Temporal and Spatial Use of Resources by Black Swans (Cygnus Atratus) on the Vasse-Wonnerup Wetlands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Black Swans, Or the Limits of Statistical Modelling
Black swans, or the limits of statistical modelling Eric Marsden <[email protected]> Do I follow indicators that could tell me when my models may be wrong? On the 1001st day, a little before Thanksgiving, the turkey has a surprise. A turkey is fed for 1000 days. Each passing day confirms to its statistics department that the human race cares about its welfare “with increased statistical significance”. 2 / 58 A turkey is fed for 1000 days. Each passing day confirms to its statistics department that the human race cares about its welfare “with increased statistical significance”. On the 1001st day, a little before Thanksgiving, the turkey has a surprise. 2 / 58 Things that have never happened before, happen all the time. — Scott D. Sagan, The Limits of Safety: Organizations, ‘‘ Accidents, And Nuclear Weapons, 1993 In risk analysis, these are called “unexampled events” or “outliers” or “black swans”. 3 / 58 The term “black swan” was used in16th century discussions of impossibility (all swans known to Europeans were white). Explorers arriving in Australia discovered a species of swan that is black. The term is now used to refer to events that occur though they had been thought to be impossible. 4 / 58 Black swans ▷ Characteristics of a black swan event: • an outlier • lies outside the realm of regular expectations • nothing in the past can convincingly point to its possibility • carries an extreme impact ▷ Note that: • in spite of its outlier status, it is often easy to produce an explanation for the event after the fact • a black swan event may be a surprise for some, but not for others; it’s a subjective, knowledge-dependent notion • warnings about the event may have been ignored because of strong personal and organizational resistance to changing beliefs and procedures Source: The Black Swan: the Impact of the Highly Improbable, N. -
Partial Flora Survey Rottnest Island Golf Course
PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge -
A Year on the Vasse-Wonnerup Wetlands
Department of Biodiversity, Conservation and Attractions Department of Primary Industries and Regional Development Department of Water and Environmental Regulation A Year on the Vasse-Wonnerup Wetlands An Ecological Snapshot March 2017—January 2018 W IN N T M E U R T U A S P R R I N E G M M U S Musk duck (Biziura lobata) (Photo: Mark Oliver) The Vasse-Wonnerup Wetlands The conservation values of the Vasse-Wonnerup wetlands are recognised on a local, state, national and international level. The wetlands provide habitat to thousands of Australian and migratory water birds as well as supporting the largest breeding population of black swans in the state. In 1990 the wetlands were recognised as a ‘Wetland of International Importance’ under the Ramsar Convention. The wetlands are also one of the most nutrient enriched wetlands in Western Australia, characterised by extensive macroalgae and phytoplankton blooms and occasional major fish kills. Poor water quality in the wetlands is a major concern for the local community. Over the past four years scientists have been working together to investigate options to improve water quality in the wetlands by monitoring seawater inflows through the Vasse surge barrier and modelling options to increase water levels and flows into the Vasse estuary. These trials have successfully shown that seawater inflows can reduce the incidence of harmful phytoplankton blooms and improve conditions for fish in the Vasse Estuary Channel over summer months. What isn’t as well understood is how these management approaches and subsequent increased water levels may impact on the broader wetland system, especially how the ecology of the wetlands responds to changes in the timing and volume of seawater inflow through the surge barriers. -
ON 23(4) 555-567.Pdf
ORNITOLOGIA NEOTROPICAL 23: 555–567, 2012 © The Neotropical Ornithological Society REPRODUCTIVE BIOLOGY AND PAIR BEHAVIOR DURING INCUBATION OF THE BLACK-NECKED SWAN (CYGNUS MELANOCORYPHUS) Carmen Paz Silva1, Roberto Pablo Schlatter2 & Mauricio Soto-Gamboa1 1Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. E-mail: [email protected] 2Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. Resumen. – Biología reproductiva y comportamiento del Cisne de Cuello Negro (Cygnus melano- coryphus). – El cisne de cuello negro (Cygnus melanocoryphus) es la única especie del género Cygnus que habita en Sudamérica. Si bien, el resto de las especies del género han sido extensamente estudia- das, para C. melanocoryphus aún no se ha descrito la mayor parte de su biología reproductiva. En este estudio evaluamos el comienzo y extensión de la temporada reproductiva, y el tamaño de nidada utili- zando datos recolectados en el Santuario Carlos Anwandter (SCA), Valdivia, Chile; correspondientes a 18 temporadas reproductivas. Por otro lado, estudiamos el comportamiento de las parejas durante el periodo de incubación, durante una temporada reproductiva. Se estimó el presupuesto de tiempo y dis- tancia con respecto al nido en seis parejas nidificantes. El periodo de nidificación se puede extender desde junio a enero y está influenciado por el tamaño de la población reproductiva y las condiciones cli- máticas. El tamaño de nidada se mantiene constante con una moda de tres huevos (promedio 3.13 ± 0.017; n = 5897). Ambos miembros de la pareja desarrollan actividades de vigilancia y mantención del nido, sin embargo, la incubación es una tarea exclusiva de la hembra, mientras que la defensa activa del nido es realizada por el macho. -
Breeding Biology of the Magpie Goose
BREEDING BIOLOGY OF THE MAGPIE GOOSE Paul A. Johnsgard Summary A B r e e d in g pair of Magpie Geese was studied at the Wildfowl Trust during one breeding season and part of a second. Nest-building was performed by both sexes and was done in the typical anatid fashion of passing material back over the shoulders. Nests were built on land of sticks and green vegetation. Two copulations were observed, both of which occurred on the nest, and precopulatory as well as postcopulatory behaviour appears to differ greatly from the typical anatid patterns. Eggs were laid at approximate day-and-a-half intervals, and the nest was guarded by both sexes. Incubation was also performed by both sexes, with the male normally sitting during the night. A simple nest-relief ceremony is present. The eggs hatched after 28 to 30 days, and the goslings left the nest the morning after hatching. Unlike all other Anatidae so far studied, the goslings, in addition to foraging independently, are fed directly by their parents and a special whistling begging call associated with a gaping posture is present. It is suggested that the bright bill colouration and unusual cinnamon-coloured heads of downy Magpie Geese are also related to this parental feeding. The parents constructed a “ brood nest ” of herbaceous vegetation that the goslings rested and slept on, which is also unique among the Anatidae. Family bonds are strong, and a rudimentary form of “ triumph ceremony ” is present. Development of the young and moulting sequences of downy, juvenal, and immature plumages are described ; the presence of separate juvenal and immature plumages which are distinct from the adult plumage is apparently unique. -
Aspects of the Feeding Ecology of Mallard And
ASPECTS OF THE FEEDING ECOLOGY OF MALLARD AND BLACK SWAN IN A SMALL FRESHWATER LAKE Kerry John Potts Submitted for the degree of Doctor of Philosophy in Zoology at the Victoria University of Wellington November 1982 i CONTENTS---------------------------- _ -------- ---------------------------- Page LIST OF FIGURES . v LIST OF TABLES .. .. vii LIST OF PLATES .. viii ABSTRACT .. .. ix GENERAL INTRODUCTION .. .. .. .. X GENERAL DESCRIPTION OF STUDY AREA .• .. .. XV A. Physiography, vegetation, drainage, fertility xv B. Waterfowl .. .. .. .. .. xx C. Climate .. .. .. .. .. SECTION 1: GENERAL LIMNOLOGY AND HABITAT EVALUATION WITH SPECIAL REFERENCE TO (a) THE FACTORS REGULATING THE BALANCE BETWEEN MACROPHYTES AND PHYTOPLANKTON (INCLUDING THE MECHANISMS INVOLVED IN MACROPHYTE DECLINE), AND (b) THE POTENTIAL OF SWAN GRAZING TO STIMULATE CHANGE IN THE DIRECTION OF PHYTOPLANKTON DOMINANCE Ch. 1 INTRODUCTION .. .. .. .. .. 1 C h . 2 METHODS . .. .. .. .. 5 2.1 Bathymetry .. .. .. .. .. 5 2.2 Aerial photography .. .. .. .. 5 2.3 Weather and water levels .. .. .. 5 2.4 Sampling stations and times .. .. 5 2.5 Water chemistry .. .. .. .. 7 2.6 Macrophyte sampling .. .. .. 7 2.6.1 Rake method .. .. .. .. 2.6.2 Trial comparing the efficiencies of the rake and modified Gerking methods to the direct hand cutting method .. 9 (a) Objectives .. .. 9 (b) Methods .. .. 9 (c) Results .. 11 (d) Conclusions .. .. 11 2.7 Zooplankton sampling .. .. 14 2.7.1 Field sampling .. .. 14 2.7.2 Laboratory preparation and counting 14 2.8 Phytoplankton and epiphytic algae sampling 15 2.8.1 Phytoplankton productivity .. 15 2.8.2 Phytoplankton and epiphytic algae identification .. .. 16 2.9 Aquatic invertebrate sampling .. 16 2.9.1 Gastropod - macrophyte relationship 16 2.9.2 General seasonal availability of plant-associated invertebrates 17 VICTORIA U N IVERSITY OF WELLINGTON 11 Page Ch. -
Conservation of North Australian Magpie Geese Anseranas
CONSERVATION OF NORTH AUSTRALIAN MAGPIE GEESE ANSERANAS SEMIPALMATA POPULATIONS UNDER GLOBAL CHANGE By Lochran William Traill A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Adelaide October 2009 Contents Abstract ......................................................................................................................................................................... vi 1. Introduction ................................................................................................................................................................ 1 1.2 Ecology of magpie geese ......................................................................................................................................... 2 1.2.1 Habitat and Environment ................................................................................................................................. 4 1.2.2 Diet ................................................................................................................................................................... 8 1.3 Population ecology .................................................................................................................................................. 9 1.4 Conservation status ................................................................................................................................................ 10 2. HOW WILL CLIMATE CHANGE AFFECT PLANT-HERBIVORE INTERACTIONS? -
Risk Assessment of the Black Swan (Cygnus Atratus) in the Netherlands
Risk assessment of the Black swan (Cygnus atratus) in the Netherlands A&W-report 1978 Commissioned by Risk assessment of the Black swan (Cygnus atratus) in the Netherlands A&W-report 1978 N. Beemster E. Klop © Altenburg & Wymenga ecologisch onderzoek bv Overname van gegevens uit dit rapport is toegestaan met bronvermelding. Front page Black swan, drawing from J. Gould (1848) Birds of Australia N. Beemster, E. Klop Risk assessment of the Black swan (Cygnus atratus) in the Netherlands. A&W-report 1978. Altenburg & Wymenga ecologisch onderzoek, Feanwâlden. Commissioned by Nederlandse Voedsel en Warenautoriteit Bureau Risicobeoordeling en onderzoeksprogrammering Postbus 43006 3540AA Utrecht Contractor Altenburg & Wymenga ecologisch onderzoek bv Postbus 32 9269 ZR Feanwâlden Telefoon 0511 47 47 64 Fax 0511 47 27 40 [email protected] www.altwym.nl Projectnummer Projectleider Status 2177 E. Klop Definitief Autorisatie Paraaf Datum Goedgekeurd L.W. Bruinzeel 25-2-2013 Kwaliteitscontrole R.G.M. van der Hut A&W-rapport 1978 Risk assessment of the Black swan (Cygnus atratus) in the Netherlands Contents 1 Introduction 5 2 Ecology and distribution 6 2.1 Introduction 6 2.2 Distribution 6 2.3 Habitat 8 2.4 Food 8 2.5 Reproduction and survival 8 3 Risk assessment 10 3.1 Probability of entry 10 3.2 Probability of establishment 10 3.3 Range expansion capacity 16 3.4 Protected areas 16 3.5 Effects of establishment 18 3.6 ISEIA scoring 19 3.7 Summary of the different sections of the risk assesment 21 4 Risk management 22 4.1 Elimination 22 4.2 Control 22 5 References 23 A&W-rapport 1978 Risk assessment of the Black swan (Cygnus atratus) in the Netherlands 1 Samenvatting De Zwarte zwaan Cygnus atratus is een van oorsprong in Australië voorkomende zwanensoort. -
IUCN SSC Swan Specialist Group
IUCN SSC Swan Specialist Group 2018 Report Eileen Rees Chair Mission statement Targets for the 2017-2020 quadrennium Eileen Rees The Swan Specialist Group (SSG) is an inter- Assess national network of swan specialists who Research activities: (1) AEWA Bewick’s Swan Red List Authority Coordinator undertake monitoring, research, conserva- Action Plan: reasons for the population decline BirdLife International (focal point: Eileen Rees) tion and management of swan populations. Its identified; (2) population monitoring: interna- mission is to facilitate effective communication tional censuses of migratory swan populations Location/Affiliation between members and others with an interest in the Northern Hemisphere. in swan management and conservation world- Wildfowl & Wetlands Trust, Slimbridge, Plan wide, in order to improve national and interna- Gloucester GL2 7BT, UK Planning: (1) AEWA Bewick’s Swan Action Plan: tional links for cooperative research, to identify implementation workshop held; (2) AEWA gaps in knowledge and to provide a forum for Number of members Bewick’s Swan Action Plan: actions to reduce addressing swan conservation issues. 325 threats to Bewick’s Swans put in place; (3) AEWA Bewick’s Swan Action Plan: population Projected impact for the 2017-2020 Social networks decline halted and reversed. quadrennium Website: www.swansg.org Policy: provide information and technical advice By the end of 2020, we will have undertaken in support of the programmes of IUCN SSC, a further census of the Northwest European Wetlands International, BirdLife International, Bewick’s Swan (Cygnus columbianus bewickii) Ramsar and others as necessary. population to determine whether we have Act achieved the initial target of the African- Eurasian Migratory Waterbirds (AEWA) Bewick’s Conservation actions: implementation of AEWA Swan Action Plan, of halting the ongoing decline Bewick’s Swan Action Plan: actions to reduce in the Northwest European population and, if threats to Bewick’s Swans put in place. -
A Synopsis of Zannichellia L. (Potamogetonaceae) in Iran
IRANIAN JOURNAL OF BOTANY 25 (2), 2019 DOI: 10.22092/ijb.2019.128488.1263 A SYNOPSIS OF ZANNICHELLIA L. (POTAMOGETONACEAE) IN IRAN Sh. Abbasi, S. Afsharzadeh & M. Dinarvand Received 2019. 11. 20; accepted for publication 2019. 12. 10 Abbasi, Sh., Afsharzadeh, S. & Dinarvand, M. 2019. 12. 30: A synopsis of Zannichellia L. (Potamogetonaceae) in Iran. -Iran. J. Bot. 25 (2): 103-114. Tehran. Zannichellia L. (Potamogetonaceae) is a cosmopolitan genus widely distributed in aquatic ecosystems of Iran. The last taxonomic treatment of this genus dates back to 1971 in Flora Iranica, with some recent modifications in Flora of Iran. This research aimed to provide a new taxonomic treatment of Zannichellia in Iran based on distributional, morphological, and molecular studies (using ITS, PHYB, trnH-psbA and rpl32-trnL molecular markers). In this research, one species (Zannichellia palustris) with two varieties is distinguished. An identification key to varieties is presented and descriptions of them are provided. A distribution map of the genus in Iran is compiled. The distribution is concentrated in northern, central and southwestern parts of Iran. Shabnam Abbasi, Saeed Afsharzadeh (correspondence <[email protected]>), Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. -Mehri Dinarvand, Forests and Rangelands Research Division, Khuzestan Agricultural and Natural Resources Research and Education Center, Ahvaz, Agricultural Research Education and Extension Organization (AREEO), -
Indigenous Plants of the Swan Bay Region
Indigenous plants of the Swan Bay region Indigenous plants Common Name Scientific Name Angled Lobelia Lobelia anceps Annual Buttercup Ranunculus sessiliflorus Annual Celery Apium annuum Austral Crane’s-bill Geranium solanderi var. solanderi Austral Grass-tree Xanthorrhoea australis Austral Indigo Indigofera australis Austral Rush Juncus australis Austral Seablite Suaeda australis Austral Stork’s-bill Pelargonium australe Austral Trefoil Lotus australis Australian Carrot Daucus glochidiatus Australian Hollyhock Malva preissiana Australian Hound’s-tongue Cynoglossum australe Australian Lilaeopsis Lilaeopsis polyantha Australian Salt Grass Distichlis distichophylla Australian Saltmarsh Grass Puccinellia stricta Bare Twig-Rush Baumea juncea Beaded Glasswort Salicornia quinqueflora Bellarine Yellow Gum Eucalyptus leucoxylon bellarinensis Berry Saltbush Atriplex semibaccata Bidgee-widgee Acaena anserinifolia Black Wattle Acacia mearnsii Black Sheoak Allocasuarina littoralis Black-anther Flax-lily Dianella revoluta Black-Seeded Glasswort Tecticornia pergranulata subsp. pergranulata Blackwood Acacia melanoxylon Blady Grass Imperata cylindrica Blue Bottle-daisy Lagenophera stipitata Blue Stars Chamaescilla corymbosa var. corymbosa Blue Tussock Grass Poa poiformis Blunt Everlasting Argentipallium obtusifolium Blunt Pondweed Potamogeton ochreatus Bower Spinach Tetragonia implexicoma Bracken Pteridium esculentum Bristly Wallaby-grass Rytidosperma setaceum Broad-leaf Rush Juncus planifolius Broom Spurge Amperea xiphoclada var. xiphoclada Chaffy Saw-sedge -
2. Aquatic Plant Communities of Poikilosaline Waters
2. Aquatic plant communities of poikilosaline waters C. den Hartog Lab. of Aquatic Ecology, Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands The euryhaline plant group Table 2.1 Taxonomic composition of the eurysaline group of the Potamogetonaceae. In 1920, Arber formulated a set of four properties Subfamily Genus indispensable for a marine water plant. These properties are: (1), adaptation to life in a saline Ruppioideae Ruppia medium; (2), ability to grow when fully submerged; Zannichellioideae Zannichellia (3), possession of a secure anchoring system; and Althenia (4), hydrophilous pollination. In his monograph of Pseudalthenia Lepilaena the seagrasses of the world, den Hartog (1970) Potamogetonoideae Potamogeton subgen. stated that this set of properties is insufficient for Coleogeton the delimitation of these marine angiosperms, because there is a second group of species which shares these properties with the seagrasses. This group is rather restricted; all representatives belong second group, which is here referred to as the to the family of the Potamogetonaceae s.l. Two eurysaline group, consists of a number of aquatic subfamilies are completely confined to poikilosaline plant species occurring in various fresh waters, habitats, and in a third subfamily only a subgenus is mixo- and hyperhaline brackish waters, and in involved. In fact, the whole group consists of 5 continental waters of very different chemical com- genera and 1 subgenus (Table 2.1). At the species position and concentration. These plants can toler- level there are still many uncertainties and a reliable ate considerable fluctuations in the salt content, estimation of the number of species is not yet and their salinity range of occurrence is very wide in possible.