The Origin of Najas and Potamogeton

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Najas and Potamogeton 472 THE BOTANICAL MAGAZINE. [vol. LI, No. 606. Fig. 9. Die zusammengesetzte Konvektion aus Wasserflachen von im hexagonalen drei- zeiligen Kontakt gestellten 1.9 Flaschen. Durchm, der Flasehe 3.7-3.8 cm, der (Tel Offnung 2.3-2.4 cm, t 14.1°, wt 19.7°, t' 10.9° (=63%). 2.3-2.4 cm. t 14°.1, wt 19°.7, t' 10°9(=63%). Fig. 10. Verhinderung des Rauchstromes lurch Drahtnetz, x ea. 1/9. a. Per eben abstromende Ranch mit pilzformiger Front. b. Der fiber deco Netz rich verbreitende Ranch; nur am mittleren Teile beginnt der Ranch durch das Netz hindurchzustromen. Das Netz ist aus Kupfer- drraht von 0.3 mm Durchm., seine Masehenzahl betragt 60 x 64/10 em. t 25.6°. e. Der Strom hat sich noch welter verbreitet, teils wieder hlndurchstromend. The Origin of Najas and Potamogeton. By Shigeru Miki. With 1 Plate and 3 Text-figures. ReceivedMarch 31, 1937. Introduction, It is a well known fact, that in water plants the reduction and simpli- fication of floral parts occurs very frequently probably in accordance with their aquatic habit. Najas and Potamogeton, both of which have apetalous flowers, are considered generally, merely on account of that fact, to be closely related. A closer examination shows however that the floral scheme is not similar. The flower of Potawogeton should be interpreted as a reduced inflorescence, so that it is nearly related with Synanthae or Pan- danales, while Na jas may be considered as a descendant of the ancient stock of submerged Ilydrocharitaceae. I wish to express here my sincere thanks to Prof. K. KOIiHA under whose direction and by whose courtesy this study was undertaken. Historical. Najas and Potainogeton are regarded usually as a descendant of a trimerous monocotyledonous ancestor, CAMPBELL(4), however, considered the group to be related to the heterosporous Filicales, especially with Isoetaceae. The affinity of Najas is, owing to the extremely simple flower, quite obscure, so that there are a number of opinions. MAGNus(15) regarded - 290 - Shibata Commemoration Article, 40 Juue20,1937.1 ~. MIKI-ORIGIN OF NAJAS AND POTA]10GETON. 473 it to be related to Zannichellia, CHRYSLER(S) suggested its development from Potamogeton through Zannichellia, HUTCIIINsON(12 ) considered Naj a- dales including Cymodocea, Diplanthera, Althenia, Zannichellia and Najas to be derived from Alismatales. Both genera are included in Helobiae by ENGLER(8), LoTsY(14), RENDLE(24) , WETTSTEIN(28) , IIUTCIIINSON (12) , MARKGInu (16) and others, but KORIBAand MIKI(13) Suggested the genus Potamogeton based on some allied fossil remains, to be connected with Spadiciflorae. Na jas. a. Character. Morphological characters are well known after MAGNUS(15) and ot!lers(3). At a glance the shoot seems to have dichotomous branches and a 3-whorled arrangement of leaves except Najas gracillima (A. Bn. ) MAGNUS(Pl. X, A). This features is derived from the mode of growth, that the monopodial shoot has apparently opposite leaves, the lower one of `Which produces a lateral shoot and one or three flower buds in the same axil, and the 1st or 3rd leaves on the lateral shoot are attached sessile and tra.us- versal. Subgenus Ennajas has epidermal cells, distinctly smaller than the cortical cells, but in subgenus Can linia they are entirely undifferentiated. The vascular bundle of the shoot is central, and the lacunae in the cortical part; the crystal of calcium oxalate is absent throughout the shoot-tissues. The flower is monoecious (Subgenus Caulinia) or dioecious (Subgenus Eunajas) withoutt scape; the female flower is usually solitary, but there aie two in Najas gracillinia (A. BR.) MAGNUS(Pl. X,D), and without spathe except Section Spat haceac. The one-celled ovary has an anatropous ovule and thread-like stigma, separated into 2 or 3 parts. rl'he male flower iw enclosed in a bottle-shaped spathe except the Section Nudae. Anther 1- -1-celled;the anthesis occurs outside of the spathe by elongation of the pedicel (P1. X, B-C'). The shape of pollen is usually oblong with single uncuti- cularised membrane. Fruit and germination. The seed separates easily from the carpel, and has characteristic areolation on the epidermis of the testa; and macro- podous embryo contains large starch grains. Germination is epigeous and the seedling has a primary root. b. Coiisideration of Characters. Ecological. Najas is highly adapted to aquatic life as may be seen from those characters mentioned below: the undifferentiated epidermal cells, the single uncuticularised pollen membrane, the reduced development 291 -- 474 TILE BOTANICALMAGAZINE. [x'01.LI. No. 606. of roots in contrast with densely branched shoots. The verticillate leaves seem also to be associated with stagnant water, just as are those of Ambulia, Hydrilla, Ceratophylinn and others. It grows usually in a shallow pond or lake laid in alluvial plane, where seasonal flood can easily take place. The delicate shoots of these submerged plants then separate easily at their nodes and flow away, whereas those tightly fixed water plants such as Nyniphaeaceae and others are deprived of light and ultimately are ruined. After this habit they may be called "semifloating plants." Morphological. The absence of scape under the flower seems to be associated with the erect habit of the shoot as in Ilydrocharitaceae, while those water plants with tufted shoots as Vallisneria, Blyxa and Ottelia have an elongated scape. The production of flower acid lateral shoot froi:~ the same a~~ilJis quite peculiar, though common in Ilydrocharitaceae. Therefore it seems to be more reasonable to conceive that Na jas has also an intimate affinity with Ilydrocharitaceae. The spathe is considered as the outer perianth by MAGNUS,but it is really a spathe, because the male flower elongates and is lifted out of this organ before dehiscence as in P1. X, B, C and C'. On the contrary, the envelope of the male flower, the membranaceous envelope of the anther, which was once supposed by CAMPBELLto be analogous with the integument,, is really a perianth. One-celled theca seems to be derived from the usual four-celled one, as has already been stated by many authors. The perianth of the female flower is entirely absent, though in some species as Na jas f oveolata A. Bra. (Pl. X, E) a slight indication may be seen at the lower part of the stigma as an annular swelling. The flower is. suggested therefore to be epigynous. c. Relationship. RENDLEnoted that the character of the vegetative part of Najas is nearly the same as submerged Ilydrocharitaceae, but still he regarded it to be a primitive type of Monocotyledon. Not only the vegetative characters, but also their reproductive organs, even if simplified, are alike in these two groups, though they show at the same time marked contrasts with those of Potamogeton as tabulated below (next page) The probable course of the simplification of Na jas from the submerged Ilydrocharitaceae is shown in Fig. ].. Najas shows also an intimate relation to Zannichelliaceae (Fig. 2), especially in the elongated pedicel of the male flower, some of which have reduced perianth as Alt henia(22) and Diplanthera(18). All these charac- ters show, however, marked contrasts with Potamogeton.. The distichous. - 9Q9 - June 20,1.937. l S. ]II KI-ORIGIN OF NA JAB AND POTAMOGET ON. 475 Fig. 1. Relationship of Na jas with submerged Hydrocharitaceae in contrast with Potamogeton (somewhat diagrammatic). A. Elodea. B. Hydrilla. C. y'allisneria. D. Na jas. E. Potamogeton : 1, Subgenus Eupotamogeton, 2, Subgenus Coleogeton. W. Water surface. 511. Shoot (aaillary buds are omitted). F. Floral diagram. F'. Diagram of flower bud and lateral shoot. P0. Pollen, a. main axis. p. peduncle. s. spathe. (The shoot of Vallisnei°ia is drawn here diagramniatically, as the lateral branches develop after every three consecutive leaves as shown in Pl. X, F). - 293 - 476 THE BOTANICAL MAGAZINE. [ vol. LI, No. 606. or axillant leaves on the lateral branches of Potamogeton, though they are similar to sea-grasses viz. Gym.o- clocea and Diplanth,era (17, 18) of Zalinichel l la- eeae and Tlzalassia of Ilydrocharitaceae, may be associated with their specific habitat, namely with the movement of water in the sea. d. Birthplace. The original home niay be tropical, prob- ably in Africa, where also occur various primi- Fig. Relationship of Najadaceae and ZanlliehCl- tive sections of Spatha- llneene (some«'liat dlagramniatie 1 ceae and many allied A. Na jas. ID. Zoo nichellia. C. Alfhenia (F ,after ~CHUmIANN,F' and P after PRII.LIEUX). I). Dirilan- species of Zannicliellia theia. E. Cyinodocca (F, F' and P after Boi;xicr). Aschersoniana GRAEn. F. Staminate flower. PD. Pollen. F. Transverse sec- tion of staminate flower, S. Diagram of flower and (2), Althenia and sub- lateral shoot (hlack circle). p. perianth, nI. main merged If ydrocharita- axis. ceae. Potaroget®nt a. Character. A shoot wiPi alternative leaves except those of spike and of Section Densi. Sympodial rhizome is composed of the basal two nodes of the lateral shoot. There are sheathing leaves at least in its early stage. The shape of the epidermal cells of floating leaves are long and narrow. The vascular bundle in the peduncle or stem is usually separated, except sub- genus Coleogeton. Crystals of calcium oxalate are not present. The flower Oil the spike-like inflorescence, is sometimes reduced to one as in the submerged form of Potamogeton Spirilins TUCKERMAN(9) . Pistil 4 (1-8) enclosed within 4 scale-like bracts, 2-celled extrorse anther attaching to each side of the stalk, except subgenus Coleogeton (Pl. X, J). The pollen is round or oblong. The development of the embryo sack is the -- 294 -- June 20, 1937.] S. MIKI-ORIGIN OF NAJAS AND POTAMOGET ON. 477 normal type (11, 29).
Recommended publications
  • Red Names=Invasive Species Green Names=Native Species
    CURLY-LEAF PONDWEED EURASIAN WATERMIL- FANWORT CHARA (Potamogeton crispus) FOIL (Cabomba caroliniana) (Chara spp.) This undesirable exotic, also known (Myriophyllum spicatum) This submerged exotic Chara is typically found growing in species is not common as Crisp Pondweed, bears a waxy An aggressive plant, this exotic clear, hard water. Lacking true but management tools are cuticle on its upper leaves making milfoil can grow nearly 10 feet stems and leaves, Chara is actually a limited. Very similar to them stiff and somewhat brittle. in length forming dense mats form of algae. It’s stems are hollow aquarium species. Leaves The leaves have been described as at the waters surface. Grow- with leaf-like structures in a whorled are divided into fine resembling lasagna noodles, but ing in muck, sand, or rock, it pattern. It may be found growing branches in a fan-like ap- upon close inspection a row of has become a nuisance plant with tiny, orange fruiting bodies on pearance, opposite struc- “teeth” can be seen to line the mar- in many lakes and ponds by the branches called akinetes. Thick ture, spanning 2 inches. gins. Growing in dense mats near quickly outcompeting native masses of Chara can form in some Floating leaves are small, the water’s surface, it outcompetes species. Identifying features areas. Often confused with Starry diamond shape with a native plants for sun and space very include a pattern of 4 leaves stonewort, Coontail or Milfoils, it emergent white/pinkish early in spring. By midsummer, whorled around a hollow can be identified by a gritty texture flower.
    [Show full text]
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • A Year on the Vasse-Wonnerup Wetlands
    Department of Biodiversity, Conservation and Attractions Department of Primary Industries and Regional Development Department of Water and Environmental Regulation A Year on the Vasse-Wonnerup Wetlands An Ecological Snapshot March 2017—January 2018 W IN N T M E U R T U A S P R R I N E G M M U S Musk duck (Biziura lobata) (Photo: Mark Oliver) The Vasse-Wonnerup Wetlands The conservation values of the Vasse-Wonnerup wetlands are recognised on a local, state, national and international level. The wetlands provide habitat to thousands of Australian and migratory water birds as well as supporting the largest breeding population of black swans in the state. In 1990 the wetlands were recognised as a ‘Wetland of International Importance’ under the Ramsar Convention. The wetlands are also one of the most nutrient enriched wetlands in Western Australia, characterised by extensive macroalgae and phytoplankton blooms and occasional major fish kills. Poor water quality in the wetlands is a major concern for the local community. Over the past four years scientists have been working together to investigate options to improve water quality in the wetlands by monitoring seawater inflows through the Vasse surge barrier and modelling options to increase water levels and flows into the Vasse estuary. These trials have successfully shown that seawater inflows can reduce the incidence of harmful phytoplankton blooms and improve conditions for fish in the Vasse Estuary Channel over summer months. What isn’t as well understood is how these management approaches and subsequent increased water levels may impact on the broader wetland system, especially how the ecology of the wetlands responds to changes in the timing and volume of seawater inflow through the surge barriers.
    [Show full text]
  • Potamogeton Hillii Morong Hill's Pondweed
    Potamogeton hillii Morong Hill’sHill’s pondweed pondweed, Page 1 State Distribution Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State threatened 1980’s. The type locality for this species, in Manistee County, has been destroyed. Global and state rank: G3/S2 Recognition: The stem of this pondweed is slender Other common names: pondweed and much branched, reaching up to 1 m in length. The alternate leaves are all submersed, and very narrow Family: Potamogetonaceae (pondweed family) (0.6-2.5 mm), ranging from 2-6 cm in length. The leaves are characterized by having three parallel veins Synonyms: Potamogeton porteri Fern. and a short bristle tip. The stipules are relatively coarse and fibrous (shredding when old) and are free Taxonomy: An extensive molecular analysis of the from each other and the leaf stalk bases. Short Potamogetonaceae, which largely corroborates the (5‑15 cm), curved fruiting stalks (peduncles) are separation of broad-leaved versus narrow-leaved terminated by globose flower/fruit clusters that pondweed species, is provided by Lindqvist et al. arise from leaf axils or stem tips. The tiny (2-4 mm) (2006). fruits have ridges along the backside. Other narrow- leaved species that lack floating leaves have either Range: This aquatic plant is rare throughout much of narrower leaves ( less than 0.5 mm in width, such as its range, which extends from Vermont to Michigan, and P. confervoides and P. bicupulatus), stipules that are south to Pennsylvania. Centers of distribution appear attached near their bases (P. foliosus, P. pusillus), to be in western New England and the north central longer peduncles (1.5-4 mm) (P.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • WETLAND PLANTS – Full Species List (English) RECORDING FORM
    WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp.
    [Show full text]
  • Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-2010 Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L. Pirone Florida International University, [email protected] DOI: 10.25148/etd.FI10122201 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biochemistry Commons, and the Botany Commons Recommended Citation Pirone, Cary L., "Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders" (2010). FIU Electronic Theses and Dissertations. 336. https://digitalcommons.fiu.edu/etd/336 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida BILIRUBIN: AN ANIMAL PIGMENT IN THE ZINGIBERALES AND DIVERSE ANGIOSPERM ORDERS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Cary Lunsford Pirone 2010 To: Dean Kenneth G. Furton College of Arts and Sciences This dissertation, written by Cary Lunsford Pirone, and entitled Bilirubin: An Animal Pigment in the Zingiberales and Diverse Angiosperm Orders, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ______________________________________ Bradley C. Bennett ______________________________________ Timothy M. Collins ______________________________________ Maureen A. Donnelly ______________________________________ John. T. Landrum ______________________________________ J. Martin Quirke ______________________________________ David W. Lee, Major Professor Date of Defense: November 5, 2010 The dissertation of Cary Lunsford Pirone is approved.
    [Show full text]
  • VIP AIS Species Presentation
    Aquatic Invasive Species Identification July 2021 Aquatic Invasive Species of Concern In Vermont Brittle naiad Curly-leaf pondweed Eurasian watermilfoil In Neighboring States European frogbit Brazilian elodea Starry stonewort Fanwort Variable-leaved watermilfoil Hydrilla Water chestnut Parrot feather Asian clam Spiny waterflea Zebra, quagga mussel Aquatic Plants – Identifying Characteristics Aquatic plants are grouped into three general types: Submersed Emergent Floating-leaved How is the leaf arranged on the stem? Leaves emerge Leaves attached to a stem from a single point near the bottom Alternate Whorled Basal Opposite - Pairs Slide courtesy of Maine Volunteer Monitoring Program Elliptical How are the Lance shaped leaves shaped? “ENTIRE” “TOOTHED” “DISSECTED” or “SERRATED” Heart Shaped Triangular Slide courtesy of Maine Volunteer Monitoring Program Dissected Leaf Patterns Forked Feather Branched Dissected Slide courtesy of Maine Volunteer Monitoring Program Other Plant ID Characteristics Roots Flowers Seeds Eurasian watermilfoil (Myriophyllum spicatum) • Rooted, perennial native to Europe/Asia. • Confirmed: 67 lakes or ponds and 30 other water bodies (one new in 2016 and 2017) reddish tips Eurasian watermilfoil inconspicuous flowers leaf leaflet, 12+ pairs feather-dissected, whorled leaves Variable-leaved watermilfoil (Myriophyllum heterophyllum) • Rooted, perennial, native to southern U.S. and Europe. • Confirmed: Lake Champlain (2011) and Halls Lake (2008) • Also confirmed: CT, MA, ME, NH, NY. Variable-leaved watermilfoil feather-dissected, whorled leaves Vermont's Native Watermilfoils Feather-dissected, Whorled or Alternate leaves Alternate flower watermilfoil Farwell’s watermilfoil Low watermilfoil Northern watermilfoil Slender watermilfoil Whorled watermilfoil Native Submersed Look-a-likes to watermilfoils Bladderworts (Utricularia sp.) branch-dissected, alternate leaves Coontail (Ceratophyllum sp.) forked-dissected, whorled leaves Curly leaf Pondweed (Potamogeton crispus) • Rooted, perennial, native to Europe.
    [Show full text]
  • Najas Minor (Hydrocharitaceae) in North America: a Reappraisal
    Aquatic Botany 126 (2015) 60–72 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot Najas minor (Hydrocharitaceae) in North America: A reappraisal a,∗ a,1 a,2 a,3 Donald H. Les , Elena L. Peredo , Nicholas P. Tippery , Lori K. Benoit , a a b,4 b c Hamid Razifard , Ursula M. King , Hye Ryun Na , Hong-Keun Choi , Lei Chen , a,5 d Robynn K. Shannon , Sallie P. Sheldon a Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA b Department of Biological Sciences, Ajou University, Suwon 443-749, Republic of Korea c South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China d Department of Biology, Middlebury College, Middlebury, VT 05753-6151, USA a r t i c l e i n f o a b s t r a c t Article history: Genetic studies of nonindigenous populations can help to determine their geographical origin, whether Received 19 March 2015 single or multiple introductions have occurred, and provide evidence of hybridization. We broadly sur- Received in revised form 16 June 2015 veyed Najas minor populations at several nuclear and chloroplast loci. Sequence data were obtained from Accepted 23 June 2015 nonindigenous N. minor populations in North America and portions of its native range in Europe (Italy) Available online 29 June 2015 and Asia (China, Korea). North American populations were mapped to evaluate the observed patterns of genetic variation geographically. We detected multiple genotypes of N. minor in collections originating Key words: from within Eurasia and North America.
    [Show full text]
  • Riparian Vegetation of the River Murray COVER: Healthy Red Gum in the Kex)Ndrook State Forest Near Barham N.S.W
    Riparian Vegetation of The River Murray COVER: Healthy red gum in the Kex)ndrook State Forest near Barham N.S.W. Background, black box silhouette. PHOTO: D. Eastburn ISBN 1 R75209 02 6 RIVER MURRAY RIPARIAN VEGET ION STUDY PREPARED FOR: MURRAY-DARLING BASIN COMMISSION BY: MARGULES AND PARTNERS PTY LTD PAND J SMITH ECOLOGICAL CONSULTANTS DEPARTMENT OF CONSERVATION FORESTS AND LANDS VICTORIA January 1990 SUMMARY AND CONCLUSIONS The River Murray Riparian Vegetation Survey was initiated by the Murray­ Darling Basin Commission t9 assessJhe present status ofthe vegetationalong the Murray, to identify causes ofdegradation, and to develop solutions for its rehabilitation and long term stability. The study area was the floodplain of the Murray River and its anabranches, including the Edward-Wakool system, from below Hume Dam to the upper end of Lake Alexandrina. The components of the study were: · Literature Review A comprehensive bibliography was compiled on the floodplain vegeta­ tion, its environment and the impact ofman's activities. The literature was reviewed and summarised. · Floristic Survey A field survey was carried out, visiting 112 sites throughout the study area and collecting vegetation data from 335 plots. Data collected were the species present, their relative abundance, the condition of the eucalypts, the amount ofeucalypt regeneration and indices ofgrazing pressure. Brief studies were made of the effects of river regulation and salinisation at specific sites. Thirty-seven plant communities were identified from a numerical analyis ofthe floristic survey data. The differences reflect environmental changes both along the river and across the floodplain. The most important factors were identified as soil salinity levels and flooding frequency.
    [Show full text]