOMAL RNA 101 D. PYROLYSIS MASS SPECTROMETRY 103 E. RAPID ENZYME TESTS 113 RESULTS A. SELECTIVE ISOLATION, ENUMERATION AND 122 CHARACTERISATION OF STREPTOSPORANGIA B. NUMERICAL IDENTIFICATION OF STREPTOSPORANGIA 142 C. PYROLYSIS MASS SPECTROMETRY 178 D. 5S RIBOSOMAL RNA SEQUENCING 185 E. RAPID ENZYME TESTS 190 DISCUSSION A. SELECTIVE ISOLATION 197 B. CLASSIFICATION 202 C. IDENTIFICATION 208 D. FUTURE STUDIES 215 REFERENCES 220 APPENDICES A. TAXON PROGRAM 286 B. MEDIA AND REAGENTS 292 C. RAW DATA OF PRACTICAL EVALUATION 295 D. RAW DATA OF IDENTIFICATION 297 E. RAW DATA OF RAPID ENZYME TESTS 300 ACKNOWLEDGEMENTS I would like to sincerely thank my supervisor, Professor Michael Goodfellow for his assistance,guidance and patienceduring the course of this study. I am greatly indebted to Dr. Yong-Ha Park of the Genetic Engineering Research Institute in Daejon, Korea for his encouragement, for giving me the opportunity to extend my taxonomic experience and for carrying out the 5S rRNA sequencing studies. I am most grateful to Dr. David Minnikin for his advice and practical assistance in chemotaxonomy as well as to Dr. Alan Ward for his encouragement and discussions on computer-assisted identification. However, I am also indebted to Professor Han of the Department of Biology, Inha University in Inchon, Korea for teaching me the importance of microbiology. Penultimately, I also extend thanks to all in the Department of Microbiology at the University of Newcastle upon Tyne. Finally I am extremely grateful for the never ending support and encouragementof my family and friends. PUBLICATIONS Someof the work presentedin the thesishas been published: Kim, H-J. and Goodfellow, M. (1993). Computer-assistedidentification of Streptosporangium. In Identification of Bacteria: Present Trends-Future Prospects. Proceedingsof the FEMS Meeting in Granada,Spain (abstract). Chun, J., Atalan, E., Kim, S-B., Kim, H-J., Hand, M. E., Trujillo, M. E., Magee, J. G., Manfio, G. P., Ward, A. C. and Goodfellow, M. (1993). Rapid identification of streptomycetesby artificial neural network analysis of pyrolysis mass spectra. FEMS Microbiological Letters (in press). SUMMARY Large numbers of actinomycetes were isolated from composite soil samples using procedures considered to be selective for the isolation of streptosporangia and related sporoactinomycetes from environmental samples. The highest streptosporangial counts were obtained when suspensionsof air-dried soil were heated in the presence of yeast extract for 20 minutes at 4000 then plated onto humic acid vitamins agar supplemented with actidione (50mg/1) and nalidixic acid (30mg/1) and incubated for 4 weeks at 30°C. The highest count, 7.94 ± 1.19 x 104 colony forming units per gram dry soil, were obtained from samples of Ginseng field soil. Representative strains had morphological and chemical properties consistent with their classification in the genus Streptosporangium. Representativeisolates and marker strainsof the genusStreptosporangium were examined for diagnostic features recommended for computer-assisted identification of unknown streptosporangia. Stringent criteria were adopted for positive identifications of both known and unknown strains following a critical evaluation of identification scores obtained for the marker cultures. Sixty-five of the seventy marker strains and twelve of the hundred and thirty six unknown streptosporangia were identified to known streptosporangial taxa. A further nineteen of the isolates were assigned to known taxa using less stringent cut-off points for positive identifications. 5S ribosomalRNA sequenceswere determinedfor nine representativesof the genus Streptosporangium including centrotype strains of two taxa, clusters 1 and 2, circumscribed in a recent numerical phenetic survey and two Ginseng field soil isolates. The primary and secondary structure of the resultant sequenceswere of the type characteristic of Gram-positive bacteria with DNA rich in guanine and cytosine. It was evident from the phylogenetic tree that the genus Streptosporangium is heterogeneous as the type strains of Streptosporangium albidum and Streptosporangium viridogriseum subspecies viridogriseum were sharply separated from the remaining test strains; a result in good agreement with current trends in streptosporangial systematics. Pilot experimentswere designedto determinethe potential of Curie point pyrolysis mass spectrometry and rapid fluorogenic enzyme tests in the classification and identification of streptosporangia. The pyrolysis mass spectral data supported the taxonomic integrity of clusters 1 and 2 and showed that Streptosporangium viridogriseum subspecies viridogriseum had little in common with bona fide members of the genus Streptosporangium. Pyrolysis data also supported the results of the computer-assisted identification exercise as ten isolates assigned to cluster 1 using stringent cut-off criteria were found to be closely related to representatives of cluster 1. There was evidence that some of the conjugated substrates based on the fluorophores 7-amino-4-methylcoumarin and 4-methylumbelliferone have potential as taxonomic markers for the classification of streptosporangia and related actinomycetes. INTRODUCTION A. AIMS Actinomycetes are an unique source of high value bioactive products, notably antibiotics, enzymes, enzyme inhibitors and vitamins. In particular, they account for sixty percent, that is, more than seven thousand of the naturally occurring antibiotics that have been discovered (Table 1, page 2). Approaches to the search for, and discovery of, new bioactive compounds are generally based on screening both naturally occurring actinomycetes and genetically manipulated strains. Current efforts to find the next generation of new antibiotics of therapeutic value are compromised as the probability of discovering new compounds is declining as the number of known antibiotics is increasing (Okami and Hotta, 1988). It is, therefore, important in search and discovery programmes to screen novel and rare actinomycetes in order to raise the probability of finding novel antibiotics (Nolan and Cross, 1988; Bull et al., 1992). Given recent developments in microbial systematics it is now possible to recognise and characterise rare and novel actinomycetes derived from the application of selective isolation procedures by detecting key phenetic taxonomic markers (O'Donnell, 1986,1988; Goodfellow and O'Donnell, 1989; Bull et al., 1992). In addition, molecular taxonomic methods, such as nucleic acid hybridisation, sequencing and fingerprinting techniques, are available for the accurate description of patent strains (Stackebrandt and Goodfellow, 1991). In addition, information in numerical taxonomic databases can be used to design media formulations for the selective isolation of specific fractions of the actinomycete community from soil and other natural habitats (Vickers et al., 1984; Williams et al., 1984a; Williams and Vickers, 1988; Goodfellow and ODonnell, 1989; Bull et al., 1992). Screening methods, which are increasingly target I Table 1 Number of antibiotics producedby membersof selectedactinomycete genera* Genus 1974 1980 1984 1988 1993 Streptomyces 1934 2784 3477 4876 5645 Micromonospora 41 129 269 398 535 Nocardia 45 74 107 262 287 Actinomadura - 16 51 164 248 Actinoplanes 6 40 95 146 169 Streptoverticillium 19 41 64 138 169 Streptosporangium** 7 20 26 39 57 Saccharopolyspora - 4 33 44 55 Dactylosporangium - 4 19 31 40 Amycolatopsis - - - - 23 Kibdelosporangium - - - 7 18 Actinosynnema - - 5 14 17 Microbispora ** 4 6 6 10 15 Streptoalloteichus - 3 4 12 14 14 Kitasatosporia - - - 11 Planobispora ** 10 - - - - 4 Microtetraspora ** - - - - Planomonospora ** 2 - - - - * Data from Berdy (1974,1984), Nisbet (1982) and Berdy database(August, 1993; Data-wm MedhaRtk ye, Sm°iI,kl11e ßeectiens,$rcckl, aºn PaA, Be#tl,wýrtý,, Suwreq, u.k. ), ** Membersof the family Streptosporangiaceae(Goodfellow et al., 1990a). 2 directed, are also important in the searchfor new products (Okami and Hotta, 1988;Bull et al., 1992). There is evidence that the genus Streptosporangiummay become an increasinglyrich sourceof commerciallysignificant products,notably antibiotics (Table 2, page 4). In addition, cystathionine T-lyase has been detectedin a strain of Streptosporangium(Nagasawa et al., 1984). This enzymecatalyses the a, T-elimination reaction of L-cystathionine and also the 7-replacementof L- homoserinein the presenceof various thiol compounds(Kanzaki et al., 1986a). An efficient methodbased on the reactionof 7-replacementhas been developed for the preparationof L-cystathionine(Kanzaki et al., 1986b),a product with potential
Recommended publications
  • Elucidating the Molecular Physiology of Lantibiotic NAI-107 Production in Microbispora ATCC-PTA-5024
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024 Gallo, Giuseppe; Renzone, Giovanni; Palazzotto, Emilia; Monciardini, Paolo; Arena, Simona; Faddetta, Teresa; Giardina, Anna; Alduina, Rosa; Weber, Tilmann; Sangiorgi, Fabio Total number of authors: 15 Published in: B M C Genomics Link to article, DOI: 10.1186/s12864-016-2369-z Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Gallo, G., Renzone, G., Palazzotto, E., Monciardini, P., Arena, S., Faddetta, T., Giardina, A., Alduina, R., Weber, T., Sangiorgi, F., Russo, A., Spinelli, G., Sosio, M., Scaloni, A., & Puglia, A. M. (2016). Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024. B M C Genomics, 17(42). https://doi.org/10.1186/s12864-016-2369-z General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Rare Actinobacteria: a Possible Solution for Antimicrobial Drug Resistance in Egypt
    Mini Review JOJ Nurse Health Care Volume 6 Issue 4 - March 2018 Copyright © All rights are reserved by Dina Hatem Amin DOI: 10.19080/JOJNHC.2018.06.555695 Rare Actinobacteria: A Possible Solution for Antimicrobial Drug Resistance in Egypt Dina Hatem Amin* Department of Microbiology, Ain shams University, Egypt Submission: December 04, 2017; Published: March 15, 2018 *Corresponding author: Dina Hatem Amin, Department of Microbiology, Faculty of Science, Ain shams University, Cairo, Egypt, Email: Mini Review rare actinobacteria. Currently, it is fundamental to discover new “For every action, there is an equal and opposite reaction” antibiotics from distinct strains against multidrug resistant Newton’s Third Law of Motion. We can apply this rule on the pathogens. Since unusual natural products with new structures overuse of antibiotics and the emergence of antimicrobial will have valuable biological activities Koehn and Carter, Baltz, drug resistance. In the meantime, the uncontrolled practices of Amin et al. [6-8]. antibiotics mainly triggered this problem in both developed and developing countries. The intensity of antimicrobial resistance Rare Actinobacteria has a great potential to produce novel in developing countries is generally higher because of the excess antibiotics [8-12]. My previous work focused on exploring an antibiotics usage. unordinary group of Actinobacteria, which is known as Rare Antibiotics resistant pathogens are recognized as a gigantic actinomycetes isolates from Egyptian soils and antimicrobial worldwide public health threat, and they have vital effects Actinobacteria [13]. I successfully isolated and identified rare potential of this unique group against some food and blood borne concerning morbidity, mortality and elevation of healthcare costs Yong et al.
    [Show full text]
  • Downloaded from Genbank
    bioRxiv preprint doi: https://doi.org/10.1101/036087; this version posted January 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Automating Assessment of the Undiscovered 2 Biosynthetic Potential of Actinobacteria 3 Bogdan Tokovenko1*, Yuriy Rebets1, Andriy Luzhetskyy1,2* 4 1 Actinomycetes Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research 5 Saarland, Saarbrücken, Germany 6 2 Department of Pharmaceutical Biotechnology, Faculty of Natural Sciences and Technology, University of 7 Saarland, Saarbrücken, Germany 8 * Corresponding author 9 E-mail: [email protected] (AL), [email protected] (BT) 1 bioRxiv preprint doi: https://doi.org/10.1101/036087; this version posted January 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Abstract 2 Background. Biosynthetic potential of Actinobacteria has long been the subject of theoretical estimates. 3 Such an estimate is indeed important as a test of further exploitability of a taxon or group of taxa for new 4 therapeutics. As neither a set of available genomes nor a set of bacterial cultivation methods are static, it 5 makes sense to simplify as much as possible and to improve reproducibility of biosynthetic gene clusters 6 similarity, diversity, and abundance estimations.
    [Show full text]
  • Actinobacteria and Myxobacteria Isolated from Freshwater Snails and Other Uncommon Iranian Habitats, Their Taxonomy and Secondary Metabolism
    Actinobacteria and Myxobacteria isolated from freshwater snails and other uncommon Iranian habitats, their taxonomy and secondary metabolism Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Nasim Safaei aus Teheran / Iran 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 24.02.2021 mündliche Prüfung (Disputation) am: 20.04.2021 Druckjahr 2021 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Safaei, N. Mast, Y. Steinert, M. Huber, K. Bunk, B. Wink, J. (2020). Angucycline-like aromatic polyketide from a novel Streptomyces species reveals freshwater snail Physa acuta as underexplored reservoir for antibiotic-producing actinomycetes. J Antibiotics. DOI: 10.3390/ antibiotics10010022 Safaei, N. Nouioui, I. Mast, Y. Zaburannyi, N. Rohde, M. Schumann, P. Müller, R. Wink.J (2021) Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran. Int J Syst Evol Microbiol (IJSEM). DOI: 10.1099/ijsem.0.004625 Tagungsbeiträge Actinobacteria and myxobacteria isolated from freshwater snails (Talk in 11th Annual Retreat, HZI, 2020) Posterbeiträge Myxobacteria and Actinomycetes isolated from freshwater snails and
    [Show full text]
  • Considering Other Gene Regulation Mechanisms in Microbispora Coralline : a Novel Idea for Microbisporicin Biosynthesis
    Human Journals Review Article February 2019 Vol.:11, Issue:4 © All rights are reserved by Adeseye O. Adeyiga Considering Other Gene Regulation Mechanisms in Microbispora coralline : A Novel Idea for Microbisporicin Biosynthesis Keywords: DNA gene, transcription, post-transcription, translation, post-translation, post-translation regulation, Microbispora corallina gene Adeseye O. Adeyiga ABSTRACT Many antibiotics have been used quite for a period of time Department of Medical Biochemistry Nile University of and for so long that some bacteria have been known to be Nigeria Plot 681 Cadastral Zone, C-00 resistant. Lantibiotics are ribosomally synthesized post- Research and Institution Area FCT, Abuja Nigeria. transitionally from Microbispora corallina by a modification process of hydroxylation of proline and chlorination of Submission: 23 January 2019 tryptophan amino acid sequence in a coordinated fashion of gene regulation. Lantibiotics are becoming more popular as Accepted: 29 January 2019 an antibiotic against Gram-positive and Gram-negative Published: 28 February 2019 bacteria. Most especially its ability to combat methicillin- resistant Staphylococcus aureus (MRSA) infection which has been known to be a nosocomial infection causing microorganism. This review summarizes the potential opportunity in the comprehension of the gene regulation in Microbispora corallina for increased production of microbisporin lantibiotics. By considering the mechanistic www.ijsrm.humanjournals.com procedure involved in gene regulation forMicrobispora corallina at the level of DNA replication, transcription, post- transcription, translation, post-translation will foster increased production of microbisporin antibiotics to fight resistant microbial infection in the future. Exploring the working mechanism of association of cluster of genes such as MibW/MibX/MibR will provide a fertile ground for copious production of microbisporin in Microbispora corallina.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
    fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing.
    [Show full text]
  • Microbispora Clausenae Sp
    TAXONOMIC DESCRIPTION Kaewkla et al., Int. J. Syst. Evol. Microbiol. 2020;70:6213–6219 DOI 10.1099/ijsem.0.004518 OPEN ACCESS Microbispora clausenae sp. nov., an endophytic actinobacterium isolated from the surface- sterilized stem of a Thai medicinal plant, Clausena excavala Burm. f. Onuma Kaewkla1,2, Wilaiwan Koomsiri3,4, Arinthip Thamchaipenet4,5 and Christopher Milton Mathew Franco2,* Abstract An endophytic actinobacterium, strain CLES2T, was discovered from the surface- sterilized stem of a Thai medicinal plant, Clau- sena excavala Burm. f., collected from the Phujong-Nayoa National Park, Ubon Ratchathani Province, Thailand. The results of a polyphasic taxonomic study identified this strain as a member of the genus Microbispora and a Gram- stain- positive, aerobic actinobacterium. It had well-developed substrate mycelia, which were non- motile and possessed paired spores. A phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this strain in the family Streptosporangiaceae, being most closely related to Microbispora bryophytorum NEAU- TX2-2T (99.4 %), Microbispora camponoti 2C- HV3T (99.2 %), Microbispora catharanthi CR1-09T (99.2 %) and Microbispora amethystogenes JCM 3021T and Microbispora fusca NEAU- HEGS1-5T (both at 99.1 %). The major cellular fatty acid of this strain was iso- C16 : 0 and major menaquinone was MK-9(H4). The polar lipid profile of strain CLES2T contained diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol and phosphatidylinositol dimannosides. These chemotaxonomic data confirmed the affiliation of strain CLES2T to the genus Microbispora. The DNA G+C content of this strain was 70 mol%. Digital DNA–DNA hybridization and average nucleotide identity blast values between strain CLES2T and M. catharanthi CR1-09T were 62.4 and 94.0 %, respectively.
    [Show full text]
  • Actinopolyspora Egyptensis Sp. Nov., a New Halophilic Actinomycete
    African Journal of Microbiology Research Vol. 5(2) pp. 100-105, 18 January, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR10.667 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Actinopolyspora egyptensis sp. nov., a new halophilic actinomycete Wael N. Hozzein1,2* and Michael Goodfellow3 1Chair of Advanced Proteomics and Cytomics Research, College of Science, King Saud University, Riyadh, Saudi Arabia. 2Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. 3Division of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK. Accepted 22 December, 2010 A halophilic actinomycete, designated HT371T, was isolated from a soil sample collected from the shore of the salty Lake Qaroun, Egypt, and was the subject of a polyphasic study. Analysis of 16S rRNA indicated that the isolate belonged to the genus Actinopolyspora and constituted a separate clade in the Actinopolyspora 16S rRNA gene tree with similarity values of 96.5 and 96.2% with Actinopolyspora halophila DSM43834T and Actinopolyspora mortivallis DSM44261T, respectively. Isolate HT371T had chemotaxonomic and morphological properties consistent with its classification in the genus Actinopolyspora and could grow on agar plates at NaCl concentrations of up to 25% (w/v). The isolate was readily differentiated from the type strains of genus Actinopolyspora using a range of phenotypic characters. On the basis of polyphasic evidence, the strain HT371T represents a novel species for which the name Actinopolyspora egyptensis sp. nov. is proposed. The type strain is HT371T (=CGMCC 4.2041T). Key words: Actinopolyspora egyptensis sp. nov., halophilic isolate, polyphasic taxonomy. INTRODUCTION The genus Actinopolyspora was created by Gochnauer et taxonomic status, which showed that it merited al.
    [Show full text]
  • DAIANI CRISTINA SAVI.Pdf
    1 UNIVERSIDADE FEDERAL DO PARANÁ DAIANI CRISTINA SAVI GÊNERO Microbispora: RECLASSIFICAÇÃO FILOGENÉTICA, BIOPROSPECÇÃO E IDENTIFICAÇÃO DE METABÓLITOS SECUNDÁRIOS CURITIBA 2015 2 UNIVERSIDADE FEDERAL DO PARANÁ DAIANI CRISTINA SAVI GÊNERO Microbispora: RECLASSIFICAÇÃO FILOGENÉTICA, BIOPROSPECÇÃO E IDENTIFICAÇÃO DE METABÓLITOS SECUNDÁRIOS Tese apresentada ao Programa de Pós- Graduação em Microbiologia, Parasitologia e Patologia, Setor de Ciências Biológicas, Universidade Federal do Paraná como requisito parcial à obtenção de título de Doutora em Microbiologia. Orientadora: Profª Drª Chirlei Glienke Co-Orientadores: Drª Josiane Gomes Figueiredo e Dr Jurgen Rohr CURITIBA 2015 3 4 AGRADECIMENTOS A Deus pela oportunidade e ensinamentos; Aos meus pais e irmã pelo apoio, compreensão e incentivo; Ao Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia pela oportunidade; À Profª Drª Chirlei Glienke pela confiança, respeito, paciência e ensinamentos que ajudaram a me moldar tanto quando pesquisadora como pessoa, gratidão eterna; À Profa Dra Lygia Vitória Galli Terasawa e à Profa Dra Vanessa Kava-Cordeiro por todo o ensinamento, paciência e disponibilidade dentro e fora do laboratório; Ao Prof Dr Jurgen Rohr, pela oportunidade, por me receber tão bem, paciência e orientação na parte química; À Drª Josiane Gomes Figueiredo, pela co-orientação, auxílio, ensinamentos e pela amizade; Ao Dr Khaled Shaaban por todo auxílio e ensinamentos no desenvolvimento da parte de identificação de compostos; Ao Rodrigo Aluízio pela amizade e auxílio
    [Show full text]
  • Streptosporangium Roseum Type Strain (NI 9100T)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Streptosporangium roseum type strain (NI 9100). Permalink https://escholarship.org/uc/item/7g79w47k Journal Standards in genomic sciences, 2(1) ISSN 1944-3277 Authors Nolan, Matt Sikorski, Johannes Jando, Marlen et al. Publication Date 2010-01-28 DOI 10.4056/sigs.631049 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:29-37 DOI:10.4056/sigs.631049 Complete genome sequence of Streptosporangium T roseum type strain (NI 9100 ) Matt Nolan1, Johannes Sikorski2, Marlen Jando2, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Feng Chen1, Hope Tice1, Sam Pitluck1, Jan-Fang Cheng1, Olga Chertkov1,3, David Sims1,3, Linda Meincke1,3, Thomas Brettin1,3, Cliff Han1,3, John C. Detter1,3, David Bruce1,3, Lynne Goodwin1,3, Miriam Land1,4, Loren Hauser1,4, Yun-Juan Chang1,4, Cynthia D. Jeffries1,4, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amy Chen5, Krishna Pala- niappan5, Patrick Chain1,3, Manfred Rohde6, Markus Göker2, Jim Bristow1, Jonathan A. Ei- sen1,7, Victor Markowitz5, Philip Hugenholtz1, Nikos C. Kyrpides1, and Hans-Peter Klenk2* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: sporangia, vegetative and aerial mycelia, aerobic, non-motile, non-motile spores, Gram-positive, Streptosporangiaceae, S.
    [Show full text]
  • Novel Polyethers from Screening Actinoallomurus Spp
    Article Novel Polyethers from Screening Actinoallomurus spp. Marianna Iorio 1, Arianna Tocchetti 1, Joao Carlos Santos Cruz 2, Giancarlo Del Gatto 1, Cristina Brunati 2, Sonia Ilaria Maffioli 1, Margherita Sosio 1,2 and Stefano Donadio 1,2,* 1 NAICONS Srl, Viale Ortles 22/4, 20139 Milano, Italy; [email protected] (M.I.); [email protected] (A.T.); [email protected] (G.D.G.); [email protected] (S.I.M.); [email protected] (M.S.) 2 KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy; [email protected] (J.C.S.C.); [email protected] (C.B.) * Correspondence: [email protected] Received: 1 May 2018; Accepted: 13 June 2018; Published: 14 June 2018 Abstract: In screening for novel antibiotics, an attractive element of novelty can be represented by screening previously underexplored groups of microorganisms. We report the results of screening 200 strains belonging to the actinobacterial genus Actinoallomurus for their production of antibacterial compounds. When grown under just one condition, about half of the strains produced an extract that was able to inhibit growth of Staphylococcus aureus. We report here on the metabolites produced by 37 strains. In addition to previously reported aminocoumarins, lantibiotics and aromatic polyketides, we described two novel and structurally unrelated polyethers, designated α- 770 and α-823. While we identified only one producer strain of the former polyether, 10 independent Actinoallomurus isolates were found to produce α-823, with the same molecule as main congener. Remarkably, production of α-823 was associated with a common lineage within Actinoallomurus, which includes A. fulvus and A. amamiensis. All polyether producers were isolated from soil samples collected in tropical parts of the world.
    [Show full text]