Ehc96d-P.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ehc96d-P.Pdf Oilier titles available its the ENVIRONNIEN'FAL I IEALI'H ('RllI:.RIA Other titles available in the ENVIRONMENTAL HEALTU CRITERIA series (continued): seriec include I MCIC1.11- V 38. }lcpiachlur 69 Magnetic Fields 2. Polychlorinated J3iphenyls and 39. Paraqual and Diquat 70 Principles for the Safety Assessment of Food Additives Terphenvis 40. Endostit fan and Contaminants in Food 3. lead 41. Quinio/eu 71 Pentachlorophenol 4. Oxides of Nitrogen 42. leenazene 72 Principles of Studies on Diseases of Suspected Chemical 5. Nitrates, Nitrites, and 43. Chlordeconc Etiology and Their Prevention N-Nitroso Compounds 44. Mires 73 Phosphine and Selected Metal Phosphides 6. Principles and Methods or 45. (aiiiplicchlor 74 Diaminotoluenes 46. Guidehues for the Study 01 Evaluating the Foxicity 01 75 Toluene Diisoc yanates Genetic Effects in 1-luman Chemicals, Part 1 76 Thiocarbamate Pesticides - A General Introduction 7. Pliotochemical Oxidaitts I OplilattOlis 77 Man-made Mineral Fibres 8. Sulfur Oxides and Suspended 47. Suininars Report on the 78 Dithiocarbarnate Pesticides, Ethylenethiourea, and Particulate Matter Exaluation of Short-Term Tests Propylenethiourea - A General Introduction 9. DDT and its Derivatives 'or Carcinogens (Collaborative 79 DiCh lorvos It). Carbon Disu I fi tie S( iid CIII In t'ur(, .1 ests) II. Mycoloxins 48. Diniethyl Sulfate 80 Pyrrolizidine Alkaloids 12. Noise 49. Acrvlamide 81 Vanadium 13. Carbon Monoxide 50. Triehloroci hylcite 82 Cypermethrin 14. Ultraviolet Radiation 51. Guide to Short- term I ests lot 83 DDT and its Derivatives - Environmental Aspects IS. Tin and Organotin Compounds Detecting Mutagenie and 84 2,4-Dichlorophenoxyacetic Acid - Environmental Aspects 16. Radiofrequeiicv and Microssaves Carcinogenic Chemicals 85 Lead - Environmental Aspects 17. Manganese 52. loluene 86 Mercury - Environmental Aspects 18. Arsenic 53. Asbestos and Other Natural 87 Allethrins 19. Hydrogen .ulficle Mineral Fibres 88 Polychlorinated Dibenzo-pora-dioxins and 20 Selected Petroleum Products 54 .Aiuntcioia - '- Dibenzofurans 21. Chlorine and Hydrogen 55. Ethylene Oxide 89, Formaldehyde Chloride 56. Propylene Oxide 90 Dimethoate 22, Ultrasound 57. Principles ol loxteobincue 91. Aldrin and Dieldrin _3. lasers and Optical Radiation Studies W. Resmethrins 24. 'litanium 58. Seleutum 93. Chlorophenols 25. Selected Radionuclides 59. Principles for Evaluating Health 94. Permethrin 26. Sty retie Risks toni Cheitticals During i'envalerate 27. Guidelines on Studies in I nl'ancs and Early Childhood: 95. Environmental Epidemiology The Need for a Special Aervlonitrile Approach 2,4-Dichloroplicuoxvacciie 60. Principles toi the Assessitsetsi of Acid (2,4-D) Neurobehas ioural 'toxicology 30. Principles for Evaluating Health 61. Chromium (in preparation) Rsks to Progeny Associated 62. I ,2-Dichlorocthane with Exposure to Chemicals 63. Organophosphorus Insecticides during Pregnancy - A General Introduction 31. Tetrachloroethylenc 64. Carhamate Pesticides - Methylene Chloride A General lniiodtietioii Epichlorohydrin 65. Buianols - Four Isomers 34. Chlordane 66. Kefevan 35. Extremely Low Frequency 67. 'Fetradil'oii (ElF) Fields 65. I lvdrazioe Fluorine and fluorides " Aquatic (Marine and F resh waler) Bitox i us to/il i/wed on inside hack tI) In,' This report contains the collective views of an in ternational group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environnient Programme, the Interna- tional Labour Organisation, or the World Health Organization Environmental Health Criteria 96 d-PHENOTHRIN Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Orgariisation, and the World Health Organization - World Health Organization Geneva, 1990 The Interrialiona! Programme on Chemica' Salely (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisa- tion, arid the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the I PCS include the develop- ment of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. WHO library Cataloguing in Publication Data d-Phenothri ii. (Environmental health criteria 96) 1. Fsrethrins I. Series ISBN 92 4 04296 9 (NW Classification: WA 240) ISSN 0250-863X World Health Organization 1990 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Conven- tion. For rights of reproduction or translation of WHO publications, in part or in wio, application should be made to the Office of Publications, World Health Organization, (,'ieneva, Switzerland. The World Health Organization welcomes such appl cat jot's - The designations employed and lie presentation of the material in this publica- tion do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain tnanufacturers' products does not imply that they are endorsed or recommended by the World Health Organiza- tiwi in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. ti- i nied iii tiii h nd -, SS 8304 \alniiia a -3- CONTENTS ENVIRONMENTAL HEALTH CRITERIA FOR d-PHENOTHRIN INTRODUCTION 9 I. SUMMARY, EVALUATION, CONCLUSIONS, 11 AND RECOMMENDATIONS 1.1 Summary and evaluation .1.1 Identity, physical and chemical properties, analytical methods 1.1.2 Production and use I 1.1.3 Human exposure 1.1.4 Environmental fate 12 1.1.5 Kinetics and metabolism 12 1.1.6 Effects on organisms in the environment 12 1.1.7 Effects on experimental animals and fl Vitro test systems 13 1.1,8 Effects on human leings 13 1.2 Conclusions 13 1.2.1 General population 13 1.2.2 Occupational exposure 14 1.2.3 Environment 14 1.3 Recommendations 14 IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS 15 2.1 Identity 15 2.2 Physical and chemical properties 17 2.3 Analytical methods 17 SOURCES AND LEVELS OF HUMAN AND 21 ENVIRONMENTAL EXPOSURE 3.1 Industrial production 21 3.2 Use patterns 21 3.3 Residues in food 21 3.4 Residues in the environment 22 ENVIRONMENTAL TRANSPORT, DISTRIBUTION, AND TRANSFORMATION 23 4.1 Transport and distribution between media 23 4.2 Photodegradation 23 4.3 Degradation in plants and soils 25 4.4 Degradation on stored foods 26 -4- 5. KINETICS AND METABOLISM 27 5.1 Metabolism in mammals 27 5.2 Enzymatic systems for biotransformation 31 6. EFFECTS ON ORGANISMS IN THE ENVIRONMENT 33 6.1 Aquatic organisms 33 6.2 Terrestrial organisms 33 7. EFFECTS ON EXPERIMENTAL ANIMALS AND IN VITRO TEST SYSTEMS 35 7.1 Single and short-term exposures 35 7.2 Long-term exposures and carcinogenicity 36 7.2.1 Rat 37 7.2.2 Mouse 33 7.2.3 Dog 39 7.3 Mutagenicity 40 7.4 Reproduction, embryotoxicity, and teratogenicity 41 7.4.1 Embryotoxicity and teratogenicity 41 7.4.2 Reproduction studies 41 7.5 Neurotoxicity 42 7.6 Miscellaneous effects 42 7.7 Mechanism of toxicity - mode of action 43 8. EFFECTS ON HUMANS 44 8.1 Clinical studies 44 9. PREVIOUS EVALUATIONS BY INTERNATIONAL BODIES 45 REFERENCES 46 APPENDIX 1 55 FRENCH TRANSLATION OF SUMMARY, EVALUATION, 60 CONCLUSIONS, AND RECOMMENDATIONS MIE WHO TASK GROUP ON ENVIRONMENTAL 1-[EALTH CRITERIA FOR D-PHENOTHRIN Members Dr V. Benes, Toxicology and Reference Laboratory, Institute of Hygiene and Epidemiology, Prague, Czechoslovakia Dr S. Dobson, Institute of Terrestrial Ecology, Monks Wood Experimental Station, Huntingdon, United Kingdom Dr Y. Hayashi, Division of Pathology, National Institute of Hygienic Sciences, Tokyo, Japan Dr S. Johnson, Hazard Evaluation Division, Office of Pesticide Prog- ramme, US Environmental Protection Agency, Washington DC, USA (Chairman) Dr S.K. Kashyap, National Institute of Occupational Health (I.C.M.R.) Ahmedabad, India (Vice Chairman) Dr Yu. I. Kundiev, Research Institute of Labour, Hygiene, and Occu- pational Diseases, Kiev, USSR Dr J.P. Leahey, ICI Agrochemicals, Jealotts Hill Research Station, Bracknell, United Kingdom (Rap porteur) Dr J. Miyamoto, Takarazuka Research Centre, Sumitomo Chemical Company, Takarazuka, Hyogo, Japan Dr Y. Takenaka, Division of Enformation on Chemical Safety, Tokyo, Japan Representatives of other Organi;ations Dr M. Ikeda, International Commission on Occupational Health, Depart- ment of Environmental Health, Tohoku University, School of Medicine, Sendai, Japan Dr H. Naito, World Federation of Poison Control Centres and Clinical Toxicology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba-Shi, Ibaraki, Japan Dr N. Punja, Groupement In ernational des Associations Nationales de Fabricants de Produits Agrochimiques (GIFAP), 1CI Plant Protection Division, Fenhurst, Haslemere, United Kingdom -6- Observers Dr M. Matsuo, Sumitomo Chemical Company,
Recommended publications
  • Restricted Use Product Summary Report
    Page 1 of 17 Restricted Use Product Summary Report (January 19, 2016) Percent Active Registration # Name Company # Company Name Active Ingredient(s) Ingredient 4‐152 BONIDE ORCHARD MOUSE BAIT 4 BONIDE PRODUCTS, INC. 2 Zinc phosphide (Zn3P2) 70‐223 RIGO EXOTHERM TERMIL 70 VALUE GARDENS SUPPLY, LLC 20 Chlorothalonil 100‐497 AATREX 4L HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 42.6 Atrazine 100‐585 AATREX NINE‐O HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 88.2 Atrazine 100‐669 CURACRON 8E INSECTICIDE‐MITICIDE 100 SYNGENTA CROP PROTECTION, LLC 73 Profenofos 100‐817 BICEP II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 33; 26.1 Atrazine; S‐Metolachlor 100‐827 BICEP LITE II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 28.1; 35.8 Atrazine; S‐Metolachlor 100‐886 BICEP MAGNUM 100 SYNGENTA CROP PROTECTION, LLC 33.7; 26.1 Atrazine; S‐Metolachlor 100‐898 AGRI‐MEK 0.15 EC MITICIDE/INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2 Abamectin 100‐903 DENIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2.15 Emamectin benzoate 100‐904 PROCLAIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 5 Emamectin benzoate 100‐998 KARATE 1EC 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1075 FORCE 3G INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 3 Tefluthrin Acetochlor; Carbamothioic acid, dipropyl‐ 100‐1083 DOUBLEPLAY SELECTIVE HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 16.9; 67.8 , S‐ethyl ester 100‐1086 KARATE EC‐W INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1088 SCIMITAR GC INSECTICIDE 100 SYNGENTA CROP PROTECTION,
    [Show full text]
  • D-Phenothrin
    United States Prevention, Pesticides Environmental Protection and Toxic Substances September 2008 Agency (7508P) Reregistration Eligibility Decision for d-Phenothrin September 2008 Reregistration Eligibility Decision for Phenothrin List A Case No. 0426 2 Glossary of Terms and Abbreviations ae Acid Equivalent ai Active Ingredient CFR Code of Federal Regulations CSF Confidential Statement of Formula DCI Data Call-In EDWC Estimated Drinking Water Concentration EEC Estimated Environmental Concentration EIIS Ecological Incident Information System EPA Environmental Protection Agency EUP End-Use Product FDA Food and Drug Administration FIFRA Federal Insecticide, Fungicide, and Rodenticide Act FFDCA Federal Food, Drug, and Cosmetic Act FQPA Food Quality Protection Act LC50 Median Lethal Concentration. A statistically derived concentration of a substance that can be expected to cause death in 50% of test animals. It is usually expressed as the weight of substance per weight or volume of water, air or feed, e.g., mg/l, mg/kg or ppm. LD50 Median Lethal Dose. A statistically derived single dose that can be expected to cause death in 50% of the test animals when administered by the route indicated (oral, dermal, inhalation). It is expressed as a weight of substance per unit weight of animal, e.g., mg/kg. LOC Level of Concern LOAEL Lowest Observed Adverse Effect Level mg/kg/day Milligram Per Kilogram Per Day mg/L Milligrams Per Liter MOE Margin of Exposure MRID Master Record Identification (number). EPA's system of recording and tracking studies submitted.
    [Show full text]
  • Cypermethrin
    International Environmental Health Criteria 82 Cypermethrin Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization WORLD HEALTH ORGANIZATION GENEVA 1989 Other titles available in the ENVIRONMENTAL HEALTH CRITERIA series include: 1. Mercury 2. Polychlorinated Biphenyls and Terphenyls 3. Lead 4. Oxides of Nitrogen 5. Nitrates, Nitrites, and N-Nitroso Compounds 6. Principles and Methods for Evaluating the Toxicity of Chemicals, Part 1 7. Photochemical Oxidants 8. Sulfur Oxides and Suspended Particulate Matter 9. DDT and its Derivatives 10. Carbon Disulfide 11. Mycotoxins 12. Noise 13. Carbon Monoxide 14. Ultraviolet Radiation 15. Tin and Organotin Compounds 16. Radiofrequency and Microwaves 17. Manganese 18. Arsenic 19. Hydrogen Sulfide 20. Selected Petroleum Products 21. Chlorine and Hydrogen Chloride 22. Ultrasound 23. Lasers and Optical Radiation 24. Titanium 25. Selected Radionuclides 26. Styrene 27. Guidelines on Studies in Environmental Epidemiology 28. Acrylonitrile 29. 2,4-Dichlorophenoxyacetic Acid (2,4-D) 30. Principles for Evaluating Health Risks to Progeny Associated with Exposure to Chemicals during Pregnancy 31. Tetrachloroethylene 32. Methylene Chloride 33. Epichlorohydrin 34. Chlordane 35. Extremely Low Frequency (ELF) Fields 36. Fluorine and Fluorides 37. Aquatic (Marine and Freshwater) Biotoxins 38. Heptachlor 39. Paraquat and Diquat 40. Endosulfan 41. Quintozene 42. Tecnazene 43. Chlordecone 44. Mirex continued on p. 156
    [Show full text]
  • Characterization of Residential Pest Control Products Used in Inner City Communities in New York City
    Journal of Exposure Science and Environmental Epidemiology (2010), 1–11 r 2010 Nature America, Inc. All rights reserved 1559-0631/10 www.nature.com/jes Characterization of residential pest control products used in inner city communities in New York City MEGAN K. HORTONa, J. BRYAN JACOBSONb, WENDY MCKELVEYb, DARRELL HOLMESa, BETTY FINCHERc, AUDREY QUANTANOc, BEINVENDIDA PAEZ DIAZc, FAYE SHABBAZZc, PEGGY SHEPARDc, ANDREW RUNDLEa AND ROBIN M. WHYATTa aColumbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA bNew York City Department of Health and Mental Hygiene, New York, New York, USA cWest Harlem Environmental Action, New York, New York, USA The Columbia Center for Children’s Environmental Health (CCCEH) previously reported widespread residential insecticide use in urban communities in New York City. Research suggests that pyrethroids are replacing organophosphates (OPs) in response to 2000–2001 US EPA pesticide regulations restricting OP use. A systematic assessment of active ingredients used for residential pest control is lacking. We queried a database of pesticide applications reported by licensed applicators between 1999 and 2005 and surveyed pest control products available in 145 stores within 29 zip codes in the CCCEH catchment area including Northern Manhattan and the South Bronx. Pyrethroids, pyrethrins, piperonyl butoxide, and hydramethylnon were the most common insecticide active ingredients reported as used by licensed pesticide applicators within the 29 zip codes of the CCCEH catchment area between 1999 and 2005. Use of certain pyrethroids and some non-spray insecticides such as fipronil and boric acid increased significantly by year (logistic regression, OR41.0, Po0.05), whereas use of OPs, including chlorpyrifos and diazinon decreased significantly by year (logistic regression, ORo1.0, Po0.05).
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Follow-Up Studies After Withdrawal of Deltamethrin Spraying Against Anopheles Culicifacies and Malaria Incidence
    Journal of the American Mosquito contror Association, 2o(4):424-42g,2004 Copyright @ 2OO4 by the American Mosquito Control Association, Inc. FOLLOW-UP STUDIES AFTER WITHDRAWAL OF DELTAMETHRIN SPRAYING AGAINST ANOPHELES CULICIFACIES AND MALARIA INCIDENCE MUSHARRAF ALI ANSARI eNo RAMA KRISHNA RAZDAN Malaria Research Centre (ICMR), 2}-Madhuban, Delhi_ll0 092, India ABSTRACT. Follow-up studies were carried out from 1989 to 1998 after withdrawal of deltamethrin indoor spraying to evaluate the-recovery rate of a population of Anopheles culicifacies resistant to dichlorodiphenyltri- chloroethane (DDT) and hexachlorocyclohexane (HCH) in selected villages in Uttar pradesh State, I;dia. The study revealed 82.4-96.5Ea reduction in adult density of An. culicifacies and 72.7-967o reduction in malaria incidence in the area sprayed with deltamethrin at 20 mg/m, as compared to a control area sprayed with HCH, for 5 successive years even after withdrawal of deltamethrin spray. The impact was very clear when the annual falciparum incidence was compared with that of the control area. The vector population gradually started re- covering after 5 years. However, the slide falciparum rate remained below 4 even after 10 years of withdrawal of spraying. The study revealed that indoor residual spraying of deltamethrin would be cost-effective, at least in areas where malaria is transmitted by An. culicifacies, which is primarily a zoophilic species and associated with malaria epidemics. In view of this, a review of the insecticide policy and strategy of vector control is urgently needed because of the possible risks associated with the presence of nonbiodegradable insecticide in the environment, as well as to minimize the costs of operation and to enhance the useful life of insecticides.
    [Show full text]
  • When Endocrine Abnormalities Are a Medication Side Effect
    When Endocrine Abnormalities are a Medication Side Effect Donald Beckstead, MD T. Grant Phillips, MD Michael Geishauser, PharmD UPMC Altoona Family Physicians 1 DISCLOSURES • Sadly, we have nothing to disclose 2 OBJECTIVES • Identify commonly used drugs that may cause new endocrine abnormalities • Discuss mechanisms for development of such abnormalities • Touch on risk factors for the development of some medication induced endocrine abnormalities • Mention principles to guide work‐up and treatment 3 THYROID AND DRUGS 4 Amiodarone • Can cause hyper‐ or hypothyroidism • One amiodarone molecule contains two atoms of iodine • Amiodarone has 75 mg iodine/tablet • 6 mg released into circulation • WHO recommendation 150 mcg/day I2 5 Amiodarone • Clinically significant thyroid dysfunction occurs 5‐15% • Risk factors for hypothyroidism: – Female – Positive thyroid antibody – Residence in an iodine‐repleted region • Thyrotoxicosis 2‐12% – Risk factors: male, iodine deficient region 6 Amiodarone • Iodine deficient: Hyperthyroid • Iodine excess: Hypothyroid 7 Lithium • Once used as an antithyroid drug • 1‐3% people develop goiter • May precipitate undiagnosed autoimmune thyroid disorders • Can block thyroid hormone release from thyroglobulin 8 PPIs • Raise gastric pH • Certain level of stomach acid necessary for ingestion of thyroxine (dissolve pills) • TSH increased with PPI treatment • Reduce absorption by reducing dissolution of pills • Liquid formulation may solve problem 9 Miscellaneous Drugs • Thyroid hormone is actively oxidized and conjugated
    [Show full text]
  • Federal Register/Vol. 75, No. 115/Wednesday, June 16, 2010
    34126 Federal Register / Vol. 75, No. 115 / Wednesday, June 16, 2010 / Notices TABLE 2.—REGISTRANTS REQUESTING TABLE 2.—REGISTRANTS REQUESTING the cancellation action. Because the VOLUNTARY CANCELLATION—Con- VOLUNTARY CANCELLATION—Con- Agency has identified no significant tinued tinued potential risk concerns associated with these pesticide products, upon cancellation of the products identified Company Name and EPA Co. Number Company Name and EPA Co. Number Address Address in Table 1 of Unit II., EPA anticipates allowing registrants to sell and AZ970004; Chemtura Corpora- MN940003 Arysta Lifescience distribute existing stocks of these OR030022; tion North America, products for 1 year after publication of LLC WA910017 ATTN: Crop Reg- the Cancellation Order in the Federal istration, Michael 155401 Weston Dupre Parkway, Suite Register. Thereafter, registrants will be 199 Benson Road 150 prohibited from selling or distributing (2-5) Cary, NC 27513 the pesticides identified in Table 1 of Middlebury, CT Unit II., except for export consistent 06749 III. What is the Agency’s Authority for with FIFRA section 17 or for proper Taking this Action? disposal. Persons other than registrants OR910006; FMC Corp., Agricul- will generally be allowed to sell, Section 6(f)(1) of FIFRA provides that CO920001 tural Products distribute, or use existing stocks until a registrant of a pesticide product may Group such stocks are exhausted, provided that ATTN: Michael C. at any time request that any of its such sale, distribution, or use is Zucker pesticide registrations be canceled. consistent with the terms of the 1735 Market St., FIFRA further provides that, before previously approved labeling on, or that RM.
    [Show full text]
  • TITLE: Lindane and Other Treatments for Lice and Scabies: a Review of Clinical Effectiveness and Safety
    TITLE: Lindane and Other Treatments for Lice and Scabies: A Review of Clinical Effectiveness and Safety DATE: 11 June 2010 CONTEXT AND POLICY ISSUES: Head lice infestation (Pediculosis capitis) affects millions of children and adults worldwide each year.1 Direct head-to-head contact is the most common mode of transmission.2 The highest prevalence of infestation occurs in school aged children aged three to eleven years, with girls being more commonly affected than boys.1,2 Although head lice are not generally associated with serious morbidity, they are responsible for significant social embarrassment and lost productivity in schools or offices.1 Scabies, an infestation of the skin by the mite Sarcoptes scabiei, represents a common public health concern particularly in overcrowded communities with a high prevalence of poverty.3 Scabies is transmitted by close-person contact and occasionally by clothing or linens.3 Complications include secondary bacterial infections and post-streptococcal glomerulonephritis.3 Topical products available in Canada for the treatment of head lice and scabies are presented in Appendix 1 and Appendix 2. Insecticidal agents such as permethrin and lindane have historically been considered the standard treatments for head lice and scabies.2,3 Toxicity is low following topical administration of permethrin due to minimal percutaneous absorption.4 However, several jurisdictions have banned lindane due to concerns of neurotoxicity and bone marrow suppression, as well as potential negative effects on the environment (contamination of waste water).5 Furthermore, widespread use of permethrin, pyrethrins/piperonyl butoxide, and lindane has led to resistance and higher rates of treatment failure.6 Resistance patterns and rates to these agents in Canada have not yet been studied.6 Due to concerns surrounding resistance and neurotoxicity, patients and caregivers have searched for alternative treatments.
    [Show full text]
  • RR Program's RCL Spreadsheet Update
    RR Program’s RCL Spreadsheet Update March 2017 RR Program RCL Spreadsheet Update DNR-RR-052e The Wisconsin DNR Remediation and Redevelopment Program (RR) has updated the numerical soil standards in the August 2015 DNR-RR- 052b RR spreadsheet of residual contaminant levels (RCLs). The RCLs were determined using the U.S. EPA RSL web- calculator by accepting EPA exposure defaults, with the exception of using Chicago, IL, for the climatic zone. This documentThe U.S. provides EPA updateda summary its Regionalof changes Screening to the direct-contact Level (RSL) RCLs website (DC-RCLs) in June that2015. are To now reflect in the that March 2017 spreadsheet.update, the The Wisconsin last page ofDNR this updated document the has numerical the EPA exposuresoil standards, parameter or residual values usedcontaminant in the RCL levels calculations. (RCLs), in the Remediation and Redevelopment program’s spreadsheet of RCLs. This document The providesU.S. EPA a RSL summary web-calculator of the updates has been incorporated recently updated in the Julyso that 2015 the spreadsheet.most up-to-date There toxicity were values no changes for chemi - cals madewere certainlyto the groundwater used in the RCLs,RCL calculations. but there are However, many changes it is important in the industrial to note that and the non-industrial web-calculator direct is only a subpartcontact of the (DC) full RCLsEPA RSL worksheets. webpage, Tables and that 1 andthe other 2 of thissubparts document that will summarize have important the DC-RCL explanatory changes text, generic tablesfrom and the references previous have spreadsheet yet to be (Januaryupdated.
    [Show full text]
  • State of Maine Department of Agriculture, Conservation and Forestry Board of Pesticides Control 28 State House Station Augusta, Maine 04333 Paul R
    STATE OF MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY BOARD OF PESTICIDES CONTROL 28 STATE HOUSE STATION AUGUSTA, MAINE 04333 PAUL R. LEPAGE WALTER E. WHITCOMB GOVERNOR COMMISSIONER Memorandum To: Board of Pesticides Control From: Pam Bryer, Toxicologist Subject: Question from June 6, 2018 Board Meeting Date: May 18, 2018 At the June 6, 2018 board meeting the question of whether Bt is toxic to lobsters was asked. Here is a brief answer to that question. Not surprisingly, the answer is we don’t know. Question: Is Bt harmful to lobsters? Answer: Bt has not been tested on lobsters. Attached is a table based on available pesticide toxicity data for lobsters. Few compounds have been tested on any species of lobsters. Both lobsters and Bt are fairly unique entities so generalizations are not helpful in extrapolating to other pesticides exposure scenarios. Reasonable follow-up question: Since Bt targets insects and lobsters are closely related can we assume that lobsters would be just as sensitive? Answer: Typically, shared phylogeny could help predict toxicity, however, the marine environment places a different set of physical constraints on digestive physiology and since Bt is a stomach poison we should not speculate. Marine organisms typically have modified intestinal tracts to deal with maintaining the homeostatic balance of outside-saltwater to internal-body composition. PHONE: (207) 287-2731 32 BLOSSOM LANE, MARQUARDT BUILDING WWW.THINKFIRSTSPRAYLAST.ORG The above figure shows the uptake of Bt endospore into the larval gut demonstrating how Bt’s mechanism of action centers around cells lining the intestinal tract. Table 1. Preliminary literature search results on the toxicity of pesticides on lobsters (Homarus spp) Contaminant Concentration Duration Experimental Primary Effects Source (ug/L) Notes Organochlorines Endosulfan -decr survival & metamorphosis Bauer et al.
    [Show full text]