Coastal Fisheries in the Eastern Baltic Sea (Gulf of Finland) and Its Basin from the 15 to the Early 20Th Centuries

Total Page:16

File Type:pdf, Size:1020Kb

Coastal Fisheries in the Eastern Baltic Sea (Gulf of Finland) and Its Basin from the 15 to the Early 20Th Centuries Coastal Fisheries in the Eastern Baltic Sea (Gulf of Finland) and Its Basin from the 15 to the Early 20th Centuries Julia Lajus1,2, Alexei Kraikovski2, Dmitry Lajus3* 1 National Research University Higher School of Economics, St. Petersburg, Russia, 2 European University at St. Petersburg, St. Petersburg, Russia, 3 St. Petersburg State University, St. Petersburg, Russia Abstract The paper describes and analyzes original data, extracted from historical documents and scientific surveys, related to Russian fisheries in the southeastern part of the Gulf of Finland and its inflowing rivers during the 15- early 20th centuries. The data allow tracing key trends in fisheries development and in the abundance of major commercial species. In particular, results showed that, over time, the main fishing areas moved from the middle part of rivers downstream towards and onto the coastal sea. Changes in fishing patterns were closely interrelated with changes in the abundance of exploited fish. Anadromous species, such as Atlantic sturgeon, Atlantic salmon, brown trout, whitefish, vimba bream, smelt, lamprey, and catadromous eel were the most important commercial fish in the area because they were abundant, had high commercial value and were easily available for fishing in rivers. Due to intensive exploitation and other human-induced factors, populations of most of these species had declined notably by the early 20th century and have now lost commercial significance. The last sturgeon was caught in 1996, and today only smelt and lamprey support small commercial fisheries. According to historical sources, catches of freshwater species such as roach, ide, pike, perch, ruffe and burbot regularly occurred, in some areas exceeding half of the total catch, but they were not as important as migrating fish and no clear trends in abundance are apparent. Of documented marine catch, Baltic herring appeared in the 16th century, but did not become commercially significant until the 19th century. From then until now herring have been the dominant catch. Citation: Lajus J, Kraikovski A, Lajus D (2013) Coastal Fisheries in the Eastern Baltic Sea (Gulf of Finland) and Its Basin from the 15 to the Early 20th Centuries. PLoS ONE 8(10): e77059. doi:10.1371/journal.pone.0077059 Editor: Sebastian C. A. Ferse, Leibniz Center for Tropical Marine Ecology, Germany Received March 31, 2013; Accepted August 29, 2013; Published October 24, 2013 Copyright: ß 2013 Lajus et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported by Alfred P. Sloan Foundation (United States of America), Census of Marine Life, History of Marine Animal Populations Programme, which also provided publication fees, and a grant from Russian Foundation for Basic Research 10-04-91005-ANF_a. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction has the history of these changes been studied [4–8]. Continued investigations are essential for drawing a more comprehensive The study of fisheries history may provide information that is picture of the history of the Baltic Sea ecosystem, especially since key to understanding the history of aquatic ecosystems and to most research has covered only part of it. In particular, few studies identifying and quantifying factors that affect populations of have examined the easternmost arm of the Baltic Sea – the Gulf of particular species [1,2] Fisheries data usually appear much earlier Finland – which is the focus of this research. than other ecosystem data. Thus, they allow us to examine Bordered by Finland, Russia and Estonia, the Gulf of Finland is conditions that predate global changes caused by human activities, a shallow arm intruding inland from the Baltic’s eastern shore. It is and also reveal centennial-scale fluctuations in biota. Such frozen from December to March. The Neva River, by far the information may be useful for ecosystem management because it largest river flowing into the Baltic Sea (average annual discharge allows to estimate carrying capacity of ecosystems in times when is 2500 m3/s), causes very low water salinity in the eastern part of anthropogenic pressure was weaker than now, and to obtain the Gulf between the Neva Estuary and Kotlin Island. This information on the historical distribution of species. Historical data shallow water area is called Neva Bay or the Marquis’s Pool. In are often inconsistent, which causes serious difficulties when 2011 it was separated from the rest of the Gulf of Finland by the applying formal analytical methods, in particular, statistics. Due to St. Petersburg Dam. Due to its very low salinity, the fish fauna of this such data are not always fully taken into account. Ignoring Neva Bay is the same as in the Neva River. Salinity of the Gulf of anecdotal historical data may result in the ‘‘shifting baseline Finland increases westwards but is still rather low (up to 6–7 ppm) syndrome’’ [3], an underestimation of population abundance in near the western border of Russia [9]. The salinity gradient periods prior to official fisheries statistics that should be taken into determines fish distribution: only freshwater and migrating species consideration in the management of natural resources. are found in the eastern part, with marine species appearing in the Humans inhabited the Baltic Sea basin for millennia, and western part of the Gulf. The relatively large Narva and Luga fishing has always been important. Over time, this ecosystem has Rivers (discharge 399 and 93 m3/s respectively) flow into Narva experienced drastic anthropogenic changes, but only very recently and Luga Bays in the southwestern part of the Gulf of Finland. PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77059 Historical Fisheries in Gulf of Finland Figure 1. Site map of area where historical datasets on Russian fisheries were obtained. doi:10.1371/journal.pone.0077059.g001 There are also several smaller rivers flowing into Koporye Bay for documents from many nations to create a comprehensive history which historical fishery information is available (Fig. 1). of fisheries in that region. Data for this study were extracted from The eastern part of the Baltic has belonged to Russia since the historical Russian sources such as cadastres (scribe books) and Middle Ages. This territory was controlled by the Great Novgorod cadastre-like documents, accounting books, statistical documents, and then by the Russian State until it was temporarily conquered published reports and scientific papers found in the following by Sweden in the early 17th century. A hundred years later Peter archives: the Russian State Archives of Ancient Documents the Great put the area once more under the control of the Russian (RGADA), the Central Historical Archives of St. Petersburg Empire. Fisheries in the eastern Baltic Sea and its basin have (CGIA SPb), and the St. Petersburg Branch of the Archives of the existed since ancient times and were always an important source of Russian Academy of Sciences (PFA RAN). food and income. In some settlements professional fishermen Cadastres were the principal tax documents recording all constituted a large proportion of the population: the town of taxable economic activities and describing each district village by th Oreshek on the upper stream of the Neva River in the 16 century village. Every farm bore the name of its owner, and a description [10], and the village of Rybatskoe on the middle stream of the of arable lands and fisheries was provided. Since the 19th century th Neva River in the 18–19 centuries [11] are two examples. At the historians have used this detailed information to create a general same time, fisheries in this region did not play as important a role picture of local and regional economy in the 16th and 17th in the economy as they did in the Russian North [12–15]. Most centuries. fish products from the eastern Baltic Sea and basin were Scientists have expressed an interest in the fishes and fisheries of distributed within the region. Except for lamprey Lampetra the region since the second half of the 19th century. Among them fluviatilus, few species are known to have had wider Russian or were well-known biologists such as Karl Kessler, Nikolai international markets [16]. th Danilevsky and Oscar Grimm, whose works are cited in this Early descriptions of the fisheries since the end of the 15 paper. The first comprehensive fisheries survey in the St. century report a domination of inshore fisheries. By the second Petersburg region was carried out in 1876–77 by the St. half of the 20th century, however, fishing techniques changed Petersburg Statistical Committee (CGIA SPb, coll. 260, inv. 2, f. dramatically and fisheries moved offshore. Therefore fisheries in 6). Collecting statistical fisheries data had already begun in other the area underwent considerable changes during the last several parts of Russia, for instance, in the Russian North where the centuries. The main goal of this study was to trace major trends in Arkhangelsk Statistical Committee began data collection in 1872 development of Russian fisheries and long-term changes in the [11]. However, in the St. Petersburg region this initiative was abundance of key commercial species in the eastern part of the abandoned and catch data were not published, although the Gulf of Finland. The analysis is based on original archival sources numbers of fishermen and fishing income appeared in a and historical documents new to the literature on fish biology. Making these data available improves historical time series and multivolume edition on the demographic statistics of the St.
Recommended publications
  • Conservation Status of Birds of Prey and Owls in Norway
    Conservation status of birds of prey and owls in Norway Oddvar Heggøy & Ingar Jostein Øien Norsk Ornitologisk Forening 2014 NOF-BirdLife Norway – Report 1-2014 © NOF-BirdLife Norway E-mail: [email protected] Publication type: Digital document (pdf)/75 printed copies January 2014 Front cover: Boreal owl at breeding site in Nord-Trøndelag. © Ingar Jostein Øien Editor: Ingar Jostein Øien Recommended citation: Heggøy, O. & Øien, I. J. (2014) Conservation status of birds of prey and owls in Norway. NOF/BirdLife Norway - Report 1-2014. 129 pp. ISSN: 0805-4932 ISBN: 978-82-78-52092-5 Some amendments and addenda have been made to this PDF document compared to the 75 printed copies: Page 25: Picture of snowy owl and photo caption added Page 27: Picture of white-tailed eagle and photo caption added Page 36: Picture of eagle owl and photo caption added Page 58: Table 4 - hen harrier - “Total population” corrected from 26-147 pairs to 26-137 pairs Page 60: Table 5 - northern goshawk –“Total population” corrected from 1434 – 2036 pairs to 1405 – 2036 pairs Page 80: Table 8 - Eurasian hobby - “Total population” corrected from 119-190 pairs to 142-190 pairs Page 85: Table 10 - peregrine falcon – Population estimate for Hedmark corrected from 6-7 pairs to 12-13 pairs and “Total population” corrected from 700-1017 pairs to 707-1023 pairs Page 78: Photo caption changed Page 87: Last paragraph under “Relevant studies” added. Table text increased NOF-BirdLife Norway – Report 1-2014 NOF-BirdLife Norway – Report 1-2014 SUMMARY Many of the migratory birds of prey species in the African-Eurasian region have undergone rapid long-term declines in recent years.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Can Underwater Refuges Protect Fish Populations Against Cormorant
    1 Can underwater refuges protect fish populations against cormorant 2 predation? Evidence from a large scale multiple pond experiment 3 Pieter Lemmens1*, Luc De Meester1 and Steven A.J. Declerck2 4 5 1 Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 6 32, 3000 Leuven, Belgium; 7 2 Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 8 Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands. 9 10 * Corresponding author: [email protected] 11 12 ABSTRACT 13 Artificial structures can protect fish against predation by cormorants. However, their 14 effectiveness in larger water bodies with different fish communities in the presence of 15 natural vegetation still needs to be explored. Using a large scale field experiment with 16 twenty-four ponds stocked with differently composed fish communities, the present study 17 investigates the extent to which the effect of artificial refuges on fish is species-specific and 18 determined by the characteristics of the fish community. This study provides strong 19 experimental evidence for artificial refuges protecting fish against predation by cormorants, 20 even in the presence of submerged vegetation. The effect of the refuges was, however, 21 highly species-specific and depended on the composition of the fish community. Strong 22 positive effects of refuges on rudd and roach populations were observed, especially in ponds 23 where these species dominated from the start of the experiment. Overall, the total biomass 24 of young-of-the-year, one-year-old and adult rudd and roach was on average 500, 7 and 15 25 times lower in ponds without than in ponds with refuges, respectively.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus Waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights Into Stress Adaptation
    Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline- Saline Lake Reveals Insights into Stress Adaptation Jian Xu1, Peifeng Ji1, Baosen Wang1,2, Lan Zhao1, Jian Wang1, Zixia Zhao1, Yan Zhang1, Jiongtang Li1, Peng Xu1*, Xiaowen Sun1* 1 Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China, 2 College of Life Sciences, Tianjin Normal University, Tianjin, China Abstract Background: Amur ide (Leuciscus waleckii) is an economically and ecologically important species in Northern Asia. The Dali Nor population inhabiting Dali Nor Lake, a typical saline-alkaline lake in Inner Mongolia, is well-known for its adaptation to extremely high alkalinity. Genome information is needed for conservation and aquaculture purposes, as well as to gain further understanding into the genetics of stress tolerance. The objective of the study is to sequence the transcriptome and obtain a well-assembled transcriptome of Amur ide. Results: The transcriptome of Amur ide was sequenced using the Illumina platform and assembled into 53,632 cDNA contigs, with an average length of 647 bp and a N50 length of 1,094 bp. A total of 19,338 unique proteins were identified, and gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses classified all contigs into functional categories. Open Reading Frames (ORFs) were detected from 34,888 (65.1%) of contigs with an average length of 577 bp, while 9,638 full-length cDNAs were identified. Comparative analyses revealed that 31,790 (59.3%) contigs have a significant similarity to zebrafish proteins, and 27,096 (50.5%), 27,524 (51.3%) and 27,996 (52.2%) to teraodon, medaka and three- spined stickleback proteins, respectively.
    [Show full text]
  • From Small Scales to Large Scales –The Gulf of Finland Science Days
    Gulf of Finland Co-operation From small scales to large scales –The Gulf of Finland Science Days 2017 9th-10th October 2017 Estonian Academy of Sciences, Tallinn Photo: Riku Lumiaro Photo: Gulf of Finland Contents Co-operation ORAL PRESENTATIONS V. Andreeva, E. Voyakina* Phytoplankton structure in eastern part of Gulf of Finland A. Antsulevich*, S. Titov Development of the program for combined restoration of European pearl mussel (Margaritifera margaritifera) and salmonid fishes local populations in two rivers inflowing to the Gulf of Finland in nature protected areas of Leningrad Oblast. R. Aps*, M. Fetissov, F. Goerlandt, P. Kujala, A. Piel, J. Thomas Systems approach based maritime traffic safety management in the Gulf of Finland (Baltic Sea) J. Kotta*, R. Aps, M. Futter, K. Herkül Assessing the environmental impacts and nutrient removal potential of mussel farms in the northeastern Baltic Sea J. Björkqvist*, O. Vähä-Piikkiö, L. Tuomi, V. Alari A spatially extensive validation of three different wave models in the Helsinki coastal archipelago A. Ivanchenko, D. Burkov* The state and environmental consequences of pollution air pool of the Gulf of Finland transport emissions K. Rubtsova, T. Mironenko, E. Daev* Preliminary assessment of water and sediment pollutions in littoral zone of the Kotlin Island. P. Ekholm*, M. Ollikainen, E. Punttila, S. Puroila, A. Kosenius Reducing agricultural phosphorus load by gypsum: results from the first year after amendment M. Fetissov*, R. Aps, P. Heinla, J. Kinnunen, O. Korneev, L. Lees, R. Varjopuro Ecosystem-based Maritime Spatial Planning – impact on navigational safety from offshore renewable energy developments V. Fleming-Lehtinen*, H. Parner, J.
    [Show full text]
  • Species Fact Sheets Cyclopterus Lumpus (Linnaeus, 1758)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Cyclopterus lumpus (Linnaeus, 1758) Cyclopterus lumpus: (click for more) Cyclopterus lumpus: (click for more) Synonyms Lumpus vulgaris McMurtrie, 1831, (Anim. King. Cuvier). Cyclopterus lumpus forma baltica Smitt, 1892: 294. Cyclopterus lumpus var. hudsonius Cox, 1920: 214. FAO Names En - Lumpfish(=Lumpsucker), Fr - Lompe, Sp - Liebre de mar. 3Alpha Code: LUM Taxonomic Code: 1782000301 Diagnostic Features Body compressed, deep anteriorly. Head relatively small, less than 5 in standard length. Gill openings large, extending below level of upper pectoral finray. Disc 6-7 in standard length. First dorsal fin with 6-8 spines, completely covered by thick skin forming a characteristic hig crest; no spines visible; second dorsal fin with 9- 11 rays. Body depth varies from 2.0 times in standard length in large specimens (>200 mm SL) to 3.0 times in individuals less than 30 mm SL. Bony tubercles well developed on head and body. Usually there are 3 distinct rows of large tubercles laterally, with much smaller tubercles scattered between the rows. Colour variable, usually bluish-grey, yellow-green or yellow-brown. Spawning males are reddish on sides, fins and ventral surface. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer Throughout the north of 45º N latitude (Portugal and southern Bay of Biscay) in appropriate habitats to Spitsbergen, including Iceland. Elsewhere, know from western Greenland, Hudson Bay, and the coasts of North America as far south as Maryland. Habitat and Biology Benthic on rocky bottomsusually between 50 and 150 m, but occasionally to 400 m;may occur in floating seaweed; basically solitary rather than a schooling fish.Feeding more intensive in the winter; favoured are ctenophores, medusae, small crustaceans, polychaetes worms and small fishes.
    [Show full text]
  • The Morphology and Sculpture of Ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea
    Estonian Journal of Earth Sciences, 2010, 59, 4, 263–276 doi: 10.3176/earth.2010.4.03 The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea Tiiu Märssa, Janek Leesb, Mark V. H. Wilsonc, Toomas Saatb and Heli Špilevb a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia; [email protected], [email protected], [email protected] c Department of Biological Sciences and Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, Alberta T6G 2E9 Canada; [email protected] Received 31 August 2009, accepted 28 June 2010 Abstract. Small to very small bones (ossicles) in one species each of the families Cyclopteridae and Liparidae (Cottiformes) of the Baltic Sea are described and for the first time illustrated with SEM images. These ossicles, mostly of dermal origin, include dermal platelets, scutes, tubercles, prickles and sensory line segments. This work was undertaken to reveal characteristics of the morphology, sculpture and ultrasculpture of these small ossicles that could be useful as additional features in taxonomy and systematics, in a manner similar to their use in fossil material. The scutes and tubercles of the cyclopterid Cyclopterus lumpus Linnaeus are built of small denticles, each having its own cavity viscerally. The thumbtack prickles of the liparid Liparis liparis (Linnaeus) have a tiny spinule on a porous basal plate; the small size of the prickles seems to be related to their occurrence in the exceptionally thin skin, to an adaptation for minimizing weight and/or metabolic cost and possibly to their evolution from isolated ctenii no longer attached to the scale plates of ctenoid scales.
    [Show full text]
  • Usage of Experience of Development of Territories with Similar Socio- Economic Characteristics Taken As a Whole As an Instrument of Kronshtadt Sustainable Development
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Kozyreva, Maria Conference Paper Usage of experience of development of territories with similar socio- economic characteristics taken as a whole as an instrument of Kronshtadt sustainable development 43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland Provided in Cooperation with: European Regional Science Association (ERSA) Suggested Citation: Kozyreva, Maria (2003) : Usage of experience of development of territories with similar socio-economic characteristics taken as a whole as an instrument of Kronshtadt sustainable development, 43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland, European Regional Science Association (ERSA), Louvain-la-Neuve This Version is available at: http://hdl.handle.net/10419/115987 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • And Perca Fluviatilis
    International Journal of Environmental Research and Public Health Article Using Rutilus rutilus (L.) and Perca fluviatilis (L.) as Bioindicators of the Environmental Condition and Human Health: Lake Ła ´nskie,Poland Joanna Łuczy ´nska 1,* , Beata Paszczyk 1, Marek Jan Łuczy ´nski 2, Monika Kowalska-Góralska 3 , Joanna Nowosad 4 and Dariusz Kucharczyk 4 1 Chair of Commodity and Food Analysis, University of Warmia and Mazury in Olsztyn, ul. Plac Cieszy´nski1, 10-726 Olsztyn, Poland; [email protected] 2 The Stanisław Sakowicz Inland Fisheries Institute in Olsztyn, ul. Oczapowskiego 10, 10-719 Olsztyn, Poland; mj.luczynski@infish.com.pl 3 Department of Limnology and Fishery, Institute of Animal Breeding, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, ul. J. Chełmo´nskiego38 c, 51-630 Wrocław, Poland; [email protected] 4 Department of Ichthyology and Aquaculture, Warmia and Mazury University, Al. Warszawska 117A, 10-701 Olsztyn, Poland; [email protected] (J.N.); [email protected] (D.K.) * Correspondence: [email protected]; Tel.: +48-89523-4165 Received: 15 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: The aim of this study was to determine the mercury content and fatty acids profile in roach (Rutilus rutilus L.) and European perch (Perca fluviatilis L.) from Lake Ła´nskie(Poland). Mercury content was higher in the muscles than other organs in both species (p < 0.05). Mercury accumulates along the food chain of the lake’s ecosystem. The value of the bioconcentration factor (BCF) indicated that Hg had accumulated in the highest amounts in muscles and in the other organs as follows: muscles > liver > gills > gonads.
    [Show full text]
  • Pskov from Wikipedia, the Free Encyclopedia Coordinates: 57°49′N 28°20′E
    Create account Log in Article Talk Read Edit View history Pskov From Wikipedia, the free encyclopedia Coordinates: 57°49′N 28°20′E Pskov (Russian: Псков; IPA: [pskof] ( listen), ancient Russian spelling "Плѣсковъ", Pleskov) is Navigation Pskov (English) a city and the administrative center of Pskov Oblast, Russia, located about 20 kilometers Псков (Russian) Main page (12 mi) east from the Estonian border, on the Velikaya River. Population: 203,279 (2010 [1] Contents Census);[3] 202,780 (2002 Census);[5] 203,789 (1989 Census).[6] - City - Featured content Current events Contents Random article 1 History Donate to Wikipedia 1.1 Early history 1.2 Pskov Republic 1.3 Modern history Interaction 2 Administrative and municipal status Help 3 Landmarks and sights About Wikipedia 4 Climate Community portal 5 Economy Recent changes 6 Notable people Krom (or Kremlin) in Pskov Contact Wikipedia 7 International relations 7.1 Twin towns and sister cities Toolbox 8 References 8.1 Notes What links here 8.2 Sources Related changes 9 External links Upload file Special pages History [edit] Location of Pskov Oblast in Russia Permanent link Page information Data item Early history [edit] Cite this page The name of the city, originally spelled "Pleskov", may be loosely translated as "[the town] of purling waters". Its earliest mention comes in 903, which records that Igor of Kiev married a [citation needed] Print/export local lady, St. Olga. Pskovians sometimes take this year as the city's foundation date, and in 2003 a great jubilee took place to celebrate Pskov's 1,100th anniversary. Create a book Pskov The first prince of Pskov was Vladimir the Great's younger son Sudislav.
    [Show full text]
  • Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
    Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews.
    [Show full text]