Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids fmicb-11-00868 May 15, 2020 Time: 17:30 # 1 REVIEW published: 19 May 2020 doi: 10.3389/fmicb.2020.00868 Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids Shimei Pang1,2, Ziqiu Lin1,2, Wenping Zhang1,2, Sandhya Mishra1,2, Pankaj Bhatt1,2 and Shaohua Chen1,2* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China, 2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities, including imidacloprid, nitenpyram, acetamiprid, thiacloprid, thiamethoxam, Edited by: clothianidin, and dinotefuran. These are mainly used to control harmful insects and pests Guining Lu, to protect crops. Their main targets are nicotinic acetylcholine receptors. In the past two South China University of Technology, decades, the environmental residues of neonicotinoids have enormously increased due China to large-scale applications. More and more neonicotinoids remain in the environment Reviewed by: Xiaomei Su, and pose severe toxicity to humans and animals. An increase in toxicological and Zhejiang Normal University, China hazardous pollution due to the introduction of neonicotinoids into the environment Santosh Kr. Karn, Sardar Bhagwan Singh Post causes problems; thus, the systematic remediation of neonicotinoids is essential Graduate Institute of Biomedical and in demand. Various technologies have been developed to remove insecticidal Sciences & Research, India residues from soil and water environments. Compared with non-bioremediation *Correspondence: methods, bioremediation is a cost-effective and eco-friendly approach for the treatment Shaohua Chen [email protected] of pesticide-polluted environments. Certain neonicotinoid-degrading microorganisms, including Bacillus, Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, Specialty section: Actinomycetes, and Stenotrophomonas, have been isolated and characterized. These This article was submitted to Microbiotechnology, microbes can degrade neonicotinoids under laboratory and field conditions. The a section of the journal microbial degradation pathways of neonicotinoids and the fate of several metabolites Frontiers in Microbiology have been investigated in the literature. In addition, the neonicotinoid-degrading Received: 13 January 2020 Accepted: 14 April 2020 enzymes and the correlated genes in organisms have been explored. However, few Published: 19 May 2020 reviews have focused on the neonicotinoid-degrading microorganisms along with Citation: metabolic pathways and degradation mechanisms. Therefore, this review aimed to Pang S, Lin Z, Zhang W, summarize the microbial degradation and biochemical mechanisms of neonicotinoids. Mishra S, Bhatt P and Chen S (2020) Insights Into the Microbial The potentials of neonicotinoid-degrading microbes for the bioremediation of Degradation and Biochemical contaminated sites were also discussed. Mechanisms of Neonicotinoids. Front. Microbiol. 11:868. Keywords: neonicotinoids, toxicity, microbial degradation, metabolic pathways, bioremediation, molecular doi: 10.3389/fmicb.2020.00868 mechanisms Frontiers in Microbiology| www.frontiersin.org 1 May 2020| Volume 11| Article 868 fmicb-11-00868 May 15, 2020 Time: 17:30 # 2 Pang et al. Biodegradation of Neonicotinoids INTRODUCTION a dangerous threat to humans and ecosystems (Casida, 2017; Humann-Guilleminot et al., 2019). These insecticides are The increasing global demand for food and productive crops considered a key factor in diminishing pollinating insects, has facilitated tremendous growth of the pesticide sector. especially honeybees (Friedli et al., 2020). Neonicotinoids can Neonicotinoid insecticides have been widely used for the be adhered easily to the surface of plants, animals, and human protection of crops from a variety of insects and pests, to enhance beings, and do not degrade easily into the environment (Hladik production (Simon-Delso et al., 2015). These crops include rice, et al., 2018). Due to the toxic and hazardous effects to bees, wheat, maize, soybean, cotton, sugar beet, apple, potato, etc. the outdoor use of neonicotinoids is banned in European Neonicotinoid insecticides are developed and synthesized based Union member states. on nicotine structure research with better insecticidal capabilities Usually, both biotic and abiotic factors, including chemicals, (Humann-Guilleminot et al., 2019). Neonicotinoids are a kind sunlight, and microbial agents, promote the degradation of of neuroactive insecticide. Their insecticidal mechanism involves native and foreign organisms in the soil (Chen et al., 2015; the action of nicotine acetyl bile on the postsynaptic membrane Birolli et al., 2018; Yang et al., 2018; Zhan et al., 2018a; Bhatt of insect nicotinic acetylcholine receptors (nAChRs) whereas the et al., 2020c; Zhang et al., 2020). Microbial degradation is often surrounding nerves induce excitation leading to paralysis and used to transform synthetic chemicals into inorganic products death (Zhang et al., 2018). There is no cross-resistance to the (Chen et al., 2011, 2013; Arora et al., 2017; Cycoñ et al., traditional long-acting insecticide classes due to the user mode 2017; Huang et al., 2019; Feng et al., 2020a). Uncontrollable of action (MoA). Therefore, neonicotinoids replace those of photocatalytic conditions are the major disadvantage of non- organochlorine, organophosphorus, chlorinated hydrocarbons, biological degradation and thus microbial degradation emerges carbamate, pyrethroid insecticides, and several other chemical as a better alternative (Zhang et al., 2018). It is usually insufficient categories (Jeschke and Nauen, 2008). In the mid-1980s, Bayer for analytical procedures to report the concentrations as most contributed to imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]- countries generally lack the environmental monitoring data N–nitro-2-imidazolidinimine), which was the first neonicotinoid systematically for neonicotinoids. insecticide, and this captured one of the highest shares in Individual neonicotinoid concentrations from the water the global pesticide market (Peter et al., 2010). Worldwide, monitoring literature demonstrated average surface water neonicotinoids accounted for approximately one-quarter of concentrations of 0.13 mg·L−1 (n = 19 studies) and a peak the pesticide market, and their annual production was about surface water concentration of 0.63 mg·L−1 (n = 27 studies) 600,000 tons (Simon-Delso et al., 2015). The broad-spectrum (Christy et al., 2015). The fate of neonicotinoid insecticides characteristics and high insecticidal activity of imidacloprid in the soil environment is greatly decided by the microbial led to the development of a series of nicotinic insecticides, metabolisms. However, bacteria with a complete set of genes including thiamethoxam, clothianidin, dinotefuran, acetamiprid, required for complete mineralization have not been found thiacloprid, and nitenpyram. yet. Soil microbial degradation processes of imidacloprid, Neonicotinoids include three main compounds: acetamiprid, and thiacloprid have been understood; however, little has been reported regarding the microbial degradation 1 Chloropyridinyl compounds (imidacloprid, nitenpyram, of clothianidin, dinotefuran, thiamethoxam, and nitenpyram acetamiprid, and thiacloprid), (Mulligan et al., 2016). 2 Chlorothiazolyl compounds (thiamethoxam and The microbial degradation of neonicotinoids is considered clothianidin), and to be the most efficient and environmentally friendly in situ 3 Tetrahydrofuran compounds (dinotefuran) (Table 1). repair pathway (Hamada et al., 2019). The use of potential and degradative microorganisms, which can grow and survive Neonicotinoids are commonly used for seed treatment, soil under high-stress concentrations of insecticides, offers a possible wetting, and foliage sprays to protect crop seedlings from leaf- opportunity for the remediation of toxic pollutants and eating insects (Hussain et al., 2016). Neonicotinoids are water- hazardous wastes from contaminated environments (Chen et al., soluble at concentrations of 184–590.0 mg·L−1 at 20◦C and 2014; Rana et al., 2015; Xiao et al., 2015; Zhan et al., 2018b; pH 7. Therefore, neonicotinoids are absorbed and circulated Bhatt et al., 2020a). throughout the plant system to protect against insects (Ellis et al., A variety of neonicotinoid-degrading microorganisms have 2017). Neonicotinoids bind and activate the postsynaptic nAChR been isolated and identified. These microbes include Bacillus, of insects, which causes muscle tremors and cell fatigue. The Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, effect of neonicotinoids is significantly stronger on invertebrates Actinomycetes, and Stenotrophomonas (Dankyi et al., 2018; Zhang than vertebrates as vertebrates have more nAChRs (Taillebois et al., 2018; Hamada et al., 2019). The bioremediation potential et al., 2018; Zaworra et al., 2018). Neonicotinoids are efficient of neonicotinoid-contaminated water/soil environments using insecticides with low toxicity but their long-term usage has several different microbes has been investigated. However, generated extensive environmental problems (Mariusz et al., the detailed knowledge about specific degradative enzymes 2013). These compounds not only affect the growth of plants and genes still needs
Recommended publications
  • D-Phenothrin
    United States Prevention, Pesticides Environmental Protection and Toxic Substances September 2008 Agency (7508P) Reregistration Eligibility Decision for d-Phenothrin September 2008 Reregistration Eligibility Decision for Phenothrin List A Case No. 0426 2 Glossary of Terms and Abbreviations ae Acid Equivalent ai Active Ingredient CFR Code of Federal Regulations CSF Confidential Statement of Formula DCI Data Call-In EDWC Estimated Drinking Water Concentration EEC Estimated Environmental Concentration EIIS Ecological Incident Information System EPA Environmental Protection Agency EUP End-Use Product FDA Food and Drug Administration FIFRA Federal Insecticide, Fungicide, and Rodenticide Act FFDCA Federal Food, Drug, and Cosmetic Act FQPA Food Quality Protection Act LC50 Median Lethal Concentration. A statistically derived concentration of a substance that can be expected to cause death in 50% of test animals. It is usually expressed as the weight of substance per weight or volume of water, air or feed, e.g., mg/l, mg/kg or ppm. LD50 Median Lethal Dose. A statistically derived single dose that can be expected to cause death in 50% of the test animals when administered by the route indicated (oral, dermal, inhalation). It is expressed as a weight of substance per unit weight of animal, e.g., mg/kg. LOC Level of Concern LOAEL Lowest Observed Adverse Effect Level mg/kg/day Milligram Per Kilogram Per Day mg/L Milligrams Per Liter MOE Margin of Exposure MRID Master Record Identification (number). EPA's system of recording and tracking studies submitted.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • When Endocrine Abnormalities Are a Medication Side Effect
    When Endocrine Abnormalities are a Medication Side Effect Donald Beckstead, MD T. Grant Phillips, MD Michael Geishauser, PharmD UPMC Altoona Family Physicians 1 DISCLOSURES • Sadly, we have nothing to disclose 2 OBJECTIVES • Identify commonly used drugs that may cause new endocrine abnormalities • Discuss mechanisms for development of such abnormalities • Touch on risk factors for the development of some medication induced endocrine abnormalities • Mention principles to guide work‐up and treatment 3 THYROID AND DRUGS 4 Amiodarone • Can cause hyper‐ or hypothyroidism • One amiodarone molecule contains two atoms of iodine • Amiodarone has 75 mg iodine/tablet • 6 mg released into circulation • WHO recommendation 150 mcg/day I2 5 Amiodarone • Clinically significant thyroid dysfunction occurs 5‐15% • Risk factors for hypothyroidism: – Female – Positive thyroid antibody – Residence in an iodine‐repleted region • Thyrotoxicosis 2‐12% – Risk factors: male, iodine deficient region 6 Amiodarone • Iodine deficient: Hyperthyroid • Iodine excess: Hypothyroid 7 Lithium • Once used as an antithyroid drug • 1‐3% people develop goiter • May precipitate undiagnosed autoimmune thyroid disorders • Can block thyroid hormone release from thyroglobulin 8 PPIs • Raise gastric pH • Certain level of stomach acid necessary for ingestion of thyroxine (dissolve pills) • TSH increased with PPI treatment • Reduce absorption by reducing dissolution of pills • Liquid formulation may solve problem 9 Miscellaneous Drugs • Thyroid hormone is actively oxidized and conjugated
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Federal Register/Vol. 70, No. 213/Friday, November 4, 2005/Notices
    Federal Register / Vol. 70, No. 213 / Friday, November 4, 2005 / Notices 67167 UIC Section, EPA—Region 6, telephone define the need for improvements and registrant of a pesticide product may at (214) 665–7165. make recommendations to the full any time request that any of its pesticide NDWAC accordingly; (2) develop registrations be amended to delete one Larry Wright, language for communicating the risk of or more uses. FIFRA further provides Acting Director, Water Quality Protection lead in drinking water and a suggested that, before acting on the request, EPA Division (6WQ). response to the public; and (3) define must publish a notice of receipt of any [FR Doc. 05–22032 Filed 11–3–05; 8:45 am] the delivery means to the public. The request in the Federal Register. BILLING CODE 6560–50–P NDWAC established a target date of May DATES: The deletions are effective on 2006 to complete these tasks. The WGPE December 5, 2005, unless the Agency is comprised of 16 members from ENVIRONMENTAL PROTECTION receives a written withdrawal request drinking water industries, stakeholder AGENCY on or before December 5, 2005. The organizations, state and local officials, Agency will consider withdrawal [FRL–7993–9] public health officials, environmental requests postmarked no later than organizations, and risk communication December 5, 2005. National Drinking Water Advisory experts. Users of these products who desire Council’s Working Group on Public Public Comment: An opportunity for continued use on crops or sites being Education Requirements of the Lead public comment will be provided deleted should contact the applicable and Copper Rule Meeting during the WGPE meeting.
    [Show full text]
  • Gynecomastia — a Difficult Diagnostic Problem Ginekomastia — Trudny Problem Diagnostyczny
    SZKOLENIE PODYPLOMOWE/POSTGRADUATE EDUCATION Endokrynologia Polska/Polish Journal of Endocrinology Tom/Volume 62; Numer/Number 2/2011 ISSN 0423–104X Gynecomastia — a difficult diagnostic problem Ginekomastia — trudny problem diagnostyczny Marek Derkacz1, Iwona Chmiel-Perzyńska2, Andrzej Nowakowski1 1Department of Endocrinology, Medical University, Lublin, Poland 2Department of Family Medicine, Medical University, Lublin, Poland Abstract Gynecomastia is a benign, abnormal, growth of the male breast gland which can occur unilaterally or bilaterally, resulting from a prolife- ration of glandular, fibrous and adipose tissue. Gynecomastia is characterised by the presence of soft, 2–4 cm in diameter, usually discus- shaped enlargement of tissues under the nipple. It is estimated that this pathology occurs in 32–65% of men over the age of 17. Gynecoma- stia is a psychosocial problem and may lead to a perceived lowering of quality of life. The main cause of gynecomastia is a loss of equilibrium between oestrogens and androgens. Increased sensitivity for oestrogens of the breast gland, or local factors (e.g. an excessive synthesis of oestrogens in breast tissues or changes in oestrogen and androgen receptors) may cause gynecomastia. Also, prolactin, thyroxine, cortisol, human chorionic gonadotropin, leptin and receptors for human chorionic gonadotropin, prolactin and luteinizing hormone localised in tissues of the male breast may participate in the etiopathogenesis of gyneco- mastia. Usually three types of gynecomastia are distinguished: physiological, idiopathic and pathological gynecomastia. The latter is the consequ- ence of relative or absolute excess of oestrogens. In this paper, frequent as well as casuistic causes of gynecomastia will be described. A diagnosis of gynecomastia is usually possible after a palpation examination.
    [Show full text]
  • Pesticides Contamination of Cereals and Legumes: Monitoring of Samples Marketed in Italy As a Contribution to Risk Assessment
    applied sciences Article Pesticides Contamination of Cereals and Legumes: Monitoring of Samples Marketed in Italy as a Contribution to Risk Assessment Valeria Nardelli 1, Valeria D’Amico 1, Mariateresa Ingegno 1 , Ines Della Rovere 1, Marco Iammarino 1,* , Francesco Casamassima 1, Anna Calitri 1, Donatella Nardiello 2 , Donghao Li 3 and Maurizio Quinto 2,3,* 1 Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; [email protected] (V.N.); [email protected] (V.D.); [email protected] (M.I.); [email protected] (I.D.R.); [email protected] (F.C.); [email protected] (A.C.) 2 Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria—Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy; [email protected] 3 Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, China; [email protected] * Correspondence: [email protected] (M.I.); [email protected] (M.Q.) Featured Application: This work offers a contribution to risk assessment regarding the levels of 37 pesticides in cereal and legume samples commercialized in Italy during the last years. It is well-known that prolonged exposure to pesticides can increase the risk of cardiovascular and respiratory disease, other than promoting cancer diseases. Thus, the World Health Organization and the European Food Safety Authority ask for monitoring of the levels of such substances, Citation: Nardelli, V.; D’Amico, V.; especially in vegetables, continuously, to have availability updated and detailed data on this Ingegno, M.; Della Rovere, I.; Iammarino, M.; Casamassima, F.; type of food contamination.
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • A CASE REPORT on DRUG INDUCED GYNACOMASTIA Sreeram Vandavasi Guru*1,G
    IAJPS 2017, 4 (12), 4563-4565 Sreeram vandavasi guru et al ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.1119060 Available online at: http://www.iajps.com Case Report A CASE REPORT ON DRUG INDUCED GYNACOMASTIA Sreeram vandavasi guru*1,G. Ramya Sree1, P. Vinod Kumar1, P. Gowtham Reddy 2. 1,*1 Pharm D internship, Rajiv Gandhi Institute of medical sciences (RIMS), PRRMCP, Kadapa, India -516003. 2 Assistant professor, Dept. of Pharmacy Practice, PRRMCP, Kadapa, India- 516003. Abstract: Gynacomastia is a rare condition in males with a symptom of enlarged breast tissue size. It is generally caused by altered ratio of estrogens to androgens in the male individuals. A cause includes several diseases and nearly25% is associate with drugs. A mostly used drug that causes gynacomastia includes spironolactone, amlodepine, TCAs, and ketoconazole. It is a rare side effect. But it has a occurrence of 1% in amlodepine and 1.2% in spironolactone. Diagnosis is majorly done by presence of symptoms like increased breast tissue, and it should be differentiate with pseudo disease, and the increasing nature may be of one side or on both side of individuals. Presence of polactin secreting tumor may induce milk ejection from male breasts. Mostly it is resolved with in one to two months of discontinuation of suspected drug. Mastectomy is the only surgical procedure where the increased breast tissue is removed. Drugs like aromatase inhibitors, estrogen receptor modulators can also be used, but has no clinical practice in males. Corresponding author: Sreeram vandavasi guru, QR code Dept.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Pesticides with Potential Thyroid Hormone-Disrupting Effects: a Review of Recent Data Michelle Leemans, Stephan Couderq, Barbara Demeneix, Jean-Baptiste Fini
    Pesticides With Potential Thyroid Hormone-Disrupting Effects: A Review of Recent Data Michelle Leemans, Stephan Couderq, Barbara Demeneix, Jean-Baptiste Fini To cite this version: Michelle Leemans, Stephan Couderq, Barbara Demeneix, Jean-Baptiste Fini. Pesticides With Po- tential Thyroid Hormone-Disrupting Effects: A Review of Recent Data. Frontiers in Endocrinology, Frontiers, 2019, 10, pp.743. 10.3389/fendo.2019.00743. hal-02415200 HAL Id: hal-02415200 https://hal.archives-ouvertes.fr/hal-02415200 Submitted on 26 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 09 December 2019 doi: 10.3389/fendo.2019.00743 Pesticides With Potential Thyroid Hormone-Disrupting Effects: A Review of Recent Data Michelle Leemans*, Stephan Couderq, Barbara Demeneix and Jean-Baptiste Fini* Muséum National d’Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l’adaptation, Paris, France Plant Protection Products, more commonly referred to as pesticides and biocides, are used to control a wide range of yield-reducing pests including insects, fungi, nematodes, and weeds. Concern has been raised that some pesticides may act as endocrine disrupting chemicals (EDCs) with the potential to interfere with the hormone systems of non-target invertebrates and vertebrates, including humans.
    [Show full text]