Algebras and Representation Theory 6: 169–192, 2003. 169 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Quantum Real Projective Space, Disc and Spheres Dedicated to the memory of Stanisław Zakrzewski PIOTR M. HAJAC1, RAINER MATTHES2 and WOJCIECH SZYMANSKI´ 3 1Mathematical Institute, Polish Academy of Sciences, ul. Sniadeckich´ 8, Warsaw, 00–950 Poland and Department of Mathematical Methods in Physics, Warsaw University, ul. Ho˙za 74, Warsaw, 00-682 Poland 2Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26, D-04103 Leipzig, Germany and Institute of Theoretical Physics, Leipzig University, Augustusplatz 10/11, D-04109 Leipzig, Germany. e-mail:
[email protected] 3School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia. e-mail:
[email protected] (Received: October 2000) Presented by S. L. Woronowicz ∗ R 2 Abstract. We define the C -algebra of quantum real projective space Pq , classify its irreducible representations, and compute its K-theory. We also show that the q-disc of Klimek and Lesniewski can be obtained as a non-Galois Z2-quotient of the equator Podles´ quantum sphere. On the way, we provide the Cartesian coordinates for all Podles´ quantum spheres and determine an explicit form of ∗ ∗ isomorphisms between the C -algebras of the equilateral spheres and the C -algebra of the equator one. Mathematics Subject Classifications (2000): 46L87, 46L80. ∗ Key words: C -representations, K-theory. 1. Introduction Classical spheres can be constructed by gluing two discs along their boundaries. Since an open disc is homeomorphic to R2, this fact is reflected in the following short exact sequence of C∗-algebras of continuous functions (vanishing at infinity where appropriate): 2 2 2 1 0 −→ C0(R ) ⊕ C0(R ) −→ C(S ) −→ C(S ) −→ 0.