Geometries of Homogeneous Spaces 1. Rotations of Spheres

Total Page:16

File Type:pdf, Size:1020Kb

Geometries of Homogeneous Spaces 1. Rotations of Spheres (October 9, 2013) Geometries of homogeneous spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/mfms/notes 2013-14/06 homogeneous geometries.pdf] Basic examples of non-Euclidean geometries are best studied by studying the groups that preserve the geometries. Rather than specifying the geometry, we specify the group. The group-invariant geometry on spheres is the familiar spherical geometry, with a simple relation to the ambient Euclidean geometry, also rotation-invariant. The group-invariant geometry on real and complex n-balls is hyperbolic geometry: there are infinitely many straight lines (geodesics) through a given point not on a given straight line, contravening in surplus the parallel postulate for Euclidean geometry. 1. Rotations of spheres 2. Holomorphic rotations n 3. Action of GLn+1(C) on projective space P 4. Real hyperbolic n-space 5. Complex hyperbolic n-space 1. Rotations of spheres Let h; i be the usual inner product on Rn, namely n X hx; yi = xi yi (where x = (x1; : : : ; xn) and y = (y1; : : : ; yn)) i=1 The distance function is expressed in terms of this, as usual: distance from x to y = jx − yj (where jxj = hx; xi1=2) The standard (n − 1)-sphere Sn−1 in Rn is n−1 n S = fx 2 R : jxj = 1g The usual general linear and special linear groups of size n (over R) are 8 < GLn(R) = fn-by-n invertible real matricesg = general linear group : SLn(R) = fg 2 GLn(R) : det g = 1g = special linear group The modifier special refers to the determinant-one condition. [1] n n Our definition of rotation in R is a linear map on R preserving distances, angles, and with determinant one (to preserve orientation). To preserve angles and distances is exactly that the inner product is preserved, in the sense that hgx; gyi = hx; yi cos θ sin θ [1] A direct way to define rotation in 2 is as a linear map with a matrix of the form for some real R − sin θ cos θ 3 θ. This definition is deficient as it depends on a choice of basis. A definition in R is that a rotation is a linear map g with an axis, a line L fixed by g, and on the orthogonal complement L? of L the restriction of g is a two-dimensional rotation. For this to make sense, one must have understood that the two-dimensional definition is independent of basis, and that g does stabilize the orthogonal complement of any line fixed by it. Indeed, there is no necessity to n refer to R . Any R vector space with an inner product works as well. 1 Paul Garrett: Geometries of homogeneous spaces (October 9, 2013) The standard orthogonal group is On(R) = orthogonal group = angle-and-distance-preserving group n = fg 2 GLn(R): hgx; gyi = hx; yi for all x; y 2 R g n−1 n Since distances are preserved, On(R) stabilizes the unit sphere S in R , and every sphere centered at 0. Preservation of the inner product does not fully distinguish rotations, since it does not imply the orientation- preserving (determinant-one) condition, which has to be added explicitly. Thus, the standard [2] special orthogonal group [3] , meant to be the group of rotations, is SOn(R) = special orthogonal group = rotation group = fg 2 On(R) : det g = 1g A common, expedient, but unenlightening, definition of the standard orthogonal group is > > On(R) = fg 2 GLn(R): g g = 1ng (g is g-transpose, 1n is the n-by-n identity) and the standard special orthogonal group is still SOn(R) = fg 2 On(R) : det g = 1g Fortunately, these two characterizations specify the same objects: [1.0.1] Claim: The two characterizations of orthogonal group are the same. That is, n > fg 2 GLn(R): hgx; gyi = hx; yi for all x; y 2 R g = fg 2 GLn(R): g g = 1ng Proof: The usual inner product is also expressible as X > > hx; yi = xiyi = y x (for column vectors, y = y-transpose) i > For g g = 1n, compute directly hgx; gyi = (gy)>(gx) = y> (g>g) x = y>x = hx; yi > from which g g = 1n implies h; i is preserved. On the other hand, suppose g preserves h; i. The main trick is that, for column vectors v1; : : : ; vn and w1; : : : ; wn, all of length n, inserted as the columns of two matrices V and W , > > th W V = [ w1 : : : wn ] [ v1 : : : vn ] = n-by-n matrix with (i; j) entry hwi; vji Running this backward, for g 2 GLn(R) [2] In fact, the form of these definitions did not use the explicit form of the inner product, so applies as well to other possible inner products, as well. While in the near future we care mostly about the standard one, it is wise to present things in a form which does not needlessly depend on irrelevant particulars. [3] As with the special linear group, the modifier special on special orthogonal group refers to the determinant-one condition. 2 Paul Garrett: Geometries of homogeneous spaces (October 9, 2013) th > n-by-n matrix with (i; j) entry hgwi; gvji = [ gw1 : : : gwn ] [ gv1 : : : gvn ] = (gW )>(gV ) = W > (g>g) V For g preserving inner products, slightly cleverly taking v1; : : : ; vn and w1; : : : ; wn to be the standard basis e1; : : : ; en, the previous relation becomes th > > > > > n-by-n matrix with (i; j) entry hgei; geji = W (g g) V = 1n (g g) 1n = g g > proving that g g = 1n. Thus, the two characterizations of orthogonal groups agree. === > Regarding possible values of determinants of elements of On(R), observe that for any g such that g g = 1 2 > > (det g) = det g · det g = det(g g) = det 1n = 1 so det g = ±1. n−1 [1.0.2] Claim: The action of SOn(R) on S is transitive, for n ≥ 2. n−1 Proof: First show that, given x 2 S , there is g 2 On(R) such that ge1 = x, where e1; : : : ; en is the n standard basis for R . That is, construct g 2 On(R) such that the left column of g is x. Indeed, complete n [4] x to an R-basis x; x2; x3; : : : ; xn for R . Then apply the Gram-Schmidt process to find an orthonormal n (with respect to the standard inner product) basis x; v2; : : : ; vn for R . As observed in the previous proof, > the condition g g = 1n, is exactly the assertion that the columns of g form an orthonormal basis. Thus, taking x; v2; : : : ; vn as the columns of g gives g 2 On(R) such that ge1 = x. As noted above, the determinant of this g is ±1. To ensure that it is 1, replace vn by −vn if necessary. This still gives ge1 = x, giving the transitivity. === [1.0.3] Claim: The isotropy group SOn(R)en of the last standard basis vector en = (0;:::; 0; 1) is A 0 (isotropy group) = SO ( ) = f : A 2 SO ( )g ≈ SO ( ) n R en 0 1 n−1 R n−1 R Thus, by transitivity, as SOn(R)-spaces n−1 S ≈ SOn(R) = SOn−1(R) Proof: There are at least two ways to think about this. First, think of the geometry specified by h; i. Second, manipulate matrices. Taking the first course first, claim that for g fixing en, the orthogonal complement ? n en = fv 2 R : hv; eni = 0g ? ? is stabilized by g, and on en the linear map preserves (the restriction to en of) h; i. Indeed, for hv; eni = 0 and gen = en, hgv; eni = hgv; geni = hv; eni = 0 since g preserves the inner product, showing that g stabilizes the orthogonal complement to en. Certainly g ? n preserves the restriction to en of h; i, since it preserved h; i on the whole space R . And, on the other hand, [4] Recall that, given a basis v1; : : : ; vn for a (real or complex) vector space with an inner product (real-symmetric or complex hermitian), the Gram-Schmidt process produces an orthogonal or orthonormal basis, as follows. Replace v1 by v1=jv1j to give it length 1. Then replace v2 first by v2 − hv2; v1iv1 to make it orthogonal to v1 and then by v2=jv2j to give it length 1. Then replace v3 first by v3 − hv3; v1iv1 to make it orthogonal to v1, then by v3 − hv3; v2iv2 to make it orthogonal to v2, and then by v3=jv3j to give it length 1. And so on. 3 Paul Garrett: Geometries of homogeneous spaces (October 9, 2013) ? ? for g stabilizing en and preserving the restriction of h; i to vo , define (an extension of) g on en by gen = en. 0 0 0 0 ? To check that this extended g is in On(R), for general vectors v = v +aen and w = w +ben with v ; w 2 en , a; b 2 R, a natural computation gives 0 0 0 0 0 0 hgv; gwi = hg(v + aen); g(w + beni = hgv + agen; gw + bgeni = hgv + aen; gw + beni 0 0 0 0 0 0 = hgv ; gw i + haen; beni = hv ; w i + haen; beni = hv + aen; w + beni = hv; wi Thus, the extension does preserve h; i on the larger space, and the stabilizer subgroup of en is proven to be a copy of SOn−1(R). At heart, the matrix argument does the same things, but mutely. Let A b g = 2 O ( ) c d n R > be a block decomposition with A of size n − 1, etc., with g g = 1n and gen = en.
Recommended publications
  • Differentiable Manifolds
    Prof. A. Cattaneo Institut f¨urMathematik FS 2018 Universit¨atZ¨urich Differentiable Manifolds Solutions to Exercise Sheet 1 p Exercise 1 (A non-differentiable manifold). Consider R with the atlas f(R; id); (R; x 7! sgn(x) x)g. Show R with this atlas is a topological manifold but not a differentiable manifold. p Solution: This follows from the fact that the transition function x 7! sgn(x) x is a homeomor- phism but not differentiable at 0. Exercise 2 (Stereographic projection). Let f : Sn − f(0; :::; 0; 1)g ! Rn be the stereographic projection from N = (0; :::; 0; 1). More precisely, f sends a point p on Sn different from N to the intersection f(p) of the line Np passing through N and p with the equatorial plane xn+1 = 0, as shown in figure 1. Figure 1: Stereographic projection of S2 (a) Find an explicit formula for the stereographic projection map f. (b) Find an explicit formula for the inverse stereographic projection map f −1 (c) If S = −N, U = Sn − N, V = Sn − S and g : Sn ! Rn is the stereographic projection from S, then show that (U; f) and (V; g) form a C1 atlas of Sn. Solution: We show each point separately. (a) Stereographic projection f : Sn − f(0; :::; 0; 1)g ! Rn is given by 1 f(x1; :::; xn+1) = (x1; :::; xn): 1 − xn+1 (b) The inverse stereographic projection f −1 is given by 1 f −1(y1; :::; yn) = (2y1; :::; 2yn; kyk2 − 1): kyk2 + 1 2 Pn i 2 Here kyk = i=1(y ) .
    [Show full text]
  • Fixed Point Free Involutions on Cohomology Projective Spaces
    Indian J. pure appl. Math., 39(3): 285-291, June 2008 °c Printed in India. FIXED POINT FREE INVOLUTIONS ON COHOMOLOGY PROJECTIVE SPACES HEMANT KUMAR SINGH1 AND TEJ BAHADUR SINGH Department of Mathematics, University of Delhi, Delhi 110 007, India e-mail: tej b [email protected] (Received 22 September 2006; after final revision 24 January 2008; accepted 14 February 2008) Let X be a finitistic space with the mod 2 cohomology ring isomorphic to that of CP n, n odd. In this paper, we determine the mod 2 cohomology ring of the orbit space of a fixed point free involution on X. This gives a classification of cohomology type of spaces with the fundamental group Z2 and the covering space a complex projective space. Moreover, we show that there exists no equivariant map Sm ! X for m > 2 relative to the antipodal action on Sm. An analogous result is obtained for a fixed point free involution on a mod 2 cohomology real projective space. Key Words: Projective space; free action; cohomology algebra; spectral sequence 1. INTRODUCTION Suppose that a topological group G acts (continuously) on a topological space X. Associated with the transformation group (G; X) are two new spaces: The fixed point set XG = fx²Xjgx = x; for all g²Gg and the orbit space X=G whose elements are the orbits G(x) = fgxjg²Gg and the topology is induced by the natural projection ¼ : X ! X=G; x ! G(x). If X and Y are G-spaces, then an equivariant map from X to Y is a continuous map Á : X ! Y such that gÁ(x) = Ág(x) for all g²G; x 2 X.
    [Show full text]
  • The Real Projective Spaces in Homotopy Type Theory
    The real projective spaces in homotopy type theory Ulrik Buchholtz Egbert Rijke Technische Universität Darmstadt Carnegie Mellon University Email: [email protected] Email: [email protected] Abstract—Homotopy type theory is a version of Martin- topology and homotopy theory developed in homotopy Löf type theory taking advantage of its homotopical models. type theory (homotopy groups, including the fundamen- In particular, we can use and construct objects of homotopy tal group of the circle, the Hopf fibration, the Freuden- theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key thal suspension theorem and the van Kampen theorem, players in homotopy theory, as certain higher inductive types for example). Here we give an elementary construction in homotopy type theory. The classical definition of RPn, in homotopy type theory of the real projective spaces as the quotient space identifying antipodal points of the RPn and we develop some of their basic properties. n-sphere, does not translate directly to homotopy type theory. R n In classical homotopy theory the real projective space Instead, we define P by induction on n simultaneously n with its tautological bundle of 2-element sets. As the base RP is either defined as the space of lines through the + case, we take RP−1 to be the empty type. In the inductive origin in Rn 1 or as the quotient by the antipodal action step, we take RPn+1 to be the mapping cone of the projection of the 2-element group on the sphere Sn [4].
    [Show full text]
  • Example Sheet 1
    Part III 2015-16: Differential geometry [email protected] Example Sheet 1 3 1 1. (i) Do the charts '1(x) = x and '2(x) = x (x 2 R) belong to the same C differentiable structure on R? (ii) Let Rj, j = 1; 2, be the manifold defined by using the chart 'j on the topo- logical space R. Are R1 and R2 diffeomorphic? 2. Let X be the metric space defined as follows: Let P1;:::;PN be distinct points in the Euclidean plane with its standard metric d, and define a distance function (not a ∗ 2 ∗ metric for N > 1) ρ on R by ρ (P; Q) = minfd(P; Q); mini;j(d(P; Pi) + d(Pj;Q))g: 2 Let X denote the quotient of R obtained by identifying the N points Pi to a single point P¯ on X. Show that ρ∗ induces a metric on X (the London Underground metric). Show that, for N > 1, the space X cannot be given the structure of a topological manifold. 3. (i) Prove that the product of smooth manifolds has the structure of a smooth manifold. (ii) Prove that n-dimensional real projective space RP n = Sn={±1g has the struc- ture of a smooth manifold of dimension n. (iii) Prove that complex projective space CP n := (Cn+1 nf0g)=C∗ has the structure of a smooth manifold of dimension 2n. 4. (i) Prove that the complex projective line CP 1 is diffeomorphic to the sphere S2. (ii) Show that the natural map (C2 n f0g) ! CP 1 induces a smooth map of manifolds S3 ! S2, the Poincar´emap.
    [Show full text]
  • Symplectic Topology of Projective Space: Lagrangians, Local Systems and Twistors
    Symplectic Topology of Projective Space: Lagrangians, Local Systems and Twistors Momchil Preslavov Konstantinov A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Mathematics University College London March, 2019 2 I, Momchil Preslavov Konstantinov, confirm that the work presented in this thesis is my own, except for the content of section 3.1 which is in collaboration with Jack Smith. Where information has been derived from other sources, I confirm that this has been indicated in the work. 3 На семейството ми. Abstract n In this thesis we study monotone Lagrangian submanifolds of CP . Our results are roughly of two types: identifying restrictions on the topology of such submanifolds and proving that certain Lagrangians cannot be displaced by a Hamiltonian isotopy. The main tool we use is Floer cohomology with high rank local systems. We describe this theory in detail, paying particular attention to how Maslov 2 discs can obstruct the differential. We also introduce some natural unobstructed subcomplexes. We apply this theory to study the topology of Lagrangians in projective space. We prove that a n monotone Lagrangian in CP with minimal Maslov number n + 1 must be homotopy equivalent to n RP (this is joint work with Jack Smith). We also show that, if a monotone Lagrangian in CP3 has minimal Maslov number 2, then it is diffeomorphic to a spherical space form, one of two possible Euclidean manifolds or a principal circle bundle over an orientable surface. To prove this, we use algebraic properties of lifted Floer cohomology and an observation about the degree of maps between Seifert fibred 3-manifolds which may be of independent interest.
    [Show full text]
  • Quantum Real Projective Space, Disc and Spheres
    Algebras and Representation Theory 6: 169–192, 2003. 169 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Quantum Real Projective Space, Disc and Spheres Dedicated to the memory of Stanisław Zakrzewski PIOTR M. HAJAC1, RAINER MATTHES2 and WOJCIECH SZYMANSKI´ 3 1Mathematical Institute, Polish Academy of Sciences, ul. Sniadeckich´ 8, Warsaw, 00–950 Poland and Department of Mathematical Methods in Physics, Warsaw University, ul. Ho˙za 74, Warsaw, 00-682 Poland 2Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26, D-04103 Leipzig, Germany and Institute of Theoretical Physics, Leipzig University, Augustusplatz 10/11, D-04109 Leipzig, Germany. e-mail: [email protected] 3School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia. e-mail: [email protected] (Received: October 2000) Presented by S. L. Woronowicz ∗ R 2 Abstract. We define the C -algebra of quantum real projective space Pq , classify its irreducible representations, and compute its K-theory. We also show that the q-disc of Klimek and Lesniewski can be obtained as a non-Galois Z2-quotient of the equator Podles´ quantum sphere. On the way, we provide the Cartesian coordinates for all Podles´ quantum spheres and determine an explicit form of ∗ ∗ isomorphisms between the C -algebras of the equilateral spheres and the C -algebra of the equator one. Mathematics Subject Classifications (2000): 46L87, 46L80. ∗ Key words: C -representations, K-theory. 1. Introduction Classical spheres can be constructed by gluing two discs along their boundaries. Since an open disc is homeomorphic to R2, this fact is reflected in the following short exact sequence of C∗-algebras of continuous functions (vanishing at infinity where appropriate): 2 2 2 1 0 −→ C0(R ) ⊕ C0(R ) −→ C(S ) −→ C(S ) −→ 0.
    [Show full text]
  • Slides for Lectures 3 and 4
    Shapes of Spaces Bjørn Ian Dundas ∼ SO(3) = RP3. H∗SO(3) H∗ without tears Shapes of Spaces III Attaching cells Axioms for homology Bjørn Ian Dundas Homology – of SO(3) and in general Summer School, Lisbon, July 2017 The orthogonal groups Shapes of Spaces Bjørn Ian Dundas ∼ SO(3) = RP3. H∗SO(3) H∗ without tears Let O(n) be the space of all real orthogonal n × n-matrices. Attaching cells I.e., the real n × n-matrices A satisfying Axioms for homology AtA = I Includes reflections: ignoring these we have the special orthogonal group SO(n)={A ∈ O(n) | det A =1} consisting exactly of the rotations. t O(n)={A ∈ Mn(R) | A A = I } n2 subspace of Mn(R)=R At :thetransposeofS2 → S2A, p "→ −p, At A = I ⇔ theis not columns homotopic in A are to orthonormal S2 → S2, p "→ p. The space SO(3) of rotations in R3. Shapes of Spaces Bjørn Ian Dundas ∼ SO(3) = RP3. H∗SO(3) H∗ without tears R3 Understanding the space SO(3) of rotations in is all Attaching cells important for Axioms for homology robotics/prosthetics computer visualisation/games navigation 9 It is a 3D-subspace of M3R = R , but curves and folds up on itself in a manner that makes the flat 9D coordinates useless. At this point I hope you all did the hands-on exercise about rotations on the first exercise sheet. The space SO(3) of rotations in R3. Shapes of Spaces Bjørn Ian Dundas R3 A nontrivial rotation in has a unique axis: the eigenspace ∼ SO(3) = RP3.
    [Show full text]
  • Smooth Structures on a Fake Real Projective Space
    SMOOTH STRUCTURES ON A FAKE REAL PROJECTIVE SPACE RAMESH KASILINGAM Abstract. We show that the group of smooth homotopy 7-spheres acts freely on the set of smooth manifold structures on a topological manifold M which is homo- topy equivalent to the real projective 7-space. We classify, up to diffeomorphism, all closed manifolds homeomorphic to the real projective 7-space. We also show that M has, up to diffeomorphism, exactly 28 distinct differentiable structures with the same underlying PL structure of M and 56 distinct differentiable structures with the same underlying topological structure of M. 1. Introduction Throughout this paper M m will be a closed oriented m-manifold and all homeo- morphisms and diffeomorphisms are assumed to preserve orientation, unless otherwise n stated. Let RP be real projective n-space. L´opez de Medrano [Lop71] and C.T.C. Wall [Wal68, Wal99] classified, up to PL homeomorphism, all closed PL manifolds n homotopy equivalent to RP when n > 4. This was extended to the topological category by Kirby-Siebenmann [KS77, pp. 331]. Four-dimensional surgery [FQ90] extends the homeomorphism classification to dimension 4. In this paper we study up to diffeomorphism all closed manifolds homeomorphic to 7 7 RP . Let M be a closed smooth manifold homotopy equivalent to RP . In section 2, we show that if a closed smooth manifold N is PL-homeomorphic to M, then there is 7 7 a unique homotopy 7-sphere Σ 2 Θ7 such that N is diffeomorphic to M#Σ , where Θ7 is the group of smooth homotopy spheres defined by M.
    [Show full text]
  • CONVEX REAL PROJECTIVE STRUCTURES on MANIFOLDS and ORBIFOLDS Suhyoung Choi, Gye-Seon Lee, Ludovic Marquis
    CONVEX REAL PROJECTIVE STRUCTURES ON MANIFOLDS AND ORBIFOLDS Suhyoung Choi, Gye-Seon Lee, Ludovic Marquis To cite this version: Suhyoung Choi, Gye-Seon Lee, Ludovic Marquis. CONVEX REAL PROJECTIVE STRUCTURES ON MANIFOLDS AND ORBIFOLDS. 2016. hal-01312445v1 HAL Id: hal-01312445 https://hal.archives-ouvertes.fr/hal-01312445v1 Preprint submitted on 9 May 2016 (v1), last revised 20 Oct 2016 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CONVEX REAL PROJECTIVE STRUCTURES ON MANIFOLDS AND ORBIFOLDS SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS Abstract. In this survey, we study deformations of finitely generated groups into Lie groups, focusing on the case underlying convex projective structures on manifolds and orb- ifolds, with an excursion on projective structures on surfaces. We survey the basics of the theory of deformations, (G; X)-structures on orbifolds, Hilbert geometry and Coxeter groups. The main examples of finitely generated groups for us will be Fuchsian groups, 3-manifold groups and Coxeter groups. Contents 1. Introduction1 2. Character varieties4 3. Geometric structures on orbifolds5 4. A starting point for convex projective structures9 5. The existence of deformation or exotic structures 12 6.
    [Show full text]
  • Arxiv:1508.04794V3 [Math.GT] 17 Dec 2017
    CONVEX PROJECTIVE STRUCTURES ON NON-HYPERBOLIC THREE-MANIFOLDS SAMUEL A. BALLAS, JEFFREY DANCIGER, AND GYE-SEON LEE Abstract. Y. Benoist proved that if a closed three-manifold M ad- mits an indecomposable convex real projective structure, then M is topologically the union along tori and Klein bottles of finitely many sub-manifolds each of which admits a complete finite volume hyperbolic structure on its interior. We describe some initial results in the direction of a potential converse to Benoist's theorem. We show that a cusped hy- perbolic three-manifold may, under certain assumptions, be deformed to convex projective structures with totally geodesic torus boundary. Such structures may be convexly glued together whenever the geometry at the boundary matches up. In particular, we prove that many doubles of cusped hyperbolic three-manifolds admit convex projective structures. 1. Introduction The previous decade has seen tremendous progress in the study of three- dimensional manifolds. Much of that progress stems from Perelman's proof of Thurston's Geometrization Conjecture which states that any closed ori- entable prime three-manifold admits a decomposition into geometric pieces modeled on the eight homogeneous Thurston geometries. However, because these geometric pieces do not glue together in any sensible geometric way, there are some questions about three-manifolds for which a Thurston geo- metric decomposition of the manifold may not be useful. One example is the question of linearity of three-manifold groups, ie whether a three-manifold fundamental group admits a faithful linear representation and in which di- mensions. While, in most cases, the Thurston geometric structure on each piece of a geometric decomposition determines a faithful linear represen- arXiv:1508.04794v3 [math.GT] 17 Dec 2017 tation of its fundamental group, these representations can not be directly synthesized into a representation of the fundamental group of the entire manifold.
    [Show full text]
  • PROJECTIVE SPACES 1. INTRODUCTION from Now
    数理解析研究所講究録 第 1670 巻 2009 年 15-24 15 INVOLUTIONS ON COHOMOLOGY LENS SPACES AND PROJECTIVE SPACES MAHENDER SINGH ABSTRACT. We determine the possible $mod 2$ cohomology algebra of orbit spaces of free involutions on finitistic $mod 2$ cohomology lens spaces and projective spaces. We also give applications to $Z_{2}$ -equivariant maps from spheres to such spaces. Outlines of proofs are given and the details will appear elsewhere. 1. INTRODUCTION Let $G$ be a group acting continuously on a space $X$ . Then there are two associated spaces, narnely, the fixed point set and the orbit space. It has always been one of the basic problems in topological transformation groups to determine these two associated spaces. Determining these two associated spaces up to topological or homotopy type is often difficult and hence we try to determine the (co)homological type. The pioneering result of Smith [31], determining fixed point sets up to homology of prime periodic maps on homol- ogy spheres, was the first in this direction. More explicit relations between the space, the fixed point $set_{r}$ and the orbit space were obtained by Floyd [10]. From now onwards, our focus will be on orbit spaces. One of the most famous conjectures in this direction was posed by Montgomery in 1950. Montgomery conjectured that: For any action of a compact Lie group $G$ on $\mathbb{R}^{n}$ , the orbit space $\mathbb{R}^{n}/G$ is contractible. The conjecture was reformulated by Conner [5] and is often called as the Con- ner conjecture. Even for a well understood space such as $\mathbb{R}^{n}$ , it took more than 25 years to prove the above conjecture.
    [Show full text]
  • Math 1410: Classic Examples of Manifolds
    Math 1410: Classic Examples of Manifolds: The purpose of these notes is to explain some classic examples of mani- folds. This won’t be on the exam! All these examples are compact Hausdorff spaces which are topological manifolds. The examples also have a number of additional structures associated to them which I am not going to discuss in these notes. For instance, they are usually considered as smooth manifolds (whatever that means). A General Principle: Let X be a topological space and let ∼ be an equiv- alence on X. Call a subset A ⊂ X full (with respect to the equivalence relation) if every equivalence class intersects A. We can treat A as a topo- logical space by giving it the subspace topology, and then we can consider A/ ∼. Lemma 0.1 If A is compact and A/ ∼ is Hausdorff Then X/ ∼ and A/ ∼ are homeomorphic. Proof: The basic idea is to shoehorn this result into the one thing we know: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. Let φ : X → X/ ∼ be the quotient map. The identity map ι : A → X respects the equivalence relation and gives a map from A/ ∼ to X/ ∼. The map I is surjective because A intersects every equivalence class. The map I is injective by definition of the equivalence relation on A: Two elements in A are equivalent if and only if they are equivalent in X. So, I is a bijection. Now we show that I is continuous. The map I is induced by the map φι : A → X/ ∼ .
    [Show full text]