Histone Variants — Ancient Wrap Artists of the Epigenome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Datasheet for Histone H2B Human, Recombinant (M2505; Lot 0031404)
Supplied in: 20 mM Sodium Phosphate (pH 7.0), Quality Control Assays: Ionization-Time of Flight Mass Spectrometry). The Histone H2B 300 mM NaCl and 1 mM EDTA. SDS-PAGE: 0.5 µg, 1.0 µg, 2.0 µg, 5.0 µg, average mass calculated from primary sequence Human, Recombinant 10.0 µg Histone H2B Human, Recombinant were is 13788.97 Da. This confirms the protein identity Note: The protein concentration (1 mg/ml, 73 µM) loaded on a 10–20% Tris-Glycine SDS-PAGE gel as well as the absence of any modifications of the is calculated using the molar extinction coefficient and stained with Coomassie Blue. The calculated histone. 1-800-632-7799 for Histone H2B (6400) and its absorbance at molecular weight is 13788.97 Da. Its apparent [email protected] 280 nm (3,4). 1.0 A units = 2.2 mg/ml N-terminal Protein Sequencing: Protein identity 280 molecular weight on 10–20% Tris-Glycine SDS- www.neb.com was confirmed using Edman Degradation to PAGE gel is ~17 kDa. M2505S 003140416041 Synonyms: Histone H2B/q, Histone H2B.1, sequence the intact protein. Histone H2B-GL105 Mass Spectrometry: The mass of purified Histone H2B Human, Recombinant is 13788.5 Da Protease Assay: After incubation of 10 µg of M2505S B r kDa 1 2 3 4 5 6 7 as determined by ESI-TOF MS (Electrospray Histone H2B Human, Recombinant with a standard 250 4.0 mixture of proteins for 2 hours at 37°C, no 100 µg 1.0 mg/ml Lot: 0031404 150 13788.5 100 proteolytic activity could be detected by SDS- RECOMBINANT Store at –20°C Exp: 4/16 80 PAGE. -
Histone Variants: Deviants?
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Histone variants: deviants? Rohinton T. Kamakaka2,3 and Sue Biggins1 1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 2UCT/National Institutes of Health, Bethesda, Maryland 20892, USA Histones are a major component of chromatin, the pro- sealing the two turns of DNA. The nucleosome filament tein–DNA complex fundamental to genome packaging, is then folded into a 30-nm fiber mediated in part by function, and regulation. A fraction of histones are non- nucleosome–nucleosome interactions, and this fiber is allelic variants that have specific expression, localiza- probably the template for most nuclear processes. Addi- tion, and species-distribution patterns. Here we discuss tional levels of compaction enable these fibers to be recent progress in understanding how histone variants packaged into the small volume of the nucleus. lead to changes in chromatin structure and dynamics to The packaging of DNA into nucleosomes and chroma- carry out specific functions. In addition, we review his- tin positively or negatively affects all nuclear processes tone variant assembly into chromatin, the structure of in the cell. While nucleosomes have long been viewed as the variant chromatin, and post-translational modifica- stable entities, there is a large body of evidence indicat- tions that occur on the variants. ing that they are highly dynamic (for review, see Ka- makaka 2003), capable of being altered in their compo- Supplemental material is available at http://www.genesdev.org. sition, structure, and location along the DNA. Enzyme Approximately two meters of human diploid DNA are complexes that either post-translationally modify the packaged into the cell’s nucleus with a volume of ∼1000 histones or alter the position and structure of the nucleo- µm3. -
The Mechanism of Cross-Talk Between Histone H2B Ubiquitination and H3 Methylation by Dot1l
bioRxiv preprint doi: https://doi.org/10.1101/501098; this version posted December 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The mechanism of cross-talk between histone H2B ubiquitination and H3 methylation by Dot1L Evan J. Worden, Niklas Hoffmann, Chad Hicks and Cynthia Wolberger* Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA *Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/501098; this version posted December 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Methylation of histone H3, lysine 79 (H3K79), by Dot1L is a hallmark of actively transcribed genes that depends on monoubiquitination of H2B at lysine 120 (H2B-Ub), and is a well-characterized example of histone modification cross-talk that is conserved from yeast to humans. The mechanism by which H2B-Ub stimulates Dot1L to methylate the relatively inaccessible histone core H3K79 residue is unknown. The 3.0 Å resolution cryo-EM structure of Dot1L bound to ubiquitinated nucleosome reveals that Dot1L contains binding sites for both ubiquitin and the histone H4 tail, which establish two regions of contact that stabilize a catalytically competent state and positions the Dot1L active site over H3K79. -
H2A Ubiquitylated Mononucleosomes Next-Generation Substrates for Deubiquitylation Enzyme (DUB) Assays
H2A Ubiquitylated Mononucleosomes Next-Generation Substrates for Deubiquitylation Enzyme (DUB) Assays Next-Generation DUB Assay Substrates are here. Get results that matter. • Enabling access to DUB targets that require nucleosome substrates in vitro • Proper substrates for DUB inhibitor development • Unmatched quality control for results you can trust Histone monoubiquitylation (ub1) acts as a critical signaling center that regulates cascades of downstream epigenetic enzymes to modify gene transcription. The physiological substrate for chromatin-targeting DUBs is the nucleosome (Nuc), the basic repeating unit of chromatin (comprised of histone proteins wrapped by DNA). Current high-throughput screening (HTS) DUB assays use unnatural modified or diubiquitin conjugates as substrates, which poorly mimic endogenous targets in vivo. In collaboration with Boston Biochem, EpiCypher is delivering ubiquitylated nucleosome substrates for drug screening and chromatin biology research. FIGURE 1 Ub Ub Schematic representation of mononucleosoms assembled from recombinant human histones Ub expressed in E. coli (two each of histones H2A, H2B, H3 and H4). H2A H2A Approximately 50% of the nucleosomes are monoubiquitylated on histone H2A lysine 118, while the other 50% are monoubiquitylated on both histone H2A lysine 118 and histone H2A lysine 119 (multi-mono- ubiquitylated). Next Generation Deubiquitylation Enzyme (DUB) Assay Substrates EpiCypher has developed recombinant mononucleosomes carrying monoubiquitylation on H2A. These ubiquitylated nucleosomes are generated enzymatically using the RING1B/BMI1 ubiquitin ligase complex. The resulting product is highly pure (>95% of nucleosomes are ubiquitylated) and consists of nucleosomes monoubiquitylated at H2A lysine 118/119 (Figure 1; the physiological target of RING1B/BMI1 in vivo). FIGURE 2 Deubiquitylation Assay Data: Mononucleosomes H2A Ubiquityl, Recombinant Human, Biotinylated (1 μg) were employed in a deubiquitylation (DUB) assay using no enzyme (Lane 1), USP5 (Lane 2) or USP16 (Lane 3) and run on an SDS PAGE gel. -
Topography of the Histone Octamer Surface: Repeating Structural Motifs Utilized in the Docking of Nucleosomal
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 10489-10493, November 1993 Biochemistry Topography of the histone octamer surface: Repeating structural motifs utilized in the docking of nucleosomal DNA (histone fold/helix-strand-helix motif/parallel fi bridge/binary DNA binding sites/nucleosome) GINA ARENTS* AND EVANGELOS N. MOUDRIANAKIS*t *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and tDepartment of Biology, University of Athens, Athens, Greece Communicated by Christian B. Anfinsen, August 5, 1993 ABSTRACT The histone octamer core of the nucleosome is interactions. The model offers strong predictive criteria for a protein superhelix offour spirally arrayed histone dimers. The structural and genetic biology. cylindrical face of this superhelix is marked by intradimer and interdimer pseudodyad axes, which derive from the nature ofthe METHODS histone fold. The histone fold appears as the result of a tandem, parallel duplication of the "helix-strand-helix" motif. This The determination of the structure of the histone octamer at motif, by its occurrence in the four dimers, gives rise torepetitive 3.1 A has been described (3). The overall shape and volume structural elements-i.e., the "parallel 13 bridges" and the of this tripartite structure is in agreement with the results of "paired ends of helix I" motifs. A preponderance of positive three independent studies based on differing methodolo- charges on the surface of the octamer appears as a left-handed gies-i.e., x-ray diffraction, neutron diffraction, and electron spiral situated at the expected path of the DNA. We have microscopic image reconstruction (4-6). Furthermore, the matched a subset of DNA pseudodyads with the octamer identification of the histone fold, a tertiary structure motif of pseudodyads and thus have built a model of the nucleosome. -
The Role of Histone H2av Variant Replacement and Histone H4 Acetylation in the Establishment of Drosophila Heterochromatin
The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin Jyothishmathi Swaminathan, Ellen M. Baxter, and Victor G. Corces1 Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA Activation and repression of transcription in eukaryotes involve changes in the chromatin fiber that can be accomplished by covalent modification of the histone tails or the replacement of the canonical histones with other variants. Here we show that the histone H2A variant of Drosophila melanogaster, H2Av, localizes to the centromeric heterochromatin, and it is recruited to an ectopic heterochromatin site formed by a transgene array. His2Av behaves genetically as a PcG gene and mutations in His2Av suppress position effect variegation (PEV), suggesting that this histone variant is required for euchromatic silencing and heterochromatin formation. His2Av mutants show reduced acetylation of histone H4 at Lys 12, decreased methylation of histone H3 at Lys 9, and a reduction in HP1 recruitment to the centromeric region. H2Av accumulation or histone H4 Lys 12 acetylation is not affected by mutations in Su(var)3-9 or Su(var)2-5. The results suggest an ordered cascade of events leading to the establishment of heterochromatin and requiring the recruitment of the histone H2Av variant followed by H4 Lys 12 acetylation as necessary steps before H3 Lys 9 methylation and HP1 recruitment can take place. [Keywords: Chromatin; silencing; transcription; histone; nucleus] Received September 8, 2004; revised version accepted November 4, 2004. The basic unit of chromatin is the nucleosome, which is guchi et al. 2004). The role of histone variants, and spe- made up of 146 bp of DNA wrapped around a histone cially those of H3 and H2A, in various nuclear processes octamer composed of two molecules each of the histones has been long appreciated (Wolffe and Pruss 1996; Ah- H2A, H2B, H3, and H4. -
Transcriptional Regulation by Histone Ubiquitination and Deubiquitination
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Transcriptional regulation by histone ubiquitination and deubiquitination Yi Zhang1 Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA Ubiquitin (Ub) is a 76-amino acid protein that is ubiqui- The fact that histone ubiquitination occurs in the largely tously distributed and highly conserved throughout eu- monoubiquitinated form and is not linked to degrada- karyotic organisms. Whereas the extreme C-terminal tion, in combination with the lack of information regard- four amino acids are in a random coil, its N-terminal 72 ing the responsible enzymes, prevented us from under- amino acids have a tightly folded globular structure (Vi- standing the functional significance of this modification. jay-Kumar et al. 1987; Fig. 1A). Since its discovery ∼28 Recent identification of the E2 and E3 proteins involved years ago (Goldknopf et al. 1975), a variety of cellular in H2B ubiquitination (Robzyk et al. 2000; Hwang et al. processes including protein degradation, stress response, 2003; Wood et al. 2003a) and the discovery of cross-talk cell-cycle regulation, protein trafficking, endocytosis sig- between histone methylation and ubiquitination (Dover naling, and transcriptional regulation have been linked et al. 2002; Sun and Allis 2002) have set the stage for to this molecule (Pickart 2001). Ubiquitylation is pro- functional analysis of histone ubiquitination. In a timely posed to serve as a signaling module, and the informa- paper published in the previous issue of Genes & Devel- tion transmitted by this tag may depend on the nature of opment, Shelley Berger and colleagues (Henry et al. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Identification of Novel Chemotherapeutic Strategies For
www.nature.com/scientificreports OPEN Identification of novel chemotherapeutic strategies for metastatic uveal melanoma Received: 17 November 2016 Paolo Fagone1, Rosario Caltabiano2, Andrea Russo3, Gabriella Lupo1, Accepted: 09 February 2017 Carmelina Daniela Anfuso1, Maria Sofia Basile1, Antonio Longo3, Ferdinando Nicoletti1, Published: 17 March 2017 Rocco De Pasquale4, Massimo Libra1 & Michele Reibaldi3 Melanoma of the uveal tract accounts for approximately 5% of all melanomas and represents the most common primary intraocular malignancy. Despite improvements in diagnosis and more effective local therapies for primary cancer, the rate of metastatic death has not changed in the past forty years. In the present study, we made use of bioinformatics to analyze the data obtained from three public available microarray datasets on uveal melanoma in an attempt to identify novel putative chemotherapeutic options for the liver metastatic disease. We have first carried out a meta-analysis of publicly available whole-genome datasets, that included data from 132 patients, comparing metastatic vs. non metastatic uveal melanomas, in order to identify the most relevant genes characterizing the spreading of tumor to the liver. Subsequently, the L1000CDS2 web-based utility was used to predict small molecules and drugs targeting the metastatic uveal melanoma gene signature. The most promising drugs were found to be Cinnarizine, an anti-histaminic drug used for motion sickness, Digitoxigenin, a precursor of cardiac glycosides, and Clofazimine, a fat-soluble iminophenazine used in leprosy. In vitro and in vivo validation studies will be needed to confirm the efficacy of these molecules for the prevention and treatment of metastatic uveal melanoma. Uveal melanoma is the most common primary intraocular cancer, and after the skin, the uveal tract is the second most common location for melanoma1. -
Functional Domains for Assembly of Histones H3 and H4 Into the Chromatin of Xenopus Embryos
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12780–12785, November 1996 Biochemistry Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos LITA FREEMAN,HITOSHI KURUMIZAKA, AND ALAN P. WOLFFE* Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2710 Communicated by Stuart L. Schreiber, Harvard University, Cambridge, MA, September 3, 1996 (received for review May 31, 1996) ABSTRACT Histones H3 and H4 have a well defined Modification of the N-terminal tail of H4 by acetylation has structural role in the nucleosome and an established role in been correlated with both transcription (25, 26) and nucleo- the regulation of transcription. We have made use of a some assembly (27, 28). Direct evidence for a causal role for microinjection strategy using Xenopus embryos to define the H4 acetylation in these events is, however, yet to be estab- minimal structural components of H3 and H4 necessary for lished. Tryptic removal of the N-terminal tail of histone H4 nucleosome assembly into metazoan chromosomes in vivo.We from the nucleosome or acetylation of the tail does not find that both the N-terminal tail of H4, including all sites of influence the helical periodicity of DNA in the nucleosome but acetylation, and the C-terminal a-helix of the H4 histone fold might influence the exact path taken by the double helix as it domain are dispensable for chromatin assembly. The N- wraps around the histone fold domains of the core histones (29, terminal tail and an N-terminal a-helix of H3 are also 30). -
Macrophage Activation JUNB Is a Key Transcriptional Modulator Of
JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana, Alyssa Baccarella, Nidhi Pancholi, Miles A. Pufall, De'Broski R. Herbert and Charles C. Kim This information is current as of October 2, 2021. J Immunol 2015; 194:177-186; Prepublished online 3 December 2014; doi: 10.4049/jimmunol.1401595 http://www.jimmunol.org/content/194/1/177 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/12/03/jimmunol.140159 Material 5.DCSupplemental References This article cites 40 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/194/1/177.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana,* Alyssa Baccarella,* Nidhi Pancholi,* Miles A. -
A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.