Recurrent Evolution of DNA-Binding Motifs in the Drosophila Centromeric Histone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Pentatomidae) DISSERTATION Presented
Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts. -
Topography of the Histone Octamer Surface: Repeating Structural Motifs Utilized in the Docking of Nucleosomal
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 10489-10493, November 1993 Biochemistry Topography of the histone octamer surface: Repeating structural motifs utilized in the docking of nucleosomal DNA (histone fold/helix-strand-helix motif/parallel fi bridge/binary DNA binding sites/nucleosome) GINA ARENTS* AND EVANGELOS N. MOUDRIANAKIS*t *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and tDepartment of Biology, University of Athens, Athens, Greece Communicated by Christian B. Anfinsen, August 5, 1993 ABSTRACT The histone octamer core of the nucleosome is interactions. The model offers strong predictive criteria for a protein superhelix offour spirally arrayed histone dimers. The structural and genetic biology. cylindrical face of this superhelix is marked by intradimer and interdimer pseudodyad axes, which derive from the nature ofthe METHODS histone fold. The histone fold appears as the result of a tandem, parallel duplication of the "helix-strand-helix" motif. This The determination of the structure of the histone octamer at motif, by its occurrence in the four dimers, gives rise torepetitive 3.1 A has been described (3). The overall shape and volume structural elements-i.e., the "parallel 13 bridges" and the of this tripartite structure is in agreement with the results of "paired ends of helix I" motifs. A preponderance of positive three independent studies based on differing methodolo- charges on the surface of the octamer appears as a left-handed gies-i.e., x-ray diffraction, neutron diffraction, and electron spiral situated at the expected path of the DNA. We have microscopic image reconstruction (4-6). Furthermore, the matched a subset of DNA pseudodyads with the octamer identification of the histone fold, a tertiary structure motif of pseudodyads and thus have built a model of the nucleosome. -
Differential Evolvability Along Lines of Least Resistance of Upper and Lower Molars in Island House Mice
Differential Evolvability Along Lines of Least Resistance of Upper and Lower Molars in Island House Mice Sabrina Renaud1*, Sophie Pantalacci2, Jean-Christophe Auffray3 1 Laboratoire de Biome´trie et Biologie Evolutive, Universite´ Lyon 1, CNRS, Villeurbanne, France, 2 Molecular Zoology Team, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, Ecole Normale Supe´rieure de Lyon, Lyon, France, 3 Institut des Sciences de l’Evolution, Universite´ Montpellier 2, CNRS, Montpellier, France Abstract Variation within a population is a key feature in evolution, because it can increase or impede response to selection, depending on whether or not the intrapopulational variance is correlated to the change under selection. Hence, main directions of genetic variance have been proposed to constitute ‘‘lines of least resistance to evolution’’ along which evolution would be facilitated. Yet, the screening of selection occurs at the phenotypic level, and the phenotypic variance is not only the product of the underlying genetic variance, but also of developmental processes. It is thus a key issue for interpreting short and long term evolutionary patterns to identify whether main directions of phenotypic variance indeed constitute direction of facilitated evolution, and whether this is favored by developmental processes preferably generating certain phenotypes. We tackled these questions by a morphometric quantification of the directions of variance, compared to the direction of evolution of the first upper and lower molars of wild continental and insular house mice. The main phenotypic variance indeed appeared as channeling evolution between populations. The upper molar emerged as highly evolvable, because a strong allometric component contributed to its variance. -
(Non)Parallel Evolution 3 4 Daniel I. Bolnick1,2*, Rowan Barrett3, Krista
1 2 3 (Non)Parallel Evolution 4 5 Daniel I. Bolnick1,2*, Rowan Barrett3, Krista Oke3,4 , Diana J. Rennison5 , Yoel E. Stuart1 6 7 1 Department of Integrative Biology, University of Texas at Austin, Austin TX 78712, USA; 8 [email protected]; [email protected] 9 2 Department of Ecology and Evolution, University of Connecticut, Storrs CT 06268, USA (as of 10 07/2018) 11 3 Redpath Museum, McGill University, Montreal, Quebec, Canada; [email protected] 12 4 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa 13 Cruz, CA, 95060, USA; [email protected] 14 5 Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; 15 [email protected] 16 17 * Corresponding author: Email: [email protected] Telephone: +011 (512) 471-2824 18 19 20 Running title: “(Non)Parallel Evolution” 21 22 1 23 Abstract 24 Parallel evolution across replicate populations has provided evolutionary biologists with iconic 25 examples of adaptation. When multiple populations colonize seemingly similar habitats, they 26 may evolve similar genes, traits, or functions. Yet, replicated evolution in nature or in the lab 27 often yields inconsistent outcomes: some replicate populations evolve along highly similar 28 trajectories, whereas other replicate populations evolve to different extents or in atypical 29 directions. To understand these heterogeneous outcomes, biologists are increasingly treating 30 parallel evolution not as a binary phenomenon but rather as a quantitative continuum ranging 31 from nonparallel to parallel. By measuring replicate populations’ positions along this 32 “(non)parallel” continuum, we can test hypotheses about evolutionary and ecological factors that 33 influence the likelihood of repeatable evolution. -
Functional Domains for Assembly of Histones H3 and H4 Into the Chromatin of Xenopus Embryos
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12780–12785, November 1996 Biochemistry Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos LITA FREEMAN,HITOSHI KURUMIZAKA, AND ALAN P. WOLFFE* Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2710 Communicated by Stuart L. Schreiber, Harvard University, Cambridge, MA, September 3, 1996 (received for review May 31, 1996) ABSTRACT Histones H3 and H4 have a well defined Modification of the N-terminal tail of H4 by acetylation has structural role in the nucleosome and an established role in been correlated with both transcription (25, 26) and nucleo- the regulation of transcription. We have made use of a some assembly (27, 28). Direct evidence for a causal role for microinjection strategy using Xenopus embryos to define the H4 acetylation in these events is, however, yet to be estab- minimal structural components of H3 and H4 necessary for lished. Tryptic removal of the N-terminal tail of histone H4 nucleosome assembly into metazoan chromosomes in vivo.We from the nucleosome or acetylation of the tail does not find that both the N-terminal tail of H4, including all sites of influence the helical periodicity of DNA in the nucleosome but acetylation, and the C-terminal a-helix of the H4 histone fold might influence the exact path taken by the double helix as it domain are dispensable for chromatin assembly. The N- wraps around the histone fold domains of the core histones (29, terminal tail and an N-terminal a-helix of H3 are also 30). -
Johnson Stander 2020
Gene Regulatory Network Homoplasy Underlies Recurrent Sexually Dimorphic Fruit Fly Pigmentation Jesse Hughes, Rachel Johnson, and Thomas M. Williams The Department of Biology at the University of Dayton; 300 College Park, Dayton, OH 45469 ABSTRACT Widespread Dimorphism in Sophophora and Beyond Pigment Metabolic Pathway Utilization in H. duncani Species with dimorphic tergite pigmentation are Traits that appear discontinuously along phylogenies may be explained by independent ori- widespread throughout the Drosophila genus. (A-E) Female and (A’-E’) male expressions of H. duncani gins (homoplasy) or repeated loss (homology). While discriminating between these models Sophophora subgenus species groups and species pigment metabolic pathway genes, and (F and F’) cartoon is difficult, the dissection of gene regulatory networks (GRNs) which drive the development are indicated by the gray background. D. busckii and representation of the pigmentation phenotype. (G) of such repeatedly occurring traits can offer a mechanistic window on this fundamental Summary of the H. duncani pathway use includes robust D. funebris are included as non-Sophophora species problem. The GRN responsible for the male-specific pattern of Drosophila (D.) melano- expression of all genes, with dimorphic expressions of Ddc, from the Drosophila genus that respectively exhibit gaster melanic tergite pigmentation has received considerable attention. In this system, a ebony, tan, and yellow. (A, A’) pale, (B, B’) Ddc, (C, C’) monomorphic and dimorphic patterns of tergite metabolic pathway of pigmentation enzyme genes is expressed in spatial and sex-specific ebony, (D, D’) tan, and (E, E’) yellow. Red arrowheads pigmentation. The homologous A5 and A6 segment (i.e., dimorphic) patterns. The dimorphic expression of several genes is regulated by the indicate robust patterns of dimorphic expression in the tergites are indicated for each species, the segments Bab transcription factors, which suppress pigmentation enzyme expression in females, by dorsal abdominal epidermis. -
1 Recurrent Evolution of Two Competing Haplotypes in An
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.096024; this version posted May 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Recurrent evolution of two competing haplotypes in an insect DNA virus Tom Hill1*, Robert L. Unckless1 1. 4055 Haworth Hall, The Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045. * Corresponding author - Email: [email protected] Keywords: nudivirus, Drosophila innubila, DiNV, virulence, coevolution 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.096024; this version posted May 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Hosts and viruses are constantly evolving in response to each other: as hosts attempt to suppress the virus, 3 the virus attempts to evade and suppress the host’s immune system. This arms race results in the evolution 4 of novel pathways in both the host and virus to gain the upper hand. Here we describe the coevolution 5 between Drosophila species and a common and virulent DNA virus. We identify two distinct viral types 6 that differ 100-fold in viral titer in infected individuals, with similar effects across multiple species. -
Rapid and Widespread De Novo Evolution of Kin Discrimination
Rapid and widespread de novo evolution of kin discrimination Olaya Renduelesa,1, Peter C. Zeeb,c, Iris Dinkelackerd, Michaela Amherda, Sébastien Wielgossa, and Gregory J. Velicera,b,d aInstitute for Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland; bDepartment of Biology, Indiana University, Bloomington, IN 47405; cDepartment of Biology, California State University-Northridge, Northridge, CA 91330; and dDepartment of Evolutionary Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany Edited by Richard E. Lenski, Michigan State University, East Lansing, MI, and approved June 1, 2015 (received for review February 3, 2015) Diverse forms of kin discrimination, broadly defined as alteration that formed between distinct nonmerging colonies of the bacterium of social behavior as a function of genetic relatedness among Proteus mirabilis (21) and has since been found in several other interactants, are common among social organisms from microbes species (20, 22). For example, a large number of such colony- to humans. However, the evolutionary origins and causes of kin- merger incompatibilities evolved among closely related genotypes of discriminatory behavior remain largely obscure. One form of kin the cooperative bacterium Myxococcus xanthus in a natural centi- discrimination observed in microbes is the failure of genetically meter-scale population (20). Irrespective of their original evolu- distinct colonies to merge freely upon encounter. Here, we first use tionary cause(s), the emergence of colony-merger incompatibilities natural isolates of the highly social bacterium Myxococcus xanthus to in nature is likely to have profound implications for the distribution show that colony-merger incompatibilities can be strong barriers to of social interactions among genotypes during cooperative pro- social interaction, particularly by reducing chimerism in multicellular cesses. -
Crystal Structure of the Nucleosome Core Particle at 2.8Å Resolution Karolin Luger, Armin W
Crystal structure of the nucleosome core particle at 2.8Å resolution Karolin Luger, Armin W. Mader, Robin K. Richmond, David R Sargent & Timothy J. Richmond Institut fur Molekularbiologie und Biophysik ETHZ, ETH-Hönggerberg, CH-8093 Zürich, Switzerland Nature, Vol 389, pages 251-260 The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyros of the DNA superhelix to contact neighboring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry. DNA in chromatin is organized in arrays of nucleosomes (1). Two copies of each histone protein, H2A, H2B, H3 and H4, are assembled into an octamer that has 145-147 base pairs (bp) of DNA wrapped around it to form a nucleosome core (of relative molecular mass 206K). This highly conserved nucleoprotein complex occurs essentially every 200 ± 40 bp throughout all eukaryotic genomes (2). The repeating nucleosome cores further assemble into higher-order structures which are stabilized by the linker histone H1 and these compact linear DNA overall by a factor of 30-40. The nucleosome (nucleosome core, linker DNA and H1) thereby shapes the DNA molecule both at the atomic level through DNA bending, and on the much larger scale of genes by forming higher- order helices (3). -
Predicting the Genetic Loci of Past Evolution
bioRxiv preprint doi: https://doi.org/10.1101/205153; this version posted October 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Predicting the genetic loci of past evolution Virginie Courtier-Orgogozo1 and Arnaud Martin2 1CNRS UMR 7592, Institut Jacques Monod, Paris, France 2Department of Biological Sciences, The George Washington University, Washington, DC, USA *Correspondence to: [email protected] 34,941 characters excluding spaces (excluding tables) Abstract Repetitions in the mutations found to be responsible for independent evolution of similar phenotypes in various taxa have led some biologists to propose that for certain evolutionary changes the causal mutations are predictable. We examine here the nature of the predictions that have been made and their associated arguments. Predictions about the loci of past evolution are retrodictions, i.e. inferences about events that occurred in the past. They are not based on elaborate models and they derive mainly from the observation of repeated cases of genetic evolution. Predictions at the nucleotide level or at the gene level have a higher inference gain than those for broader categories of genetic changes such as cis-regulatory mutations. Introduction Evolution reveals itself by the changes in observable characteristics of biological populations over successive generations. Here we focus on the DNA mutations underlying phenotypic changes that have occurred during natural evolution of populations or species, as well as through domestication and experimental evolution. -
Containing Protein That Replaces TAF6 in Drosophila SAGA Is Required for SAGA-Dependent Gene Expression
Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION shown previously that Drosophila SAGA (dSAGA) in- A novel histone fold domain- cludes the orthologs of most components of the yeast containing protein that replaces SAGA (ySAGA) complex (Supplemental Table S1; Kusch et al. 2003; Muratoglu et al. 2003; Guelman et al. 2006; TAF6 in Drosophila SAGA is Kurshakova et al. 2007; Weake et al. 2008). In addition, required for SAGA-dependent dSAGA contains subunits that are unique to the fly com- plex, such as the WD repeat-containing protein WDA gene expression (Guelman et al. 2006). SAGA is essential for development in multicellular Vikki M. Weake,1 Selene K. Swanson,1 organisms, and Gcn5 is required for viability in both Arcady Mushegian,1,2 Laurence Florens,1 mice and Drosophila (Xu et al. 2000; Carre et al. 2005). Michael P. Washburn,1,3 Susan M. Abmayr,1,4 Furthermore, mutations that disrupt the HAT activity of and Jerry L. Workman1,5 dSAGA, such as ada2b and wda, result in lethality in flies (Qi et al. 2004; Pankotai et al. 2005; Guelman et al. 2006). 1Stowers Institute for Medical Research, Kansas City, Missouri Moreover, mutations that specifically affect the ubiquitin 64110, USA; 2Department of Microbiology, Molecular Genetics protease activity of dSAGA are lethal, and result in and Immunology, University of Kansas Medical Center, Kansas defects in axon targeting in the larval eye–brain complex City, Kansas 66160, USA; 3Department of Pathology and (Weake et al. 2008). To characterize dSAGA more fully, Laboratory Medicine, University of Kansas Medical Center, we sought to identify orthologs of all ySAGA compo- Kansas City, Kansas 66160, USA; 4Department of Anatomy and nents, as there are subunits present in the ySAGA and Cell Biology, University of Kansas Medical Center, Kansas City, human SAGA complexes for which orthologs have not Kansas 66160, USA yet been identified in flies (Rodriguez-Navarro 2009). -
Histone Variants — Ancient Wrap Artists of the Epigenome
REVIEWS CHROMATIN DYNAMICS Histone variants — ancient wrap artists of the epigenome Paul B. Talbert and Steven Henikoff Abstract | Histones wrap DNA to form nucleosome particles that compact eukaryotic genomes. Variant histones have evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, sperm packaging and other processes. ‘Universal’ histone variants emerged early in eukaryotic evolution and were later displaced for bulk packaging roles by the canonical histones (H2A, H2B, H3 and H4), the synthesis of which is coupled to DNA replication. Further specializations of histone variants have evolved in some lineages to perform additional tasks. Differences among histone variants in their stability, DNA wrapping, specialized domains that regulate access to DNA, and post-translational modifications, underlie the diverse functions that histones have acquired in evolution. Histone chaperone Nearly all eukaryotes wrap their DNA around histones to In this Review, we consider the diversity and evolution of An escort protein that form nucleosomes that compact the genome while still core histone variants, from archaeal ancestors to univer- performs a transfer reaction on allowing access for active processes such as trans cription, sal eukaryotic variants to lineage-specific variants and a histone, such as deposition replication and DNA repair. Each nucleosome core variant-specific post-translational modifications (PTMs). onto DNA, eviction from DNA, transfer to another chaperone particle comprises ~ 147 bp of DNA wrapped in 1.7 turns We summarize their diverse and dynamic interactions as or enzyme, or storage for later around a protein octamer of 2 molecules of each of the 4 ‘wrap artists’ of DNA and discuss recent developments use.