Differentiable Manifolds

Total Page:16

File Type:pdf, Size:1020Kb

Differentiable Manifolds Prof. A. Cattaneo Institut f¨urMathematik FS 2018 Universit¨atZ¨urich Differentiable Manifolds Solutions to Exercise Sheet 1 p Exercise 1 (A non-differentiable manifold). Consider R with the atlas f(R; id); (R; x 7! sgn(x) x)g. Show R with this atlas is a topological manifold but not a differentiable manifold. p Solution: This follows from the fact that the transition function x 7! sgn(x) x is a homeomor- phism but not differentiable at 0. Exercise 2 (Stereographic projection). Let f : Sn − f(0; :::; 0; 1)g ! Rn be the stereographic projection from N = (0; :::; 0; 1). More precisely, f sends a point p on Sn different from N to the intersection f(p) of the line Np passing through N and p with the equatorial plane xn+1 = 0, as shown in figure 1. Figure 1: Stereographic projection of S2 (a) Find an explicit formula for the stereographic projection map f. (b) Find an explicit formula for the inverse stereographic projection map f −1 (c) If S = −N, U = Sn − N, V = Sn − S and g : Sn ! Rn is the stereographic projection from S, then show that (U; f) and (V; g) form a C1 atlas of Sn. Solution: We show each point separately. (a) Stereographic projection f : Sn − f(0; :::; 0; 1)g ! Rn is given by 1 f(x1; :::; xn+1) = (x1; :::; xn): 1 − xn+1 (b) The inverse stereographic projection f −1 is given by 1 f −1(y1; :::; yn) = (2y1; :::; 2yn; kyk2 − 1): kyk2 + 1 2 Pn i 2 Here kyk = i=1(y ) . One can then easily check by direct computation that f and the map above are left and right inverses of each other. (c) The transition map g ◦ f −1 : Rn − f0g ! Rn − f0g is given by 1 g ◦ f −1(y1; :::; yn) = (y1; :::; yn); kyk2 which is smooth, and moreover has a smooth inverse, given by the same formula. The geometric explanation for this is that g ◦ f −1 represents inversion with respect to the sphere Sn−1 ⊂ Rn − f0g, which is an involution (an involution τ of a set X is a map X to X such that τ 2 = id). Hence Sn has a smooth atlas consisting of just two patches (U; f) and (V; g). Exercise 3 (Real projective space). Let RPn = (Rn+1 − f0g)= ∼, where x ∼ tx for all t 2 R − f0g; x 2 Rn+1, be the n-dimensional real projective space. (a) Prove that RPn is a differentiable manifold (which is Hausdorff and second countable). Solution: We first show that RPn is Hausdorff and second countable. For this, let π : Rn+1 ! RPn be the canonical projection. Claim 1. π is an open map. Proof. Let U ⊆ Rn+1 − f0g be open. We have to show that π(U) is open in RPn. By definition of the quotient topology, we have to show that π−1(π(U)) is open in Rn+1 − f0g. But π−1(π(U)) = fx 2 n+1; 9y 2 U : x ∼ yg = S t · U is a union of open sets (since R t2R−{0g multiplication by non-zero t 2 R is a homeomorphism of Rn+1 − f0g: Hence π is open. Now we get a countable basis for RPn by taking the image of a countable basis for Rn+1 under π. To show RPn is Hausdorff, we use the following lemma: Lemma 1. Let ∼ be an open equivalence relation on a topological space X(i.e. the canonical projection X ! X= ∼ is open). Then X= ∼ is Hausdorff if and only if Graph(∼) = f(x; y) 2 X × X : x ∼ yg is closed. n+1 n+1 P 2 To apply the lemma, define f : R × R ! R by f(x; y) = i6=j(xiyj − xjyi) and convince yourself that f(x; y) = 0 , x = ty; t 6= 0 , x ∼ y and hence Graph(∼) = f −1(0) is closed. Therefore RPn is hausdorff. n Next we are going to present a system of charts for RP . Let Vi := f(x1; : : : ; xn+1) 2 n+1 n 1 R : xi 6= 0g, Ui = π(Vi) and 'i : Ui ! R ; [(x1; : : : ; xn+1)] 7! x (x1;:::; x^i; : : : ; xn+1). n i Then one checks that: Ui are open in RP (since π is an open map) and their union is n RP , 'i is well-defined (since 'i([tx]) = '(x)), continuous, and bijective, for all i, with a continuous inverse given by (x1; : : : ; xn) 7! [(x1; : : : ; xi−1; 1; xi; : : : ; xn+1)] (the continuity follows general topological arguments on quotients). Hence, the 'i are homeomorphisms n and f(Ui;'i)g is an atlas for RP . Now we check that the atlas is smooth. For i < j, −1 'i ◦ 'j (x1; : : : ; xn) = 'i([(x1; : : : ; xj−1; 1; : : : ; xn)]) 1 = (x1;:::; 1; : : : ; xn) xi is clearly a smooth map (rational with nonzero denominator). Hence RPn is a smooth manifold. (b) Recall that a map between two manifolds f : M ! N is smooth if for all charts 'α on M −1 and β on N, the composition β ◦ f ◦ 'α is smooth in its domain. Also recall that a diffeomorphism is a smooth bijective map with a smooth inverse. Show that RP1, the real projective line, is diffeomorphic to the circle S1. Solution: Recall that we had a description of S1 in terms of R=2πZ (example 2.9 in the script). We define a map f : S1 ! RP1 by f(θ + 2πZ) = [(cos(θ=2); sin(θ=2)]. Claim 2. f is a diffeomorphism Proof. First we have to check that f is well-defined. For this, suppose that θ+2πZ = '+2πZ, then θ = ' + 2πk for some k 2 Z and f(' + 2πZ) = [(cos('=2); sin('=2)] = [(cos((θ + 2πk)=2); sin((θ + 2πk)=2)] = [(cos(θ=2 + πk); sin(θ=2 + πk)] = [(−1)k(cos(θ=2); sin(θ=2)] = f(θ + 2πZ). Next, we should check that f is smooth. Recall that on S1, we can define two charts W ; E which are the identity maps on different intervals (say (0; 2π) and (−π; π)) 2 and that we have two charts φ1; φ2 on RP given by φ1(x; y) = y=x; φ2(x; y) = x=y. So, we have to check the 4 representations of f in these charts are smooth: −1 fW;U1 = φ1 ◦ f ◦ W : (0; 2π) − fπg ! R θ 7! φ1(cos(θ=2); sin(θ=2)) = tan(θ=2) −1 fW;U2 = φ2 ◦ f ◦ W : (0; 2π) ! R θ 7! φ2(cos(θ=2); sin(θ=2)) = cot(θ=2) −1 fE;U1 = φ1 ◦ f ◦ E :(−π; π) ! R θ 7! φ1(cos(θ=2); sin(θ=2)) = tan(θ=2) −1 fW;U2 = φ2 ◦ f ◦ E : (0; 2π) − f0g ! R θ 7! φ2(cos(θ=2); sin(θ=2)) = cot(θ=2) −1 where we have to restrict the compositions to A(f (Ui) for A = E; W . For example, −1 f ◦ W (π) = (0; 1) 2= U1. Since all the representations are trigonometric functions, they are smooth. Now we have to find a smooth inverse for f. The correct map is ( 2 arctan(y=x) + 2π x 6= 0 g([x; y]) = Z π + 2πZ x = 0 Again, we first have to check the well-definedness of g. This follows from the fact that arctan(ty=tx) = arctan(y=x) and limt→±∞ 2 arctan(t) = ±π. g is the correct inverse because g◦f(θ+2πZ) = 2 arctan(tan(θ=2)) = θ for θ 6= π and g◦f(π+ 2πZ) = g(0; 1) = π+2πZ, so g◦f = idS1 , and f◦g([x; y]) = [(cos(arctan(y=x)); sin(arctan(y=x))] = 2 2 − 1 [±(x + y ) 2 (x; y)] = [(x; y)] for x 6= 0 and f ◦ g([0; y]) = [(0; 1)] = [(0; y)]. As a last step, we have to show that g is smooth. One computes −1 gU1;W = W ◦ g ◦ φ1 : R − f0g ! (0; 2π) ( 2 arctan(y) y > 0 y 7! W (2 arctan(y=1)) = 2 arctan(y) + 2π y < 0 −1 gU2;W = W ◦ g ◦ φ2 : R ! (0; 2π) 8 2 arctan(1=x) x > 0 <> x 7! π x = 0 :>π − 2 arctan(1=x) x < 0 −1 gU1;E = E ◦ g ◦ φ1 : R ! (−π; π) y 7! 2 arctan(y) −1 gU2;E = E ◦ g ◦ φ2 : R − f0g ! (−π; π) x 7! 2 arctan(1=x) The only difficult case is gU2;W . Here smoothness follows from the fact that all derivatives dn of arctan vanish at infinity, i.e. limx→±∞ dxn arctan(x) = 0. Hence g is smooth, and f is a diffeomorphism. Hence RPn is diffeomorphic to S1..
Recommended publications
  • Fixed Point Free Involutions on Cohomology Projective Spaces
    Indian J. pure appl. Math., 39(3): 285-291, June 2008 °c Printed in India. FIXED POINT FREE INVOLUTIONS ON COHOMOLOGY PROJECTIVE SPACES HEMANT KUMAR SINGH1 AND TEJ BAHADUR SINGH Department of Mathematics, University of Delhi, Delhi 110 007, India e-mail: tej b [email protected] (Received 22 September 2006; after final revision 24 January 2008; accepted 14 February 2008) Let X be a finitistic space with the mod 2 cohomology ring isomorphic to that of CP n, n odd. In this paper, we determine the mod 2 cohomology ring of the orbit space of a fixed point free involution on X. This gives a classification of cohomology type of spaces with the fundamental group Z2 and the covering space a complex projective space. Moreover, we show that there exists no equivariant map Sm ! X for m > 2 relative to the antipodal action on Sm. An analogous result is obtained for a fixed point free involution on a mod 2 cohomology real projective space. Key Words: Projective space; free action; cohomology algebra; spectral sequence 1. INTRODUCTION Suppose that a topological group G acts (continuously) on a topological space X. Associated with the transformation group (G; X) are two new spaces: The fixed point set XG = fx²Xjgx = x; for all g²Gg and the orbit space X=G whose elements are the orbits G(x) = fgxjg²Gg and the topology is induced by the natural projection ¼ : X ! X=G; x ! G(x). If X and Y are G-spaces, then an equivariant map from X to Y is a continuous map Á : X ! Y such that gÁ(x) = Ág(x) for all g²G; x 2 X.
    [Show full text]
  • The Real Projective Spaces in Homotopy Type Theory
    The real projective spaces in homotopy type theory Ulrik Buchholtz Egbert Rijke Technische Universität Darmstadt Carnegie Mellon University Email: [email protected] Email: [email protected] Abstract—Homotopy type theory is a version of Martin- topology and homotopy theory developed in homotopy Löf type theory taking advantage of its homotopical models. type theory (homotopy groups, including the fundamen- In particular, we can use and construct objects of homotopy tal group of the circle, the Hopf fibration, the Freuden- theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key thal suspension theorem and the van Kampen theorem, players in homotopy theory, as certain higher inductive types for example). Here we give an elementary construction in homotopy type theory. The classical definition of RPn, in homotopy type theory of the real projective spaces as the quotient space identifying antipodal points of the RPn and we develop some of their basic properties. n-sphere, does not translate directly to homotopy type theory. R n In classical homotopy theory the real projective space Instead, we define P by induction on n simultaneously n with its tautological bundle of 2-element sets. As the base RP is either defined as the space of lines through the + case, we take RP−1 to be the empty type. In the inductive origin in Rn 1 or as the quotient by the antipodal action step, we take RPn+1 to be the mapping cone of the projection of the 2-element group on the sphere Sn [4].
    [Show full text]
  • Projective Geometry Lecture Notes
    Projective Geometry Lecture Notes Thomas Baird March 26, 2014 Contents 1 Introduction 2 2 Vector Spaces and Projective Spaces 4 2.1 Vector spaces and their duals . 4 2.1.1 Fields . 4 2.1.2 Vector spaces and subspaces . 5 2.1.3 Matrices . 7 2.1.4 Dual vector spaces . 7 2.2 Projective spaces and homogeneous coordinates . 8 2.2.1 Visualizing projective space . 8 2.2.2 Homogeneous coordinates . 13 2.3 Linear subspaces . 13 2.3.1 Two points determine a line . 14 2.3.2 Two planar lines intersect at a point . 14 2.4 Projective transformations and the Erlangen Program . 15 2.4.1 Erlangen Program . 16 2.4.2 Projective versus linear . 17 2.4.3 Examples of projective transformations . 18 2.4.4 Direct sums . 19 2.4.5 General position . 20 2.4.6 The Cross-Ratio . 22 2.5 Classical Theorems . 23 2.5.1 Desargues' Theorem . 23 2.5.2 Pappus' Theorem . 24 2.6 Duality . 26 3 Quadrics and Conics 28 3.1 Affine algebraic sets . 28 3.2 Projective algebraic sets . 30 3.3 Bilinear and quadratic forms . 31 3.3.1 Quadratic forms . 33 3.3.2 Change of basis . 33 1 3.3.3 Digression on the Hessian . 36 3.4 Quadrics and conics . 37 3.5 Parametrization of the conic . 40 3.5.1 Rational parametrization of the circle . 42 3.6 Polars . 44 3.7 Linear subspaces of quadrics and ruled surfaces . 46 3.8 Pencils of quadrics and degeneration . 47 4 Exterior Algebras 52 4.1 Multilinear algebra .
    [Show full text]
  • Example Sheet 1
    Part III 2015-16: Differential geometry [email protected] Example Sheet 1 3 1 1. (i) Do the charts '1(x) = x and '2(x) = x (x 2 R) belong to the same C differentiable structure on R? (ii) Let Rj, j = 1; 2, be the manifold defined by using the chart 'j on the topo- logical space R. Are R1 and R2 diffeomorphic? 2. Let X be the metric space defined as follows: Let P1;:::;PN be distinct points in the Euclidean plane with its standard metric d, and define a distance function (not a ∗ 2 ∗ metric for N > 1) ρ on R by ρ (P; Q) = minfd(P; Q); mini;j(d(P; Pi) + d(Pj;Q))g: 2 Let X denote the quotient of R obtained by identifying the N points Pi to a single point P¯ on X. Show that ρ∗ induces a metric on X (the London Underground metric). Show that, for N > 1, the space X cannot be given the structure of a topological manifold. 3. (i) Prove that the product of smooth manifolds has the structure of a smooth manifold. (ii) Prove that n-dimensional real projective space RP n = Sn={±1g has the struc- ture of a smooth manifold of dimension n. (iii) Prove that complex projective space CP n := (Cn+1 nf0g)=C∗ has the structure of a smooth manifold of dimension 2n. 4. (i) Prove that the complex projective line CP 1 is diffeomorphic to the sphere S2. (ii) Show that the natural map (C2 n f0g) ! CP 1 induces a smooth map of manifolds S3 ! S2, the Poincar´emap.
    [Show full text]
  • 2 Lie Groups
    2 Lie Groups Contents 2.1 Algebraic Properties 25 2.2 Topological Properties 27 2.3 Unification of Algebra and Topology 29 2.4 Unexpected Simplification 31 2.5 Conclusion 31 2.6 Problems 32 Lie groups are beautiful, important, and useful because they have one foot in each of the two great divisions of mathematics — algebra and geometry. Their algebraic properties derive from the group axioms. Their geometric properties derive from the identification of group operations with points in a topological space. The rigidity of their structure comes from the continuity requirements of the group composition and inversion maps. In this chapter we present the axioms that define a Lie group. 2.1 Algebraic Properties The algebraic properties of a Lie group originate in the axioms for a group. Definition: A set gi,gj,gk,... (called group elements or group oper- ations) together with a combinatorial operation (called group multi- ◦ plication) form a group G if the following axioms are satisfied: (i) Closure: If g G, g G, then g g G. i ∈ j ∈ i ◦ j ∈ (ii) Associativity: g G, g G, g G, then i ∈ j ∈ k ∈ (g g ) g = g (g g ) i ◦ j ◦ k i ◦ j ◦ k 25 26 Lie Groups (iii) Identity: There is an operator e (the identity operation) with the property that for every group operation g G i ∈ g e = g = e g i ◦ i ◦ i −1 (iv) Inverse: Every group operation gi has an inverse (called gi ) with the property g g−1 = e = g−1 g i ◦ i i ◦ i Example: We consider the set of real 2 2 matrices SL(2; R): × α β A = det(A)= αδ βγ = +1 (2.1) γ δ − where α,β,γ,δ are real numbers.
    [Show full text]
  • Geometries of Homogeneous Spaces 1. Rotations of Spheres
    (October 9, 2013) Geometries of homogeneous spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/mfms/notes 2013-14/06 homogeneous geometries.pdf] Basic examples of non-Euclidean geometries are best studied by studying the groups that preserve the geometries. Rather than specifying the geometry, we specify the group. The group-invariant geometry on spheres is the familiar spherical geometry, with a simple relation to the ambient Euclidean geometry, also rotation-invariant. The group-invariant geometry on real and complex n-balls is hyperbolic geometry: there are infinitely many straight lines (geodesics) through a given point not on a given straight line, contravening in surplus the parallel postulate for Euclidean geometry. 1. Rotations of spheres 2. Holomorphic rotations n 3. Action of GLn+1(C) on projective space P 4. Real hyperbolic n-space 5. Complex hyperbolic n-space 1. Rotations of spheres Let h; i be the usual inner product on Rn, namely n X hx; yi = xi yi (where x = (x1; : : : ; xn) and y = (y1; : : : ; yn)) i=1 The distance function is expressed in terms of this, as usual: distance from x to y = jx − yj (where jxj = hx; xi1=2) The standard (n − 1)-sphere Sn−1 in Rn is n−1 n S = fx 2 R : jxj = 1g The usual general linear and special linear groups of size n (over R) are 8 < GLn(R) = fn-by-n invertible real matricesg = general linear group : SLn(R) = fg 2 GLn(R) : det g = 1g = special linear group The modifier special refers to the determinant-one condition.
    [Show full text]
  • Symplectic Topology of Projective Space: Lagrangians, Local Systems and Twistors
    Symplectic Topology of Projective Space: Lagrangians, Local Systems and Twistors Momchil Preslavov Konstantinov A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Mathematics University College London March, 2019 2 I, Momchil Preslavov Konstantinov, confirm that the work presented in this thesis is my own, except for the content of section 3.1 which is in collaboration with Jack Smith. Where information has been derived from other sources, I confirm that this has been indicated in the work. 3 На семейството ми. Abstract n In this thesis we study monotone Lagrangian submanifolds of CP . Our results are roughly of two types: identifying restrictions on the topology of such submanifolds and proving that certain Lagrangians cannot be displaced by a Hamiltonian isotopy. The main tool we use is Floer cohomology with high rank local systems. We describe this theory in detail, paying particular attention to how Maslov 2 discs can obstruct the differential. We also introduce some natural unobstructed subcomplexes. We apply this theory to study the topology of Lagrangians in projective space. We prove that a n monotone Lagrangian in CP with minimal Maslov number n + 1 must be homotopy equivalent to n RP (this is joint work with Jack Smith). We also show that, if a monotone Lagrangian in CP3 has minimal Maslov number 2, then it is diffeomorphic to a spherical space form, one of two possible Euclidean manifolds or a principal circle bundle over an orientable surface. To prove this, we use algebraic properties of lifted Floer cohomology and an observation about the degree of maps between Seifert fibred 3-manifolds which may be of independent interest.
    [Show full text]
  • Quantum Real Projective Space, Disc and Spheres
    Algebras and Representation Theory 6: 169–192, 2003. 169 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Quantum Real Projective Space, Disc and Spheres Dedicated to the memory of Stanisław Zakrzewski PIOTR M. HAJAC1, RAINER MATTHES2 and WOJCIECH SZYMANSKI´ 3 1Mathematical Institute, Polish Academy of Sciences, ul. Sniadeckich´ 8, Warsaw, 00–950 Poland and Department of Mathematical Methods in Physics, Warsaw University, ul. Ho˙za 74, Warsaw, 00-682 Poland 2Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26, D-04103 Leipzig, Germany and Institute of Theoretical Physics, Leipzig University, Augustusplatz 10/11, D-04109 Leipzig, Germany. e-mail: [email protected] 3School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia. e-mail: [email protected] (Received: October 2000) Presented by S. L. Woronowicz ∗ R 2 Abstract. We define the C -algebra of quantum real projective space Pq , classify its irreducible representations, and compute its K-theory. We also show that the q-disc of Klimek and Lesniewski can be obtained as a non-Galois Z2-quotient of the equator Podles´ quantum sphere. On the way, we provide the Cartesian coordinates for all Podles´ quantum spheres and determine an explicit form of ∗ ∗ isomorphisms between the C -algebras of the equilateral spheres and the C -algebra of the equator one. Mathematics Subject Classifications (2000): 46L87, 46L80. ∗ Key words: C -representations, K-theory. 1. Introduction Classical spheres can be constructed by gluing two discs along their boundaries. Since an open disc is homeomorphic to R2, this fact is reflected in the following short exact sequence of C∗-algebras of continuous functions (vanishing at infinity where appropriate): 2 2 2 1 0 −→ C0(R ) ⊕ C0(R ) −→ C(S ) −→ C(S ) −→ 0.
    [Show full text]
  • The Chabauty Space of Closed Subgroups of the Three-Dimensional
    THE CHABAUTY SPACE OF CLOSED SUBGROUPS OF THE THREE-DIMENSIONAL HEISENBERG GROUP Martin R. Bridson, Pierre de la Harpe, and Victor Kleptsyn Abstract. When equipped with the natural topology first defined by Chabauty, the closed subgroups of a locally compact group G form a compact space C(G). We analyse the structure of C(G) for some low-dimensional Lie groups, concentrating mostly on the 3-dimensional Heisenberg group H. We prove that C(H) is a 6-dimensional space that is path–connected but not locally connected. The lattices in H form a dense open subset L(H) ⊂C(H) that is the disjoint union of an infinite sequence of pairwise–homeomorphic aspherical manifolds of dimension six, each a torus bundle over (S3 r T ) × R, where T denotes a trefoil knot. The complement of L(H) in C(H) is also described explicitly. The subspace of C(H) consisting of subgroups that contain the centre Z(H) is homeomorphic to the 4–sphere, and we prove that this is a weak retract of C(H). 1. Introduction Let G be a locally compact topological group. We denote by (G) the space of closed subgroups of G equipped with the Chabauty topology; this is a compactC space. A basis of neighbourhoods for a closed subgroup C (G) is formed by the subsets ∈ C (1.1) (C) = D (G) D K CU and C K DU , VK,U { ∈ C | ∩ ⊂ ∩ ⊂ } where K G is compact and U is an open neighbourhood of the identity e G. We will consider the⊆ induced topology on various subspaces of (G) including the space∈ of lattices C arXiv:0711.3736v2 [math.GR] 18 Nov 2008 (G), the larger space of discrete subgroups (G), the space of abelian closed subgroups L(G), and the space of normal closed subgroupsD (G).
    [Show full text]
  • Making New Spaces from Old Ones - Part 1
    Making New Spaces from Old Ones - Part 1 Renzo's math 570 In this set of problems we want to illustrate, with some hopefully in- teresting and useful examples, the strategy discussed in class about how to induce a topology on a set X, given the datum of a topological space (Y; τY ) and a set function either from Y to X or from X to Y . The result- ing topology on X is called the induced topology (induced by the pair (Y; τY )). 1 The philosophy 1.1 f : X ! (Y; τY ) In this case we define the induced topology to be the coarsest topology on X that makes f continuous. Equivalently, the induced topology is composed of all preimages of open sets of Y . 1.2 X (Y; τY ): f In this case the induced topology is the finest topology on X that makes f continuous. Or the induced topology is generated by all subsets of Y whose preimage is open in X. 2 The subspace topology If X is a subset of (Y; τY ), we can use the inclusion function i : X ! Y to induce a topology on X. In this case open sets of Y are obtained by intersecting open sets in X with Y . Problem 1. Consider the closed interval [0; 1] ⊂ (R; τeucl). Describe the open sets in the subspace topology. Solution: For U to be an opem set in X, there must exist an open set −1 V in R s.t. i (V ) = U. 1 The open sets in X. • Interior open sets • Contain an endpoint with some "fuzz" • Contains both endpoints with "fuzz" 3 The product topology Let (X; τ) and (Y; σ) be two topological spaces.
    [Show full text]
  • Arxiv:1905.09666V2 [Math.CA] 8 Dec 2019 Choose I Ieepii Omlsfrti Optto.W Hoeaseilbasis Special ( a Monomials Choose of We Family the Computation
    NEW APPROACH TO CERTAIN REAL HYPER-ELLIPTIC INTEGRALS PIOTR KRASON,´ JAN MILEWSKI Abstract. In this paper we treat certain elliptic and hyper-elliptic integrals in a unified way. We introduce a new basis of these integrals coming from certain basis φn(x) of polyno- mials and show that the transition matrix between this basis and the traditional monomial basis is certain upper triangular band matrix. This allows us to obtain explicit formulas for the considered integrals. Our approach, specified to elliptic case, is more effective than known recursive procedures for elliptic integrals. We also show that basic integrals enjoy symmetry coming from the action of the dihedral group DM on a real projective line. This action is closely connected with the properties of homographic transformation of a real projective line. This explains similarities occurring in some formulas in popular tables of elliptic integrals. As a consequence one can reduce the number of necessary formulas in a significant way. We believe that our results will simplify programming and computing the hyper-elliptic integrals in various problems of mathematical physics and engineering. 1. Introduction The aim of this paper is to give explicit formulas for the integrals of the following form (x p)ndx (1.1) In,p = − , n Z, Q(x) ∈ Z where Q(x) is a polynomial of degree M pwith M real zeroes of multiplicity 1. It is very well known that when M > 2 the integrals are in general not elementary. The cases M = 3 and M = 4 lead to elliptic integrals, whereas for M 5 we obtain hyper-elliptic integrals.
    [Show full text]
  • Slides for Lectures 3 and 4
    Shapes of Spaces Bjørn Ian Dundas ∼ SO(3) = RP3. H∗SO(3) H∗ without tears Shapes of Spaces III Attaching cells Axioms for homology Bjørn Ian Dundas Homology – of SO(3) and in general Summer School, Lisbon, July 2017 The orthogonal groups Shapes of Spaces Bjørn Ian Dundas ∼ SO(3) = RP3. H∗SO(3) H∗ without tears Let O(n) be the space of all real orthogonal n × n-matrices. Attaching cells I.e., the real n × n-matrices A satisfying Axioms for homology AtA = I Includes reflections: ignoring these we have the special orthogonal group SO(n)={A ∈ O(n) | det A =1} consisting exactly of the rotations. t O(n)={A ∈ Mn(R) | A A = I } n2 subspace of Mn(R)=R At :thetransposeofS2 → S2A, p "→ −p, At A = I ⇔ theis not columns homotopic in A are to orthonormal S2 → S2, p "→ p. The space SO(3) of rotations in R3. Shapes of Spaces Bjørn Ian Dundas ∼ SO(3) = RP3. H∗SO(3) H∗ without tears R3 Understanding the space SO(3) of rotations in is all Attaching cells important for Axioms for homology robotics/prosthetics computer visualisation/games navigation 9 It is a 3D-subspace of M3R = R , but curves and folds up on itself in a manner that makes the flat 9D coordinates useless. At this point I hope you all did the hands-on exercise about rotations on the first exercise sheet. The space SO(3) of rotations in R3. Shapes of Spaces Bjørn Ian Dundas R3 A nontrivial rotation in has a unique axis: the eigenspace ∼ SO(3) = RP3.
    [Show full text]