Differentiable Manifolds

Differentiable Manifolds

<p>Prof. A. Cattaneo Institut fu¨r Mathematik Universita¨t Zu¨rich <br>FS 2018 </p><p>Differentiable Manifolds </p><p>Solutions to Exercise Sheet 1 </p><p>√</p><p>Exercise 1 (A non-differentiable manifold). Consider R with the atlas {(R, id), (R, x → sgn(x) x)}. </p><p>Show R with this atlas is a topological manifold but not a differentiable manifold. </p><p>√</p><p>Solution: This follows from the fact that the transition function x → sgn(x) x is a homeomorphism but not differentiable at 0. </p><p>Exercise 2 (Stereographic projection). Let f : S<sup style="top: -0.3012em;">n </sup>− {(0, ..., 0, 1)} → R<sup style="top: -0.3012em;">n </sup>be the stereographic </p><p>projection from N = (0, ..., 0, 1). More precisely, f sends a point p on S<sup style="top: -0.3012em;">n </sup>different from N to the intersection f(p) of the line Np passing through N and p with the equatorial plane x<sup style="top: -0.3013em;">n+1 </sup>= 0, as shown in figure 1. </p><p>Figure 1: Stereographic projection of S<sup style="top: -0.3012em;">2 </sup></p><p>(a) Find&nbsp;an explicit formula for the stereographic projection map f. (b) Find&nbsp;an explicit formula for the inverse stereographic projection map f<sup style="top: -0.3012em;">−1 </sup>(c) If&nbsp;S = −N, U = S<sup style="top: -0.3013em;">n </sup>− N, V = S<sup style="top: -0.3013em;">n </sup>− S and g: S<sup style="top: -0.3013em;">n </sup>→ R<sup style="top: -0.3013em;">n </sup>is the stereographic projection from <br>S, then show that (U, f) and (V, g) form a C<sup style="top: -0.3012em;">∞ </sup>atlas of S<sup style="top: -0.3012em;">n</sup>. </p><p>Solution: We show each point separately. <br>(a) Stereographic&nbsp;projection f : S<sup style="top: -0.3013em;">n </sup>− {(0, ..., 0, 1)} → R<sup style="top: -0.3013em;">n </sup>is given by <br>1</p><p></p><ul style="display: flex;"><li style="flex:1">f(x<sup style="top: -0.3428em;">1</sup>, ..., x<sup style="top: -0.3428em;">n+1</sup>) = </li><li style="flex:1">(x<sup style="top: -0.3427em;">1</sup>, ..., x<sup style="top: -0.3427em;">n</sup>). </li></ul><p></p><p>1 − x<sup style="top: -0.2398em;">n+1 </sup></p><p>(b) The&nbsp;inverse stereographic projection f<sup style="top: -0.3012em;">−1 </sup>is given by <br>1</p><p>2<br>2</p><p></p><ul style="display: flex;"><li style="flex:1">f</li><li style="flex:1"><sup style="top: -0.3428em;">−1</sup>(y<sup style="top: -0.3428em;">1</sup>, ..., y<sup style="top: -0.3428em;">n</sup>) = </li><li style="flex:1">(2y<sup style="top: -0.3428em;">1</sup>, ..., 2y<sup style="top: -0.3428em;">n</sup>, kyk −&nbsp;1). </li></ul><p></p><p>kyk + 1 </p><p>P</p><p>n</p><p>2</p><p>Here kyk = <sub style="top: 0.249em;">i=1</sub>(y<sup style="top: -0.3013em;">i</sup>)<sup style="top: -0.3013em;">2</sup>. One&nbsp;can then easily check by direct computation that f and the map above are left and right inverses of each other. <br>(c) The&nbsp;transition map g ◦ f<sup style="top: -0.3012em;">−1 </sup>: R<sup style="top: -0.3012em;">n </sup>− {0} → R<sup style="top: -0.3012em;">n </sup>− {0} is given by <br>1</p><p></p><ul style="display: flex;"><li style="flex:1">g ◦ f<sup style="top: -0.3428em;">−1</sup>(y<sup style="top: -0.3428em;">1</sup>, ..., y<sup style="top: -0.3428em;">n</sup>) = </li><li style="flex:1"><sub style="top: 0.3296em;">2 </sub>(y<sup style="top: -0.3428em;">1</sup>, ..., y<sup style="top: -0.3428em;">n</sup>), </li></ul><p></p><p>kyk </p><p>which is smooth, and moreover has a smooth inverse, given by the same formula.&nbsp;The geometric explanation for this is that g ◦ f<sup style="top: -0.3013em;">−1 </sup>represents inversion with respect to the sphere S<sup style="top: -0.3012em;">n−1 </sup>⊂ R<sup style="top: -0.3012em;">n </sup>− {0}, which is an involution (an involution τ of a set X is a map X to X such that τ<sup style="top: -0.3012em;">2 </sup>= id). Hence S<sup style="top: -0.3012em;">n </sup>has a smooth atlas consisting of just two patches (U, f) and (V, g). </p><p>Exercise 3 (Real projective space). Let RP<sup style="top: -0.3012em;">n </sup>= (R<sup style="top: -0.3012em;">n+1 </sup>− {0})/ ∼, where x ∼ tx for all t ∈ </p><p>R − {0}, x ∈ R<sup style="top: -0.3012em;">n+1</sup>, be the n-dimensional real projective space. <br>(a) Prove&nbsp;that RP<sup style="top: -0.3012em;">n </sup>is a differentiable manifold (which is Hausdorff and second countable). </p><p>Solution: We first show that RP<sup style="top: -0.3013em;">n </sup>is Hausdorff and second countable.&nbsp;For this, let π: R<sup style="top: -0.3013em;">n+1 </sup></p><p>→</p><p>RP<sup style="top: -0.3013em;">n </sup>be the canonical projection. </p><p>Claim 1. π is an open map. </p><p>Proof. Let U ⊆ R<sup style="top: -0.3013em;">n+1 </sup>− {0} be open.&nbsp;We have to show that π(U) is open in RP<sup style="top: -0.3013em;">n</sup>. By definition of the quotient topology, we have to show that π<sup style="top: -0.3012em;">−1</sup>(π(U)) is open in R<sup style="top: -0.3012em;">n+1 </sup>− {0}. </p><p>S</p><p>But π<sup style="top: -0.3012em;">−1</sup>(π(U)) = {x ∈ R<sup style="top: -0.3012em;">n+1</sup>, ∃y ∈ U : x ∼ y} = <sub style="top: 0.2491em;">t∈R−{0} </sub>t · U is a union of open sets (since multiplication by non-zero t ∈ R is a homeomorphism of R<sup style="top: -0.3012em;">n+1 </sup>− {0}. Hence π is open. </p><p>Now we get a countable basis for RP<sup style="top: -0.3013em;">n </sup>by taking the image of a countable basis for R<sup style="top: -0.3013em;">n+1 </sup>under π. To show RP<sup style="top: -0.3013em;">n </sup>is Hausdorff, we use the following lemma: </p><p>Lemma 1. Let ∼ be an open equivalence relation on a topological space X(i.e. the canonical projection X → X/ ∼ is open). Then X/ ∼ is Hausdorff if and only if Graph(∼) = {(x, y) ∈ X × X : x ∼ y} is closed. </p><p>P</p><p>To apply the lemma, define f : R<sup style="top: -0.3013em;">n+1 </sup>× R<sup style="top: -0.3013em;">n+1 </sup>→ R by f(x, y) = </p><p><sub style="top: 0.2491em;">i=j</sub>(x<sub style="top: 0.1245em;">i</sub>y<sub style="top: 0.1245em;">j </sub>− x<sub style="top: 0.1245em;">j</sub>y<sub style="top: 0.1245em;">i</sub>)<sup style="top: -0.3013em;">2 </sup>and </p><p>convince yourself that f(x, y) = 0 ⇔ x = ty, t = 0 ⇔ x ∼ y and hence Graph(∼) = f<sup style="top: -0.3013em;">−1</sup>(0) is closed. Therefore RP<sup style="top: -0.3013em;">n </sup>is hausdorff. Next we are going to present a system of charts for RP<sup style="top: -0.3012em;">n</sup>. Let&nbsp;V<sub style="top: 0.1245em;">i </sub>:= {(x<sub style="top: 0.1245em;">1</sub>, . . . , x<sub style="top: 0.1245em;">n+1</sub>) ∈ </p><p>1</p><p>R</p><p><sup style="top: -0.3012em;">n+1 </sup>: x<sub style="top: 0.1246em;">i </sub>= 0}, U<sub style="top: 0.1246em;">i </sub>= π(V<sub style="top: 0.1246em;">i</sub>) and ϕ<sub style="top: 0.1246em;">i </sub>: U<sub style="top: 0.1246em;">i </sub>→ R<sup style="top: -0.3012em;">n</sup>, [(x<sub style="top: 0.1246em;">1</sub>, . . . , x<sub style="top: 0.1246em;">n+1</sub>)] → (x<sub style="top: 0.1245em;">1</sub>, . . . , xˆ , . . . , x<sub style="top: 0.1245em;">n+1</sub>). </p><p>i</p><p>x<sub style="top: 0.083em;">i </sub></p><p>Then one checks that:&nbsp;U<sub style="top: 0.1246em;">i </sub>are open in RP<sup style="top: -0.3013em;">n </sup>(since π is an open map) and their union is RP<sup style="top: -0.3012em;">n</sup>, ϕ<sub style="top: 0.1246em;">i </sub>is well-defined (since ϕ<sub style="top: 0.1246em;">i</sub>([tx]) = ϕ(x)), continuous, and bijective, for all i, with a continuous inverse given by (x<sub style="top: 0.1245em;">1</sub>, . . . , x<sub style="top: 0.1245em;">n</sub>) → [(x<sub style="top: 0.1245em;">1</sub>, . . . , x<sub style="top: 0.1245em;">i−1</sub>, 1, x<sub style="top: 0.1245em;">i</sub>, . . . , x<sub style="top: 0.1245em;">n+1</sub>)] (the continuity follows general topological arguments on quotients).&nbsp;Hence, the ϕ<sub style="top: 0.1245em;">i </sub>are homeomorphisms and {(U<sub style="top: 0.1245em;">i</sub>, ϕ<sub style="top: 0.1245em;">i</sub>)} is an atlas for RP<sup style="top: -0.3013em;">n</sup>. Now we check that the atlas is smooth. For i &lt; j, </p><p>ϕ<sub style="top: 0.1245em;">i </sub>◦ ϕ<sup style="top: -0.3552em;">−</sup><sub style="top: 0.2314em;">j </sub><sup style="top: -0.3552em;">1</sup>(x<sub style="top: 0.1245em;">1</sub>, . . . , x<sub style="top: 0.1245em;">n</sub>) = ϕ<sub style="top: 0.1245em;">i</sub>([(x<sub style="top: 0.1245em;">1</sub>, . . . , x<sub style="top: 0.1245em;">j−1</sub>, 1, . . . , x<sub style="top: 0.1245em;">n</sub>)]) </p><p>1<br>=</p><p>(x<sub style="top: 0.1245em;">1</sub>, . . . , 1, . . . , x<sub style="top: 0.1245em;">n</sub>) </p><p>x<sub style="top: 0.1245em;">i </sub></p><p>is clearly a smooth map (rational with nonzero denominator).&nbsp;Hence RP<sup style="top: -0.3012em;">n </sup>is a smooth manifold. </p><p>(b) Recall&nbsp;that a map between two manifolds f : M → N is smooth if for all charts ϕ<sub style="top: 0.1245em;">α </sub>on M and ψ<sub style="top: 0.1245em;">β </sub>on N, the composition ψ<sub style="top: 0.1245em;">β </sub>◦ f ◦ ϕ<sup style="top: -0.3012em;">−</sup><sub style="top: 0.2052em;">α </sub><sup style="top: -0.3012em;">1 </sup>is smooth in its domain.&nbsp;Also recall that a diffeomorphism is a smooth bijective map with a smooth inverse. Show that RP<sup style="top: -0.3012em;">1</sup>, the real projective line, is diffeomorphic to the circle S<sup style="top: -0.3012em;">1</sup>. </p><p>Solution: Recall that we had a description of S<sup style="top: -0.3012em;">1 </sup>in terms of R/2πZ (example 2.9 in the script). We define a map f : S<sup style="top: -0.3012em;">1 </sup>→ RP<sup style="top: -0.3012em;">1 </sup>by f(θ + 2πZ) = [(cos(θ/2), sin(θ/2)]. </p><p>Claim 2. f is a diffeomorphism </p><p>Proof. First we have to check that f is well-defined.&nbsp;For this, suppose that θ+2πZ = ϕ+2πZ, then θ = ϕ + 2πk for some k ∈ Z and f(ϕ + 2πZ) = [(cos(ϕ/2), sin(ϕ/2)] = [(cos((θ + 2πk)/2), sin((θ + 2πk)/2)] = [(cos(θ/2 + πk), sin(θ/2 + πk)] = [(−1)<sup style="top: -0.3013em;">k</sup>(cos(θ/2), sin(θ/2)] = f(θ + 2πZ). Next, we should check that f is smooth. Recall that on S<sup style="top: -0.3012em;">1</sup>, we can define two charts ψ<sub style="top: 0.1246em;">W </sub>, ψ<sub style="top: 0.1246em;">E </sub>which are the identity maps on different intervals (say (0, 2π) and (−π, π)) and that we have two charts φ<sub style="top: 0.1246em;">1</sub>, φ<sub style="top: 0.1246em;">2 </sub>on RP<sup style="top: -0.3012em;">2 </sup>given by φ<sub style="top: 0.1246em;">1</sub>(x, y) = y/x, φ<sub style="top: 0.1246em;">2</sub>(x, y) = x/y. So, we have to check the 4 representations of f in these charts are smooth: </p><p>f<sub style="top: 0.1246em;">W,U </sub>= φ<sub style="top: 0.1246em;">1 </sub>◦ f ◦ ψ<sub style="top: 0.244em;">W</sub><sup style="top: -0.3552em;">−1 </sup>: (0, 2π) − {π} → R </p><p>1</p><p>θ → φ<sub style="top: 0.1246em;">1</sub>(cos(θ/2), sin(θ/2)) = tan(θ/2) f<sub style="top: 0.1245em;">W,U </sub>= φ<sub style="top: 0.1245em;">2 </sub>◦ f ◦ ψ<sub style="top: 0.244em;">W</sub><sup style="top: -0.3552em;">−1 </sup>: (0, 2π) → R </p><p>2</p><p>θ → φ<sub style="top: 0.1245em;">2</sub>(cos(θ/2), sin(θ/2)) = cot(θ/2) </p><p>f<sub style="top: 0.1245em;">E,U </sub>= φ<sub style="top: 0.1245em;">1 </sub>◦ f ◦ ψ<sub style="top: 0.2439em;">E</sub><sup style="top: -0.3552em;">−1 </sup>: (−π, π) → R </p><p>1</p><p>θ → φ<sub style="top: 0.1245em;">1</sub>(cos(θ/2), sin(θ/2)) = tan(θ/2) </p><p>f<sub style="top: 0.1246em;">W,U </sub>= φ<sub style="top: 0.1246em;">2 </sub>◦ f ◦ ψ<sub style="top: 0.244em;">E</sub><sup style="top: -0.3552em;">−1 </sup>: (0, 2π) − {0} → R </p><p>2</p><p>θ → φ<sub style="top: 0.1246em;">2</sub>(cos(θ/2), sin(θ/2)) = cot(θ/2) where we have to restrict the compositions to ψ<sub style="top: 0.1245em;">A</sub>(f<sup style="top: -0.3012em;">−1</sup>(U<sub style="top: 0.1245em;">i</sub>) for A = E, W. For&nbsp;example, f ◦ ψ<sub style="top: 0.244em;">W</sub><sup style="top: -0.3552em;">−1</sup>(π) = (0, 1) ∈/ U<sub style="top: 0.1245em;">1</sub>. Since all the representations are trigonometric functions, they are smooth. Now we have to find a smooth inverse for f. The correct map is </p><p>(</p><p>2 arctan(y/x) + 2πZ x = 0 g([x, y]) = π + 2πZ x = 0 </p><p>Again, we first have to check the well-definedness of g. This&nbsp;follows from the fact that arctan(ty/tx) = arctan(y/x) and lim<sub style="top: 0.1246em;">t→±∞ </sub>2 arctan(t) = ±π. g is the correct inverse because g◦f(θ+2πZ) = 2 arctan(tan(θ/2)) = θ for θ = π and g◦f(π+ 2πZ) = g(0, 1) = π+2πZ, so g◦f = id<sub style="top: 0.1246em;">S </sub>, and f◦g([x, y]) = [(cos(arctan(y/x)), sin(arctan(y/x))] = </p><p>1<br>1</p><p>[±(x<sup style="top: -0.3012em;">2 </sup>+ y<sup style="top: -0.3012em;">2</sup>)<sup style="top: -0.3012em;">− </sup>(x, y)] = [(x, y)] for x = 0 and f ◦ g([0, y]) = [(0, 1)] = [(0, y)]. As a last step, </p><p>2</p><p>we have to show that g is smooth. One computes </p><p>g<sub style="top: 0.1245em;">U ,W </sub>= ψ<sub style="top: 0.1245em;">W </sub>◦ g ◦ φ<sup style="top: -0.3552em;">−</sup><sub style="top: 0.2213em;">1 </sub><sup style="top: -0.3552em;">1 </sup>: R − {0} → (0, 2π) </p><p>1</p><p>(</p><p>2 arctan(y) y &gt; 0 y → ψ<sub style="top: 0.1246em;">W </sub>(2 arctan(y/1)) = <br>2 arctan(y) + 2π y&nbsp;&lt; 0 </p><p>g<sub style="top: 0.1245em;">U ,W </sub>= ψ<sub style="top: 0.1245em;">W </sub>◦ g ◦ φ<sup style="top: -0.3552em;">−</sup><sub style="top: 0.2213em;">2 </sub><sup style="top: -0.3552em;">1 </sup>: R → (0, 2π) </p><p>2</p><p></p><p>2 arctan(1/x) x &gt; 0 x = 0 π − 2 arctan(1/x) x &lt; 0 </p><p></p><p></p><ul style="display: flex;"><li style="flex:1">x → </li><li style="flex:1">π</li></ul><p></p><p></p><p>g<sub style="top: 0.1245em;">U ,E </sub>= ψ<sub style="top: 0.1245em;">E </sub>◦ g ◦ φ<sup style="top: -0.3552em;">−</sup><sub style="top: 0.2214em;">1 </sub><sup style="top: -0.3552em;">1 </sup>: R → (−π, π) </p><p>1</p><p>y → 2 arctan(y) </p><p>g<sub style="top: 0.1245em;">U ,E </sub>= ψ<sub style="top: 0.1245em;">E </sub>◦ g ◦ φ<sup style="top: -0.3552em;">−</sup><sub style="top: 0.2213em;">2 </sub><sup style="top: -0.3552em;">1 </sup>: R − {0} → (−π, π) </p><p>2</p><p>x → 2 arctan(1/x) <br>The only difficult case is g<sub style="top: 0.1246em;">U ,W&nbsp;</sub>. Here&nbsp;smoothness follows from the fact that all derivatives </p><p>2</p><p>d<sup style="top: -0.2506em;">n </sup></p><p>dx<sup style="top: -0.1661em;">n </sup></p><p>of arctan vanish at infinity, i.e. lim<sub style="top: 0.1245em;">x→±∞ </sub>diffeomorphism. arctan(x) = 0.&nbsp;Hence g is smooth, and f is a <br>Hence RP<sup style="top: -0.3012em;">n </sup>is diffeomorphic to S<sup style="top: -0.3012em;">1</sup>. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us