Actinopolyspora Egyptensis Sp. Nov., a New Halophilic Actinomycete
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selective Isolation, Characterisation and Identification of Streptosporangia
SELECTIVE ISOLATION, CHARACTERISATION AND IDENTIFICATION OF STREPTOSPORANGIA Thesissubmitted in accordancewith the requirementsof theUniversity of Newcastleupon Tyne for the Degreeof Doctor of Philosophy by Hong-Joong Kim B. Sc. NEWCASTLE UNIVERSITY LIBRARY ____________________________ 093 51117 X ------------------------------- fn L:L, Iýý:, - L. 51-ý CJ - Departmentof Microbiology, The Medical School,University of Newcastleupon Tyne December1993 CONTENTS ACKNOWLEDGEMENTS Page Number PUBLICATIONS SUMMARY INTRODUCTION A. AIMS 1 B. AN HISTORICAL SURVEY OF THE GENUS STREPTOSPORANGIUM 5 C. NUMERICAL SYSTEMATICS 17 D. MOLECULAR SYSTEMATICS 35 E. CHARACTERISATION OF STREPTOSPORANGIA 41 F. SELECTIVE ISOLATION OF STREPTOSPORANGIA 62 MATERIALS AND METHODS A. SELECTIVE ISOLATION, ENUMERATION AND 75 CHARACTERISATION OF STREPTOSPORANGIA B. NUMERICAL IDENTIFICATION 85 C. SEQUENCING OF 5S RIBOSOMAL RNA 101 D. PYROLYSIS MASS SPECTROMETRY 103 E. RAPID ENZYME TESTS 113 RESULTS A. SELECTIVE ISOLATION, ENUMERATION AND 122 CHARACTERISATION OF STREPTOSPORANGIA B. NUMERICAL IDENTIFICATION OF STREPTOSPORANGIA 142 C. PYROLYSIS MASS SPECTROMETRY 178 D. 5S RIBOSOMAL RNA SEQUENCING 185 E. RAPID ENZYME TESTS 190 DISCUSSION A. SELECTIVE ISOLATION 197 B. CLASSIFICATION 202 C. IDENTIFICATION 208 D. FUTURE STUDIES 215 REFERENCES 220 APPENDICES A. TAXON PROGRAM 286 B. MEDIA AND REAGENTS 292 C. RAW DATA OF PRACTICAL EVALUATION 295 D. RAW DATA OF IDENTIFICATION 297 E. RAW DATA OF RAPID ENZYME TESTS 300 ACKNOWLEDGEMENTS I would like to sincerely thank my supervisor, Professor Michael Goodfellow for his assistance,guidance and patienceduring the course of this study. I am greatly indebted to Dr. Yong-Ha Park of the Genetic Engineering Research Institute in Daejon, Korea for his encouragement, for giving me the opportunity to extend my taxonomic experience and for carrying out the 5S rRNA sequencing studies. -
Rare Actinobacteria: a Possible Solution for Antimicrobial Drug Resistance in Egypt
Mini Review JOJ Nurse Health Care Volume 6 Issue 4 - March 2018 Copyright © All rights are reserved by Dina Hatem Amin DOI: 10.19080/JOJNHC.2018.06.555695 Rare Actinobacteria: A Possible Solution for Antimicrobial Drug Resistance in Egypt Dina Hatem Amin* Department of Microbiology, Ain shams University, Egypt Submission: December 04, 2017; Published: March 15, 2018 *Corresponding author: Dina Hatem Amin, Department of Microbiology, Faculty of Science, Ain shams University, Cairo, Egypt, Email: Mini Review rare actinobacteria. Currently, it is fundamental to discover new “For every action, there is an equal and opposite reaction” antibiotics from distinct strains against multidrug resistant Newton’s Third Law of Motion. We can apply this rule on the pathogens. Since unusual natural products with new structures overuse of antibiotics and the emergence of antimicrobial will have valuable biological activities Koehn and Carter, Baltz, drug resistance. In the meantime, the uncontrolled practices of Amin et al. [6-8]. antibiotics mainly triggered this problem in both developed and developing countries. The intensity of antimicrobial resistance Rare Actinobacteria has a great potential to produce novel in developing countries is generally higher because of the excess antibiotics [8-12]. My previous work focused on exploring an antibiotics usage. unordinary group of Actinobacteria, which is known as Rare Antibiotics resistant pathogens are recognized as a gigantic actinomycetes isolates from Egyptian soils and antimicrobial worldwide public health threat, and they have vital effects Actinobacteria [13]. I successfully isolated and identified rare potential of this unique group against some food and blood borne concerning morbidity, mortality and elevation of healthcare costs Yong et al. -
Downloaded from Genbank
bioRxiv preprint doi: https://doi.org/10.1101/036087; this version posted January 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Automating Assessment of the Undiscovered 2 Biosynthetic Potential of Actinobacteria 3 Bogdan Tokovenko1*, Yuriy Rebets1, Andriy Luzhetskyy1,2* 4 1 Actinomycetes Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research 5 Saarland, Saarbrücken, Germany 6 2 Department of Pharmaceutical Biotechnology, Faculty of Natural Sciences and Technology, University of 7 Saarland, Saarbrücken, Germany 8 * Corresponding author 9 E-mail: [email protected] (AL), [email protected] (BT) 1 bioRxiv preprint doi: https://doi.org/10.1101/036087; this version posted January 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Abstract 2 Background. Biosynthetic potential of Actinobacteria has long been the subject of theoretical estimates. 3 Such an estimate is indeed important as a test of further exploitability of a taxon or group of taxa for new 4 therapeutics. As neither a set of available genomes nor a set of bacterial cultivation methods are static, it 5 makes sense to simplify as much as possible and to improve reproducibility of biosynthetic gene clusters 6 similarity, diversity, and abundance estimations. -
Genome Sequencing Identified a Novel Lasso Peptide
EurAsian Journal of BioSciences Eurasia J Biosci 14, 7933-7941 (2020) Genome sequencing identified a novel lasso peptide Sirilak Namwong1*, Masahiro Yuki2, Takuji. Kudo2, Moriya Ohkuma2 Takashi Itoh2 Somboon Tanasupawat3 1Department of Biotechnology, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand. 2Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan 3Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand *Corresponding author: [email protected] Abstract Background: One of the biggest problems to global health is rising of antibiotic resistance, however, the novel bioactive compounds are less discovered. To overcome this situation, genome sequencing and annotating have been developed in order to predict the biosynthesis pathway of new drugs. Materials and Methods: Strain BKK1 was classified based on 16S rRNA gene sequencing, ANI- Blast (ANIb), ANI-MUMmer (ANIm) and digital DNA-DNA hybridization (dDDH). The antiSMASH was selected for prediction the secondary metabolism gene clusters. Results: Strain BKK1 was proposed as Actinopolyspora saharensis based on 16S rRNA gene sequence similarity (99.07%), ANIb (98.59%,), ANIm (99.04%) and dDDH (90.9%). The gene clusters of biosynthetic pathways predicted to synthesize a class IV lasso peptide. Its leader region, core sequences and N-terminal end were divergent form class IV lasso peptides. According to the results, an active peptide from A. saharensis BKK1 was assumed to be a new biosynthesis cluster of class IV of lasso peptide. Additionally, its supernatant exhibited inhibitory activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. -
Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain. -
Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing. -
Streptosporangium Roseum Type Strain (NI 9100T)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Streptosporangium roseum type strain (NI 9100). Permalink https://escholarship.org/uc/item/7g79w47k Journal Standards in genomic sciences, 2(1) ISSN 1944-3277 Authors Nolan, Matt Sikorski, Johannes Jando, Marlen et al. Publication Date 2010-01-28 DOI 10.4056/sigs.631049 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:29-37 DOI:10.4056/sigs.631049 Complete genome sequence of Streptosporangium T roseum type strain (NI 9100 ) Matt Nolan1, Johannes Sikorski2, Marlen Jando2, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Feng Chen1, Hope Tice1, Sam Pitluck1, Jan-Fang Cheng1, Olga Chertkov1,3, David Sims1,3, Linda Meincke1,3, Thomas Brettin1,3, Cliff Han1,3, John C. Detter1,3, David Bruce1,3, Lynne Goodwin1,3, Miriam Land1,4, Loren Hauser1,4, Yun-Juan Chang1,4, Cynthia D. Jeffries1,4, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amy Chen5, Krishna Pala- niappan5, Patrick Chain1,3, Manfred Rohde6, Markus Göker2, Jim Bristow1, Jonathan A. Ei- sen1,7, Victor Markowitz5, Philip Hugenholtz1, Nikos C. Kyrpides1, and Hans-Peter Klenk2* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: sporangia, vegetative and aerial mycelia, aerobic, non-motile, non-motile spores, Gram-positive, Streptosporangiaceae, S. -
Actinomycetospora Chiangmaiensis Gen. Nov., Sp. Nov., a New Member of the Family Pseudonocardiaceae
International Journal of Systematic and Evolutionary Microbiology (2008), 58, 408–413 DOI 10.1099/ijs.0.64976-0 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae Yi Jiang,1,2 Jutta Wiese,1 Shu-Kun Tang,2 Li-Hua Xu,2 Johannes F. Imhoff1 and Cheng-Lin Jiang2 Correspondence 1Leibniz-Institut fu¨r Meereswissenschaften, IFM-GEOMAR, Du¨sternbrooker Weg 20, Johannes F. Imhoff D-24105 Kiel, Germany [email protected] 2Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China Li-Hua Xu [email protected] A novel actinomycete strain, YIM 0006T, was isolated from soil of a tropical rainforest in northern Thailand. The isolate displayed the following characteristics: aerial mycelium is absent, short spore chains are formed directly on the substrate mycelium, contains meso-diaminopimelic acid, arabinose and galactose (cell-wall chemotype IV), the diagnostic phospholipid is phosphatidylcholine, MK-9(H4) is the predominant menaquinone and the G+C content of the genomic DNA is 69.0 mol%. Phylogenetic analysis and phenotypic characteristics showed that strain YIM 0006T belongs to the family Pseudonocardiaceae but can be distinguished from representatives of all genera classified in the family. The novel genus and species Actinomycetospora chiangmaiensis gen. nov., sp. nov. are proposed, with strain YIM 0006T (5CCTCC AA 205017T 5DSM 45062T) as the type strain of Actinomycetospora chiangmaiensis. The first description of the family Pseudonocardiaceae was the strain were determined after growth at 28 uC for given by Embley et al. (1988), and the description was 2 weeks by methods used in the International Streptomyces emended by Stackebrandt et al. -
Isolation and Diversity of Sediment Bacteria in The
bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species. -
Systematic Research on Actinomycetes Selected According
Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals. -
Of the 16 Strains Obtained from Salty Soil in Mongolia, Six Strains Were
African Journal of Microbiology Research Vol. 7(4), pp. 298-308, 22 January, 2013 Available online at http://www.academicjournals.org/AJMR DOI: 10.5897/AJMR12.498 ISSN 1996 0808 ©2013 Academic Journals Full Length Research Paper Isolation, classification, phylogenetic analysis and scanning electron microscopy of halophilic, halotolerant and alkaliphilic actinomycetes isolated from hypersaline soil Ismet Ara1,2*, D. Daram4, T. Baljinova4, H. Yamamura5, W. N. Hozzein3, M. A. Bakir1, M. Suto2 and K. Ando2 1Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 22452, Riyadh-11495, Kingdom of Saudi Arabia. 2Biotechnology Development Center, Department of Biotechnology (DOB), National Institute of Technology and Evaluation (NITE), Kazusakamatari 2-5-8, Kisarazu, Chiba, 292-0818, Japan. 3Bioproducts Research Chair (BRC), College of Science, King Saud University. 4Division of Applied Biological Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda-4, Kofu 400-8511, Japan. Accepted 9 January, 2013 Actinomycetes were isolated by plating of serially diluted samples onto humic acid-vitamin agar prepared with or without NaCl and characterized by physiological and phylogenetical studies. A total of 16 strains were isolated from hypersaline soil in Mongolia. All strains showed alkaliphilic characteristics and were able to abundantly grow in media with pH 9.0. Six strains were halotolerant actinomycetes (0 to 12.0% NaCl) and 10 strains were moderately halophiles (3.0 to 12.0% NaCl). Most strains required moderately high salt (5.0 to 10.0%) for optimal growth but were able to grow at lower NaCl concentrations. Among the 16 strains, 5 were able to grow at 45°C. -
Actinopolyspora Saharensis Sp. Nov., a Novel Halophilic Actinomycete Isolated from a Saharan Soil of Algeria
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 9939 To link to this article : DOI:10.1007/s10482-012-9859-z http://dx.doi.org/10.1007/s10482-012-9859-z To cite this version : Meklat, Atika and Bouras, Noureddine and Zitouni, Abdelghani and Mathieu, Florence and Lebrihi, Ahmed and Schumann, Peter and Spröer, Cathrin and Klenk, Hans-Peter and Sabaou, Nasserdine Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria. (2013) Antonie van Leeuwenhoek, vol. 103 (n° 4). pp. 771-776. ISSN 0003-6072 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria Atika Meklat • Noureddine Bouras • Abdelghani Zitouni • Florence Mathieu • Ahmed Lebrihi • Peter Schumann • Cathrin Spro¨er • Hans-Peter Klenk • Nasserdine Sabaou Abstract A novel halophilic actinomycete, strain 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The H32T, was isolated from a Saharan soil sample collected strain was observed to produce abundant aerial myce- in El-Oued province, south Algeria. The isolate was lium, which formed long chains of rod-shaped spores at characterized by means of polyphasic taxonomy.