272 — 16 August 2015 Editor: Bo Reipurth ([email protected]) List of Contents

Total Page:16

File Type:pdf, Size:1020Kb

272 — 16 August 2015 Editor: Bo Reipurth (Reipurth@Ifa.Hawaii.Edu) List of Contents THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 272 — 16 August 2015 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 3 My Favorite Object ............................ 6 Editor: Bo Reipurth [email protected] Perspective ................................... 12 Technical Editor: Eli Bressert Abstracts of Newly Accepted Papers .......... 17 [email protected] Abstracts of Newly Accepted Major Reviews . 48 Technical Assistant: Hsi-Wei Yen New Jobs ..................................... 50 [email protected] Meetings ..................................... 52 Editorial Board Summary of Upcoming Meetings ............. 53 Joao Alves Alan Boss Jerome Bouvier Lee Hartmann Thomas Henning Cover Picture Paul Ho Jes Jorgensen The ∼2 Myr young cluster Westerlund 2 is among Charles J. Lada the most massive known in the Milky Way, with at Thijs Kouwenhoven least a dozen O stars and several Wolf-Rayet stars. Michael R. Meyer It is located towards Carina at a distance of about Ralph Pudritz 6,000 pc. The near-infrared image is about 4.3 pc Luis Felipe Rodr´ıguez wide, and was obtained with WFC3 on HST. Ewine van Dishoeck Hubble 25th Anniversary image. Courtesy STScI. Hans Zinnecker The Star Formation Newsletter is a vehicle for fast distribution of information of interest for as- tronomers working on star and planet formation and molecular clouds. You can submit material for the following sections: Abstracts of recently Submitting your abstracts accepted papers (only for papers sent to refereed journals), Abstracts of recently accepted major re- Latex macros for submitting abstracts views (not standard conference contributions), Dis- and dissertation abstracts (by e-mail to sertation Abstracts (presenting abstracts of new [email protected]) are appended to Ph.D dissertations), Meetings (announcing meet- each Call for Abstracts. You can also ings broadly of interest to the star and planet for- submit via the Newsletter web inter- mation and early solar system community), New face at http://www2.ifa.hawaii.edu/star- Jobs (advertising jobs specifically aimed towards formation/index.cfm persons within the areas of the Newsletter), and Short Announcements (where you can inform or re- quest information from the community). Addition- ally, the Newsletter brings short overview articles on objects of special interest, physical processes or theoretical results, the early solar system, as well as occasional interviews. Newsletter Archive www.ifa.hawaii.edu/users/reipurth/newsletter.htm tral Stars of Planetary Nebulae were initially highly lumi- nous stars that were collapsing to become White Dwarfs Bob O’Dell on the same time-scale that the nebular shells were visi- in conversation with Bo Reipurth ble. Shklovsky had argued for this earlier, as had George Abell, but neither could establish this as fact. Q: You were among the founders of the Hubble Space Tele- scope. Please tell about your involvement with the HST. A: I had always enjoyed making and using telescopes and instrumentation, starting in grade school. At Wiscon- sin I helped build a spectrum scanner and two years af- ter leaving there I joined the faculty at the University of Chicago’s Yerkes Observatory. When I became Director I was charged with the construction of a 41-inch Ritchey- Chretien telescope and designed and built the first suc- cessful astronomical echelle spectrograph. I had learned about echelles from George Herbig, who built a small in- strument that never produced any publishable-by George’s high standards-results. This new instrument was used for stratospheric observations of water in the atmosphere of Q: You got your PhD in 1962, what was it about, and who Venus (producing a usefully low upper-limit) from a Lear was your advisor? Jet operated at the Ames Research Center, and for map- A: I was lucky to have been admitted early into the De- ping the internal velocities of several HII regions. It was partment of Astronomy at Wisconsin from a teacher’s col- the ”fastest” nebular spectrograph built up to that time. lege in Illinois (now Illinois State University). Wiscon- While at Yerkes I had been drawn into advising NASA sin astronomers had pioneered photoelectric photometry about future astronomy missions. This gave me a good and when Art Code and Don Osterbrock left CalTech for idea of the potential for space astronomy, a subject viewed Wisconsin they started a new era. I was lucky to have as ”opportunist” by many traditional astronomers. In been given this chance since I was in the first generation 1971 I joined Lyman Spitzer and a half dozen others on a of my family to go attend high school let alone graduate NASA advisory group established and chaired by Nancy from college. Wisconsin is where photoelectric photome- Roman. We were charged with giving scientific advice try became modern and was first applied to quantitative and guidelines for a 3-m class space observatory, that was analysis of stars and nebulae. Although I first worked for then being given its first consideration during a low-level, Art Code for 8 months in the early days of the Orbit- one-year feasibility study. The basic idea was first formu- ing Astronomical Observatories, I quickly paired off with lated by Hermann Oberth in the 1920’s and refined in a Don Osterbrock, who directed me into a career path of the report by Lyman soon after WW II when Army-Surplus study of HII regions, planetary nebulae, comets, and the V-2 rockets were brought to the USA. Lyman had led the occasional supernova remnant. During one of the three very successful Copernicus satellite project and Prince- years I was at Wisconsin Don was on leave at the Insti- ton had several programs, including rockets and balloon- tute for Advanced Study in Princeton. Fortunately for borne telescopes that could provide fundamental informa- me, the Carnegie Institution required its faculty to retire tion necessary for taking on a big space telescope project. at 65 and the recently retired Rudolph Minkowski substi- Through my participation in other space telescope activ- tuted for Don, before moving on to Berkeley. The bottom ities conducted by non-NASA parts of the USA govern- line is that I had two superb advisors. ment, I had derived an even more complete picture of what My thesis project was the application of the new tech- could be done. nology of narrow band interference filters and spectrum Lyman and I had met in July of 1967 when we were mem- scanners with photomultiplier detectors to do quantitative bers of a climbing trip in British Columbia organized by measurements of Planetary Nebulae and the Crab Neb- George Wallerstein. Two weeks in the same tent and often ula’s continuum. I then became a Carnegie Fellow at the on the same rope, we came to know one another well. At (then) Mt. Wilson and Palomar Observatories and more the end of NASA’s feasibility study, he seemed the natural accurately calibrated a method of determination of Plane- person to become the chief scientist for the Large Space tary Nebula distances first developed by Joseph Shklovsky Telescope (later named the Space Telescope to make it (using photographic broadband photometry) using my Plan- easier to sell to the Congress and finally the Hubble Space etary Nebula fluxes . This led to establishing that the Cen- Telescope). However, he was well settled at Princeton, 3 in his mid-50’s, and unwilling to relocate to the Marshall one of the Scientific Instruments and then the proposal Space Flight Center in Huntsville, Alabama to give the for management of the STScI that would have based it project his full attention. He fingered me (then 35) as the in Princeton failed. To me this was cosmically unfair and appropriate person. I was willing to gamble that support I immediately gave Lyman half of my reward. To their for the LST project could created and that the observa- credit, Al Boggess of Goddard (then the Project Scientist) tory would be the most important built in my professional and Ed Weiler (then head of Astronomy in NASA head- lifetime. I left my professorship at Chicago to join an un- quarters) supported the actions of sharing the reward with approved and unfunded project to become the first Project me and my sharing it with Lyman. My first mosaic of im- Scientist for the LST. ages of the Orion Nebula were made with that reward time It is hard to appreciate today that the HST was not an and since then I’ve enjoyed good success in landing time easy sell to American astronomers. The usual response using the evolving complement of Scientific Instruments, was that the projected $300M would be better spent build- although successful proposals are like love, you can never ing 20 copies of the Palomar 200-inch. Much of my early have enough. work was organizing the science advisory structure to draw Q: You have written extensively about the Orion Nebula, in scientists from most of the major astronomy facilities including an Annual Reviews article and several other re- and to educate the community. Multiple times over the views and a popular book. How did your fascination with next several years the project was dead, unfunded by the the Orion Nebula start? Congress. I worked with John Bahcall, Lyman Spitzer, A: During my first semester at Wisconsin the storage and George Field in organizing ”advocate” campaigns to space for equipment and new graduate students was the educate and influence key members of House and Senate annular pier room under the observing floor of the origi- committees. Eventually this worked and we were finally nal observatory’s big refractor. Someone long before had approved for construction in the fiscal year 1978 budget.
Recommended publications
  • Imaging Giant Protoplanets with the Elts
    Astro2020 Science White Paper Imaging Giant Protoplanets with the ELTs Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Steph Sallum Institution: University of California, Santa Cruz Email: [email protected] Phone: (831) 459-4820 Co-authors: Vanessa Bailey (Jet Propulsion Laboratory, California Inst. of Technology) Rebecca Bernstein (Carnegie Observatories) Alan Boss (Carnegie Institution) Brendan Bowler (The University of Texas at Austin) Laird Close (University of Arizona) Thayne Currie (NASA-Ames Research Center) Ruobing Dong (University of Victoria) Catherine Espaillat (Boston University) Michael P. Fitzgerald (University of California, Los Angeles) Katherine B. Follette (Amherst College) Jonathan Fortney (University of California, Santa Cruz) Yasuhiro Hasegawa (Jet Propulsion Laboratory, California Inst. of Technology) Hannah Jang-Condell (University of Wyoming) Nemanja Jovanovic (California Inst. of Technology) Stephen R. Kane (University of California, Riverside) Quinn Konopacky (University of California, San Diego) Michael Liu (University of Hawaii) Julien Lozi (National Astronomical Observatory of Japan) Jared Males (University of Arizona) Dimitri Mawet (California Inst. of Technology / Jet Propulsion Laboratory) Benjamin Mazin (University of California, Santa Barbara) Max
    [Show full text]
  • February 2020 Page 1 of 11
    Newsletter Pretoria Centre ASSA February 2020 Page 1 of 11 NEWSLETTER FEBRUARY 2020 NEXT MEETING Venue: The auditorium behind the main building at Christian Brothers College (CBC), Mount Edmund, Pretoria Road, Silverton, Pretoria. Date and time: Wednesday 26 February at 19h15. Programme: ➢ Beginner’s Corner: “Discoveries by amateurs” by Michelle Ferreira. ➢ What’s Up: by Michael Poll. ----------------------------------- 10-minute break. Library will be open. -------------------------------- ➢ Main talk: TBA by e-mail to members. ➢ Socializing over tea/coffee and biscuits. The chairperson at the meeting will be Pierre Lourens. NEXT OBSERVING EVENING Friday 21 February from sunset onwards at the Pretoria Centre Observatory, which is also situated at CBC. Turn left immediately after entering the main gate and follow the road. TABLE OF CONTENTS Astronomy-related articles on the Internet 2 Report of observing evening on January 17th 2020 3 Astronomy basics: How Earth moves 3 Feature of the month: Does extraterrestrial life exist? 3 Observing: The Elephant’s Trunk 4 Chairperson’s report for the meeting on 22 January 2020 5 Summary of coming presentation on 26 February under “What's Up?” 6 NOTICE BOARD 7 Pretoria Centre committee 7 Astronomy-related images and video clips on the Internet 7 Determination of the Earth-Sun distance using the transit of Mercury on 11 8 November 2019 Newsletter Pretoria Centre ASSA February 2020 Page 2 of 11 Astronomy-related articles on the Internet These 2 outbound comets are likely from another solar system. https://earthsky.org/space/outbound-comets-are-likely-of-interstellar-origin? utm_source=EarthSky+News&utm_campaign=5b6df3e574- EMAIL_CAMPAIGN_2018_02_02_COPY_01&utm_medium=email&utm_term=0_c64394 5d79-5b6df3e574-394671529 Rigel in Orion is blue-white.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Spin-Orbit Misalignment in the HD 80606 Planetary System
    Spin-orbit misalignment in the HD 80606 planetary system The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Pont, F., G. Hébrard, J. M. Irwin, F. Bouchy, C. Moutou, D. Ehrenreich, T. Guillot, et al. 2009. “Spin-Orbit Misalignment in the HD 80606 Planetary System.” Astronomy & Astrophysics 502 (2): 695–703. https://doi.org/10.1051/0004-6361/200912463. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41412117 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A&A 502, 695–703 (2009) Astronomy DOI: 10.1051/0004-6361/200912463 & c ESO 2009 Astrophysics Spin-orbit misalignment in the HD 80606 planetary system, F. Pont1,G.Hébrard2, J. M. Irwin3, F. Bouchy2,4, C. Moutou5,D.Ehrenreich6, T. Guillot7, S. Aigrain1,X.Bonfils6, Z. Berta4, I. Boisse2,C.Burke10, D. Charbonneau4, X. Delfosse6, M. Desort6, A. Eggenberger6, T. Forveille6, A.-M. Lagrange6,C.Lovis8,P.Nutzman3,F.Pepe8, C. Perrier6,D.Queloz8,N.C.Santos9, D. Ségransan8, S. Udry8, and A. Vidal-Madjar2 1 School of Physics, University of Exeter, Exeter EX4 4QL, UK e-mail: [email protected]; [email protected] 2 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 4 Observatoire de Haute-Provence, 04870 Saint-Michel l’Observatoire, France 5 Laboratoire d’Astrophysique de Marseille, UMR 6110, CNRS & Univ.
    [Show full text]
  • SAG-12 Astrometry for Exoplanet Detection
    SAG-12 Astrometry for exoplanet detection Closeout SAG-12: Chair Eduardo Bendek Contributions from: S. Mark Ammons, Rus Belikov, David Bennett, Jim Breckinridge, O. Guyon, A. Gould, T. Henry, S. Hildebrandt, J. Kuhn, V. Makarov, F. Malbet, M. Shao, J. Sahlmann, Shapiro, A. Sozzetti, D. Spergel. 1 ExoPag 15, Grapevine TX, January 2nd 2017 Image Credit: NASA Ames Kepler 186f SAG-12 Closeout 1) Review answers set by the SAG goals: • What is the scientific potential of astrometry for different precision levels? • What are the technical limitations to achieving astrometry of a given precision? • Identify mission concepts that are well suited for astrometry, including synergy with European ones. • Study potential synergies with ground based observatories 2) Deliverable: • Written report • Other requests? ExoPag 15, Grapevine TX, January 2nd 2017 Astrometry science and Link to NASA Roadmaps NASA Science plan 2014, “Discover and study planets around other stars, and explore whether they could harbor life” pg. 74, => Mass measurements are necessary to answer this question Astrophysics 2010– New Worlds, New Horizons in Astronomy and Astrophysics • “search for nearby, habitable, rocky or terrestrial planets with liquid water and oxygen… “ pg. 11, 2020 Vision chapter => Mass measurements are necessary • “Stars will then be targeted that are sufficiently close to Earth that the light of the companion planets can be separated from the glare of the parent star and studied” pg. 39 paragraph 1, On the threshold chapter => Focus on nearby stars, which is compatible with direct imaging and astrometry • “the plan for the coming decade is to perform the necessary target reconnaissance surveys to inform next-generation mission designs while simultaneously completing the technology development to bring the goals within reach.” pg.
    [Show full text]
  • Annual Report / Rapport Annuel / Jahresbericht 1996
    Annual Report / Rapport annuel / Jahresbericht 1996 ✦ ✦ ✦ E U R O P E A N S O U T H E R N O B S E R V A T O R Y ES O✦ 99 COVER COUVERTURE UMSCHLAG Beta Pictoris, as observed in scattered light Beta Pictoris, observée en lumière diffusée Beta Pictoris, im Streulicht bei 1,25 µm (J- at 1.25 microns (J band) with the ESO à 1,25 microns (bande J) avec le système Band) beobachtet mit dem adaptiven opti- ADONIS adaptive optics system at the 3.6-m d’optique adaptative de l’ESO, ADONIS, au schen System ADONIS am ESO-3,6-m-Tele- telescope and the Observatoire de Grenoble télescope de 3,60 m et le coronographe de skop und dem Koronographen des Obser- coronograph. l’observatoire de Grenoble. vatoriums von Grenoble. The combination of high angular resolution La combinaison de haute résolution angu- Die Kombination von hoher Winkelauflö- (0.12 arcsec) and high dynamical range laire (0,12 arcsec) et de gamme dynamique sung (0,12 Bogensekunden) und hohem dy- (105) allows to image the disk to only 24 AU élevée (105) permet de reproduire le disque namischen Bereich (105) erlaubt es, die from the star. Inside 50 AU, the main plane jusqu’à seulement 24 UA de l’étoile. A Scheibe bis zu einem Abstand von nur 24 AE of the disk is inclined with respect to the l’intérieur de 50 UA, le plan principal du vom Stern abzubilden. Innerhalb von 50 AE outer part. Observers: J.-L. Beuzit, A.-M.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • CSIRO Australia Telescope National Facility Annual Report 2015 CSIRO Australia Telescope National Facility Annual Report 2015
    ASTRONOMY AND SPACE SCIENCE www.csiro.au CSIRO Australia Telescope National Facility Annual Report 2015 CSIRO Australia Telescope National Facility Annual Report 2015 ISSN 1038–9554 This is the report of the CSIRO Australia Telescope National Facility for the calendar year 2015, approved CSIRO Australia Telescope National Facility by the Australia Telescope Steering Committee. Annual Report 2015 Editor: Helen Sim ISSN 1038–9554 Design and typesetting: Caitlin Edwards This is the report of the CSIRO Australia Telescope PrintedNational and Facility bound for theby XXXcalendar year 2015, approved by the Australia Telescope Steering Committee. Cover image: Work being done on an antenna of the AustralianEditor: Helen SKA Sim Pathfinder. Credit: CSIRO Inner cover image: An observer in the ATNF Science Design and typesetting: Caitlin Edwards Operations Centre. Credit: Flornes Yuen Printed and bound by XXX Cover image: Work being done on an antenna of the Australian SKA Pathfinder. Credit: CSIRO Inner cover image: An observer in the ATNF Science Operations Centre. Credit: Flornes Yuen b Document title Contents Acting Director’s report ...........................................................................................................2 Chair’s report ..........................................................................................................................3 ATNF Director Lewis Ball ..........................................................................................................4 The ATNF in brief .....................................................................................................................5
    [Show full text]
  • Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 61
    CURRICULUM VITAE: KEIVAN GUADALUPE STASSUN SENIOR ASSOCIATE DEAN FOR GRADUATE EDUCATION & RESEARCH, COLLEGE OF ARTS & SCIENCE Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 615-343-7263 [email protected] DEGREES EARNED University of Wisconsin—Madison Degree: Ph.D. in Astronomy, 2000 Thesis: Rotation, Accretion, and Circumstellar Disks among Low-Mass Pre-Main-Sequence Stars Advisor: Robert D. Mathieu University of California at Berkeley Degree: A.B. in Physics/Astronomy (double major) with Honors, 1994 Thesis: A Simultaneous Photometric and Spectroscopic Variability Study of Classical T Tauri Stars Advisor: Gibor Basri EMPLOYMENT HISTORY Vanderbilt University Director, Vanderbilt Center for Autism & Innovation, 2017-present Stevenson Endowed Professor of Physics & Astronomy, 2016-present Senior Associate Dean for Graduate Education & Research, College of Arts & Science, 2015-18 Harvie Branscomb Distinguished Professor, 2015-16 Professor of Physics and Astronomy, 2011-present Director, Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), 2007-present Co-Director, Fisk-Vanderbilt Masters-to-PhD Bridge Program, 2004-15 Associate Professor of Physics and Astronomy, 2008-11 Assistant Professor of Physics and Astronomy, 2003-08 Fisk University Adjunct Professor of Physics, 2006-present University of Wisconsin—Madison NASA Hubble Postdoctoral Research Fellow, Astronomy, 2001-03 Area: Observational Studies of Low-Mass Star Formation Mentor: Robert D. Mathieu University of Wisconsin—Madison Assistant Director and Postdoctoral Fellow, NSF Graduate K-12 Teaching Fellows Program, 2000-01 Duties: Development of fellowship program, instructor for graduate course in science education research Mentor: Terrence Millar HONORS AND AWARDS Presidential Award for Excellence in Science, Math, and Engineering Mentoring—2018 AAAS Mentor of the Year—2018 HHMI Professor—2018- Research Corporation for Science Advancement SEED Award—2017 1/29 Keivan G.
    [Show full text]
  • Detailed Chemical Compositions of the Wide Binary HD 80606/80607: Revised Stellar Properties and Constraints on Planet Formation?,?? F
    A&A 614, A138 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832701 & c ESO 2018 Astrophysics Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation?;?? F. Liu1, D. Yong2, M. Asplund2, S. Feltzing1, A. J. Mustill1, J. Meléndez3, I. Ramírez4, and J. Lin2 1 Lund Observatory, Department of Astronomy and Theoretical physics, Lund University, Box 43, 22100 Lund, Sweden e-mail: [email protected] 2 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 3 Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-900, SP, Brazil 4 Tacoma Community College, 6501 S. 19th Street, Tacoma, WA 98466, USA Received 25 January 2018 / Accepted 25 February 2018 ABSTRACT Differences in the elemental abundances of planet-hosting stars in binary systems can give important clues and constraints about planet formation and evolution. In this study we performed a high-precision, differential elemental abundance analysis of a wide binary system, HD 80606/80607, based on high-resolution spectra with high signal-to-noise ratio obtained with Keck/HIRES. HD 80606 is known to host a giant planet with the mass of four Jupiters, but no planet has been detected around HD 80607 so far. We determined stellar parameters as well as abundances for 23 elements for these two stars with extremely high precision. Our main results are that (i) we confirmed that the two components share very similar chemical compositions, but HD 80606 is marginally more metal-rich than HD 80607, with an average difference of +0.013 ± 0.002 dex (σ = 0.009 dex); and (ii) there is no obvious trend between abundance differences and condensation temperature.
    [Show full text]