STAT1 and STAT3 Gain of Function

Total Page:16

File Type:pdf, Size:1020Kb

STAT1 and STAT3 Gain of Function Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases Chapter 15 Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases 6th Edition The development of this publication was supported by Shire, now Takeda. 110 West Road, Suite 300 Towson, MD 21204 800.296.4433 www.primaryimmune.org [email protected] Chapter 15 Diseases of Immune Dysregulation: STAT1 and STAT3 Gain of Function Jennifer Leiding, MD, University of South Florida, Tampa, Florida, USA Lisa Forbes Satter, MD, Texas Children’s Hospital, Houston, Texas, USA Introduction Clinical Presentation Immune dysregulation occurs when the immune STAT1 GOF system cannot regulate normal control over Individuals with STAT1 GOF will present to a inflammation, leading to severe inflammatory healthcare provider because of chronic or unusual complications. Two of these diseases are called infections or severe autoimmune disease that is STAT1 Gain of Function (GOF) Disease and not easily controlled with standard immune STAT3 Gain of Function (GOF) Disease. STAT suppressing medications. stands for: signal transducer and activator of transcription. There are six STAT proteins. STATs One of the most common manifestations in are important proteins that enhance immune individuals with STAT1 GOF is chronic infections responses, particularly the production of interferon with a fungus that are mostly limited to gamma, another protein that is crucial for defense mucosal surfaces, skin, and nails, also known as against certain infections and for the control of mucocutaneous candidiasis (CMC). This occurs inflammation. Mutations in STAT proteins can lead in more than 90% of individuals. CMC is an to: infection of the mucus membranes of the mouth (called thrush), gastrointestinal tract, skin, and • Loss of function of the protein where it does nails with Candida or other common skin fungus. not function at all, or Presentation of CMC is usually in childhood, with some as young as age of 1 at the time the • Gain of function of the protein where the infections start. CMC can often be difficult to treat, protein functions too much and cannot be requiring oral anti-fungal medication, and likely will turned off. return when anti-fungal medications are stopped. • Gain of function of the STAT1 and STAT3 More rarely, individuals with STAT1 GOF can be proteins cause diseases of immune susceptible to severe invasive fungal infections. dysregulation, autoimmunity, and increased risk These infections include Aspergilllus, Histoplasma, of infections. Coccidiomycosis, and Cryptococcus. Pneumonia, an infection of the lungs, is the most common site of invasive fungal infection. Definition Bacterial infections with common community STAT1 and STAT3 GOF Diseases are genetic acquired bacterial organisms also occur in disorders in which immune cells are over activated. individuals with STAT1 GOF. The infections have a STAT1 and STAT3 are proteins found inside most tendency to occur in the lungs as lower respiratory immune cells that are activated after the immune tract infections, bronchitis, or pneumonia. cell itself is activated by other signaling proteins Bacterial infection of the eye, skin, and nail beds called cytokines, such as interferon gamma and are also common. Individuals with STAT1 GOF IL-6, respectively. Once the cell is stimulated, are also susceptible to Mycobacterial infections. the STAT protein activates and encourages other Mycobacterium is a class of bacteria that typically immune responses to help the cell to kill bacterial, only infect individuals with immunodeficiency or viral, and fungal infections. Overactive STAT1 and those that are immune suppressed. STAT3 lead to dysfunction of both STAT1 and STAT3, and it places individuals at increased risk of infections and autoimmune disease. 74 Chapter 15: Diseases of Immune Dysregulation: STAT1 and STAT3 Gain of Function Viral infections are also a source of concern in these Clinical Presentation individuals. The most common viruses causing infection are Herpes family viruses such as herpes STAT3 GOF simplex virus, the cause of cold sores; varicella zoster Individuals with STAT3 GOF most commonly present virus, the virus that causes chickenpox and shingles; with severe early onset autoimmunity. Individuals Epstein Barr virus (EBV), the cause of mononucleosis; often have more than one autoimmune disease and human papilloma virus (HPV), the cause of warts; the symptoms of autoimmunity are severe and hard and cytomegalovirus (CMV), a virus that typically to control. The most common types of autoimmunity goes unnoticed by people with competent immune involve the endocrine (hormone) system, the systems but causes severe disease in individuals hematologic system (blood cells and platelets), with immune deficiency. These viruses can cause gastrointestinal tract, lungs, and liver. Thyroid disease skin infection, pneumonia, or enter the blood is the most common autoimmune endocrine disorder, stream where they cause widespread infection and treated with thyroid replacement. Hematologic dysfunction of different organ systems. autoimmune disorders include autoimmune destruction of the blood cells and platelets that Most individuals develop some form of autoimmunity can be life threatening and require transfusions of by the third decade of life. The autoimmunity that blood or platelets. Enteropathy due to autoimmune occurs in STAT1 GOF often affects the endocrine destruction of the lining of the intestinal tract as and hematologic systems. Hypothyroidism and early chronic diarrhea can cause severe malabsorption onset diabetes are common. Autoimmune hemolytic of nutrients and failure to thrive. In addition, some anemia and autoimmune thrombocytopenia individuals may have inflammation of the intestine (autoimmune destruction of red blood cells or or colon, termed colitis, that can also lead to poor platelets) can be life threatening and may require weight gain, abdominal pain, chronic diarrhea, and blood or platelet transfusions. A subset of individuals blood in the stool. Autoimmune destruction of the with STAT1 GOF have symptoms very similar liver or lung can lead to organ dysfunction or failure to Immunodysregulation-Polyendocrinopathy- respectively. Other autoimmune disorders, including Enteropathy-X-linked (IPEX). (See IPEX Chapter.) eczema, rheumatoid arthritis, and eye disease, can These individuals will have early onset autoimmunity, also occur. such as diabetes mellitus and hypothyroidism as well. In addition, individuals with STAT1 GOF with similar A major feature of individuals with STAT3 GOF is symptoms to IPEX can have severe enteropathy. the presence of lymphoproliferative disease. In Enteropathy is destruction of the small and large lymphoproliferative disease, immune cells in lymph intestine’s absorptive surface. Individuals with organs grow at an abnormal rate. Lymphoid organs enteropathy have substantial difficulty in absorbing include the spleen, liver, and lymph nodes and when nutrients and have very frequent diarrhea with weight this growth occurs, these organs will expand causing loss and malnutrition. Because of poor nutrition, abnormally large lymph nodes, liver, and/or spleen. individuals will have growth failure. Lymphoproliferation, which is growth of lymphocytes in increased quantities, can ultimately impact the Other clinical features include a susceptibility to the function of the affected organ, and it can prevent development of aneurysms in the brain. An aneurysm the lymph cells from responding appropriately when is an abnormal out-pouching of a blood vessel that there is infection. causes the blood vessel wall to become weak. Small numbers of individuals have learning disabilities. Acute short stature is another common feature in Some individuals also demonstrate susceptibility to individuals with STAT3 GOF. The height of individuals skin, gastrointestinal tract, and throat cancer. is often substantially lower than the expected normal for age, and this persists to adulthood. Individuals The immune features in individuals with STAT1 often are treated with growth hormone replacement, GOF can be very variable. Individuals may have low but this is controversial as to whether there is lymphocyte counts and function including low T cell, any benefit. B cell, and NK cells. Some individuals may also have hypogammaglobulinemia (low IgG, low IgA, or low Immune abnormalities also are very variable in IgM). Susceptibility to infections, particularly viruses individuals with STAT3 GOF. Low T cell and B cell and Mycobacterium, occurs when there are abnormal quantities can occur as can hypogammaglobulinemia lymphocyte counts and/or function. (low IgG). It is often hard to differentiate if the IDF Patient & Family Handbook 75 immune abnormalities are secondary to treatment will dictate whether an individual may need to of the autoimmune features. Infections can occur in receive prophylaxis against bacterial, fungal, or viral STAT3 GOF, but the autoimmune features are the infections. Some individuals receive immunoglobulin more common presentation. Infections, including (Ig) replacement therapy when there is low IgG. bacterial, viral, mycobacterial, and fungal, can be severe, invasive, and life threatening. Prophylaxis The biology that leads to STAT1 and STAT3 against infections is often used especially if activation has afforded the opportunity to use a substantial number of immune suppressing specific therapeutic agents that interfere with the medications are used
Recommended publications
  • Four Diseases, PLAID, APLAID, FCAS3 and CVID and One Gene
    Four diseases, PLAID, APLAID, FCAS3 and CVID and one gene (PHOSPHOLIPASE C, GAMMA-2; PLCG2 ) : striking clinical phenotypic overlap and difference Necil Kutukculer1, Ezgi Yilmaz1, Afig Berdeli1, Raziye Burcu G¨uven Bilgin1, Ayca Aykut1, Asude Durmaz1, Ozgur Cogulu1, G¨uzideAksu1, and Neslihan Karaca1 1Ege University Faculty of Medicine May 15, 2020 Abstract We suggest PLAID,APLAID and FCAS3 have to be considered as same diseases,because of our long-term clinical experiences and genetic results in six patients.Small proportion of CVID patients are also PLAID/APLAID/FCAS3 patients and all these have disease-causing-mutations in PLCG2-genes,so it may be better to define all of them as “PLCG2 deficiency”. Key Clinical Message: Germline mutations in PLCG2 gene cause PLAID,APLAID,FCAS3, and CVID.Clinical experiences in patients with PLCG2 mutations led us to consider that PLAID, APLAID and FCAS3 are same diseases.It may be better to define all of them as “PLCG2 deficiency”. INTRODUCTION The PLCG2 gene which is located on the 16th chromosome (16q23.3) encodes phospholipase Cg2 (PLCG2), a transmembrane signaling enzyme that catalyzes the production of second messenger molecules utilizing calcium as a cofactor and propagates downstream signals in several hematopoietic cells (1). Recently, het- erozygous germline mutations in human PLCG2 were linked to some clinical phenotypes with some overlap- ping features|PLCg2-associated antibody deficiency and immune dysregulation syndrome (PLAID) (OMIM 614878) and autoinflammation, antibody deficiency, and immune dysregulation syndrome (APLAID) (OMIM 614878) (2-4) and familial cold autoinflammatory syndrome (FCAS3) (OMIM 614468) (5). All of them are autosomal dominant inherited diseases.
    [Show full text]
  • Abstract: Age-Related Immune Dysregulation and Increases In
    Abstract: Age-related immune dysregulation and increases in inflammation, termed inflammaging, have been consistently implicated in most common age-related diseases, but the precise etiology of inter- individual differences in inflammaging are unknown. Changes in immunity and inflammation occur throughout the life course, but research on these processes among non-elderly populations has been limited. This is important because identifying sources of biological aging and inflammation before individuals reach older age may help identify points for intervention. The composition of the gut microbiota has been shown in animal models to have profound influence over, and interactions with, the immune system. Findings from germ-free mice suggest that commensal gut microbes are a key cause of inflammaging, but this hypothesis has not been well explored in humans. There are currently very few data examining how the microbiome relates to the fundamental aspects of aging biology, specifically inflammatory phenotypes and genomic markers of biological age. We propose to fill gaps in current microbiome research on aging, through the collection and analysis of oral and gut microbiome data in The National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative longitudinal cohort of adults with extensive social environment data and existing or ongoing analyses of genomic and phenotypic markers of inflammation and aging. The specific aims include the: 1) Collection of tongue and stool specimens with which to characterize the oral and gut microbiome in a nationally-representative sample (N ~10,155) of Add Health participants (mean age ~40); 2) Testing the association between the microbiome and biomarkers of aging and inflammation, and the creation of a novel “microbiome age clock”; 3) Examination of the relationships between life course exposures and microbiome species related to biomarkers of aging and inflammation as an adult; 4) Documentation and dissemination of data generated from this project.
    [Show full text]
  • Harnessing the Immune System to Overcome Cytokine Storm And
    Khadke et al. Virol J (2020) 17:154 https://doi.org/10.1186/s12985-020-01415-w REVIEW Open Access Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents Sumanth Khadke1, Nayla Ahmed2, Nausheen Ahmed3, Ryan Ratts2,4, Shine Raju5, Molly Gallogly6, Marcos de Lima6 and Muhammad Rizwan Sohail7* Abstract Background: Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, previously named 2019-nCov), a novel coronavirus that emerged in China in December 2019 and was declared a global pandemic by World Health Organization by March 11th, 2020. Severe manifestations of COVID-19 are caused by a combination of direct tissue injury by viral replication and associated cytokine storm resulting in progressive organ damage. Discussion: We reviewed published literature between January 1st, 2000 and June 30th, 2020, excluding articles focusing on pediatric or obstetric population, with a focus on virus-host interactions and immunological mechanisms responsible for virus associated cytokine release syndrome (CRS). COVID-19 illness encompasses three main phases. In phase 1, SARS-CoV-2 binds with angiotensin converting enzyme (ACE)2 receptor on alveolar macrophages and epithelial cells, triggering toll like receptor (TLR) mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ƙB) signaling. It efectively blunts an early (IFN) response allowing unchecked viral replication. Phase 2 is characterized by hypoxia and innate immunity mediated pneumocyte damage as well as capillary leak. Some patients further progress to phase 3 characterized by cytokine storm with worsening respiratory symptoms, persistent fever, and hemodynamic instability.
    [Show full text]
  • Immune Dysfunction and Neuroinflammation in Autism
    Review Acta Neurobiol Exp 2016, 76: 257–268 Immune dysfunction and neuroinflammation in autism spectrum disorder Geir Bjørklund1*, Khaled Saad2, Salvatore Chirumbolo3, Janet K. Kern4, David A. Geier4, Mark R. Geier4, and Mauricio A. Urbina5 1 Council for Nutritional and Environmental Medicine, Mo i Rana, Norway, 2 Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt, 3 Department of Neurological and Movement Science, University of Verona, Verona, Italy, 4 Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA, 5 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile, * Email: [email protected] Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder with a complex pathogenesis. Many studies over the last four decades have recognized altered immune responses among individuals diagnosed with ASD. The purpose of this critical and comprehensive review is to examine the hypothesis that immune dysfunction is frequently present in those with ASD. It was found that often individuals diagnosed with ASD have alterations in immune cells such as T cells, B cells, monocytes, natural killer cells, and dendritic cells. Also, many individuals diagnosed with ASD have alterations in immunoglobulins and increased autoantibodies. Finally, a significant portion of individuals diagnosed with ASD have elevated peripheral cytokines and chemokines and associated neuroinflammation. In conclusion, immune dysregulation and inflammation are important components in the diagnosis and treatment of ASD. Key words: autism, cytokines, innate immunity, neuroinflammation INTRODUCTION a fundamental role in ASD development, despite some concern about whether it causes ASD onset or regulates Autism spectrum disorder (ASD) is considered ASD pathogenesis and symptomatology.
    [Show full text]
  • Social Change, Parasite Exposure, and Immune Dysregulation
    SOCIAL CHANGE, PARASITE EXPOSURE, AND IMMUNE DYSREGULATION AMONG SHUAR FORAGER-HORTICULTURALISTS OF AMAZONIA: A BIOCULTURAL CASE-STUDY IN EVOLUTIONARY MEDICINE by TARA CEPON ROBINS A DISSERTATION Presented to the Department of Anthropology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2015 DISSERTATION APPROVAL PAGE Student: Tara Cepon Robins Title: Social Change, Parasite Exposure, and Immune Dysregulation among Shuar Forager-Horticulturalists of Amazonia: A Biocultural Case-Study in Evolutionary Medicine This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Anthropology by: J. Josh Snodgrass Chairperson Lawrence S. Sugiyama Core Member Frances J. White Core Member Brendan J.M. Bohannan Institutional Representative and Scott L. Pratt Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded June 2015 ii © 2015 Tara Cepon Robins iii DISSERTATION ABSTRACT Tara Cepon Robins Doctor of Philosophy Department of Anthropology June 2015 Title: Social Change, Parasite Exposure, and Immune Dysregulation among Shuar Forager-Horticulturalists of Amazonia: A Biocultural Case-Study in Evolutionary Medicine The Hygiene Hypothesis and Old Friends Hypothesis focus attention on the coevolutionary relationship between humans and pathogens, positing that reduced pathogen exposure in economically developed
    [Show full text]
  • Regulatory T Cells: Expanding Treg Cell Numbers in Vivo
    RESEARCH HIGHLIGHTS IN BRIEF REGULATORY T CELLS Expanding TReg cell numbers in vivo There is great interest in harnessing the suppressive powers of regulatory T (TReg) cells in the clinic. Although it is possible to numerically expand TReg cells ex vivo, concerns over their purity and stability remain. An alternative approach is to expand pre-existing populations of TReg cells in vivo. This study showed that a monoclonal antibody specific for CD45RB (which has a role in T cell receptor signalling) increased the frequency and absolute number of TReg cells in mice. This increase required the presence of cognate antigen and was due to homeostatic proliferation of thymus-derived TReg cells rather than increased thymic output or conversion from effector T cells. CD45RB‑specific antibody was shown to inhibit TReg cell motility, thereby increasing the contact time of the cells with dendritic cells. This increased contact time resulted in increased activation of nuclear factor of activated T cells (NFAT), which is required for TReg cell proliferation. These data describe a novel method by which TReg cell numbers may be increased in vivo. ORIGINAL RESEARCH PAPER Camirand, G. et al. CD45 ligation expands Tregs by promoting interactions with DCs. J. Clin. Invest. http://dx.doi.org/10.1172/JCI74087 (2014) IMMUNOGENETICS Human CTLA4 mutations described Cytotoxic T lymphocyte antigen 4 (CTLA4) is a crucial negative regulator of T cells. A new study describes for the first time the consequences of CTLA4 mutations in humans. Six subjects from four unrelated families suffering from severe immune dysregulation were identified as having heterozygous germline mutations in CTLA4.
    [Show full text]
  • Regulatory T Cells: Essential Regulators of the Immune System
    Regulatory T Cells: Essential Regulators of the Immune System Tools for the identification, isolation, and multicolor analysis of human regulatory T cells CD4+ CD8+ CD4+ CD45RO+ An tige + n Sti CD25 mulation FoxP3- CD4+ CD4+ Memory T Cell CD25high Naïve T Cell FoxP3+ CD4+ CD25- FoxP3- Natural Treg β + IL-10 CD4 and/or TGF Induced Treg CD25low Th17 FoxP3+ low + CD25 CD4 CD25low CD4+ CD25high Th2 CD4+ Th1 A proven commitment to regulatory T cell research As evidence of the immunosuppressive potential of T cells has developed in recent years, interest in Regulatory T cells (Tregs) and enthusiasm for their potential therapeutic application has intensified. Thus Treg research is very active, and new publications emerge almost daily. Today the most commonly used markers for Treg identification, isolation, and characterization are CD4, CD25, CD127, and FoxP3. However, new targets with functional significance such as CD39, CD45RA, CTLA-4, and others are rapidly emerging. For over 20 years, BD Biosciences has actively supported groundbreaking research in the field. With a rich portfolio of high quality immunology products, BD Pharmingen™ brand reagents support both established markers as well as emerging trends in this dynamic envi- ronment. With new discoveries about the role of proteins in Tregs, many existing markers gain new utility. This proven commitment to help advance discovery in Treg research is the foundation of BD Biosciences ongoing efforts to provide a full range of tools to simplify the identification, isolation and characterization of Treg cells and their interacting partners. BD Biosciences reagents are backed by a world-class service and support organization to help customers take full advantage of our products to advance their research.
    [Show full text]
  • PLCG2-Associated Antibody Deficiency and Immune Dysregulation
    PLCG2-associated antibody deficiency and immune dysregulation Description PLCG2-associated antibody deficiency and immune dysregulation (PLAID) is an immune system disorder characterized by an allergic reaction to cold temperatures. Other immune system problems can also occur. The hallmark feature of PLAID is the development of a red, itchy rash (hives) when the skin is exposed to cool temperatures, which is known as cold urticaria. In PLAID, the hives typically develop in response to evaporative cooling, such as when a cool breeze or air conditioning blows on damp or sweaty skin. Being in a cold swimming pool can also trigger hives. In contrast, people with PLAID do not have a reaction when they touch a cold object, like an ice cube. (The ice cube test is a common test for a cold allergy; it triggers a reaction in people with other forms of cold urticaria, which usually begin later in life than PLAID.) However, some people with PLAID do experience a burning sensation in their throats when they eat cold foods, like ice cream. In PLAID, the hives go away once the skin warms up. Prolonged exposure to cold can lead to loss of consciousness or a serious allergic reaction known as anaphylaxis. Other skin problems can also occur in PLAID. A small number of affected individuals develop a blistering rash on the tip of their nose, ears, and fingers shortly after birth. The rash usually heals on its own in infancy, although in rare cases, it worsens over time. After the initial rash goes away, a different rash sometimes develops on the torso and limbs later in life.
    [Show full text]
  • PLCG2 Gene Phospholipase C Gamma 2
    PLCG2 gene phospholipase C gamma 2 Normal Function The PLCG2 gene provides instructions for making an enzyme called phospholipase C gamma 2 (PLCg 2). This enzyme performs a chemical reaction that enables molecules to relay signals from outside the cell to the inside. These signals direct cellular functions, including growth, maturation, and movement (migration). The PLCg 2 enzyme is particularly important in immune system cells, including B cells, natural killer (NK) cells, and mast cells. The enzyme is critical for the cells' roles in preventing infection by recognizing and attacking foreign invaders, such as bacteria and viruses. When foreign invaders are detected, the PLCg 2 enzyme relays signals for B cells to produce specialized proteins called antibodies (or immunoglobulins) that attach to foreign particles and mark them for destruction. Signaling through the enzyme is also involved in the destruction of foreign invaders by NK cells. PLCg 2 enzyme signaling in mast cells and other immune cells triggers inflammation, which helps clear infections or other irritants. Mast cells also play a role in allergic reactions, which occur when the immune system overreacts to stimuli that are not harmful. Health Conditions Related to Genetic Changes PLCG2-associated antibody deficiency and immune dysregulation At least three mutations in the PLCG2 gene have been found to cause PLCG2- associated antibody deficiency and immune dysregulation (PLAID). This condition is characterized by the development of a red, itchy rash (known as hives or urticaria) when exposed to cool temperatures, in particular cooling caused by evaporation, such as when a cool breeze blows on damp skin. Other skin rashes, recurrent infections, and autoimmune diseases, which occur when the immune system malfunctions and attacks the body's own tissues, can also occur in PLAID.
    [Show full text]
  • Regulatory T-Cell Therapy in Crohn's Disease: Challenges and Advances
    Recent advances in basic science Regulatory T- cell therapy in Crohn’s disease: Gut: first published as 10.1136/gutjnl-2019-319850 on 24 January 2020. Downloaded from challenges and advances Jennie N Clough ,1,2 Omer S Omer,1,3 Scott Tasker ,4 Graham M Lord,1,5 Peter M Irving 1,3 1School of Immunology and ABStract pathological process increasingly recognised as Microbial Sciences, King’s The prevalence of IBD is rising in the Western world. driving intestinal inflammation and autoimmunity College London, London, UK 2NIHR Biomedical Research Despite an increasing repertoire of therapeutic targets, a is the loss of immune homeostasis secondary to Centre at Guy’s and Saint significant proportion of patients suffer chronic morbidity. qualitative or quantitative defects in the regulatory Thomas’ NHS Foundation Trust Studies in mice and humans have highlighted the critical T- cell (Treg) pool. and King’s College, London, UK + 3 role of regulatory T cells in immune homeostasis, with Tregs are CD4 T cells that characteristically Department of defects in number and suppressive function of regulatory Gastroenterology, Guy’s and express the high- affinity IL-2 receptor α-chain Saint Thomas’ Hospitals NHS T cells seen in patients with Crohn’s disease. We review (CD25) and master transcription factor Forkhead Trust, London, UK the function of regulatory T cells and the pathways by box P-3 (Foxp3) which is essential for their suppres- 4 Division of Transplantation which they exert immune tolerance in the intestinal sive phenotype and stability.4–6
    [Show full text]
  • Persistent Eosinophilia Is a Challenging Problem
    DOI: 10.26717/BJSTR.2017.01.000244 Nahla A M Hamed. Biomed J Sci & Tech Res ISSN: 2574-1241 Editorial Open Access Persistent Eosinophilia is a Challenging Problem Nahla AM Hamed* Professor of Hematology, Faculty of Medicine, Alexandria University, Egypt Received: July 25, 2017; Published: August 01, 2017 *Corresponding author: Nahla AM Hamed, Professor of Hematology, Faculty of Medicine, Alexandria University, Egypt Abstract 9 HE is defined as >1.5 x 10 /L eosinophils in the blood on 2 examinations (interval >1 mo) and/or tissue HE defined by: eosinophils percentage in BM section exceeding 20% of all nucleated cells; and/or extensive eosinophilic tissue infiltration by pathologist opinion; and/or presenceAbbreviations: of marked deposition of eosinophil granule proteins (in the absence or presence of major tissue eosinophils infiltration). AEC: absolute eosinophil count; HE: Hypereosinophilia; ABPA: Allergic Bronchopulmonary Aspergillosis; B-ALL: Acute B-cell lymphoblastic leukemia; GVHD: Graft-Versus-Host Disease; BM: Bone Marrow; PB: Peripheral Blood; IL5: Interleukin 5; AML: Acute Myeloid Leukemia; LV: Lymphocytic Variant; Th2:T-cells have a helper type 2; EPPER: Eosinophilic, polymorphic, and pruritic Eruption Associated with Radiotherapy; MPN: Myeloproliferative Neoplasm; HES: Hypereosinophilic Syndrome; PDGFRA: Platelet-Derived Growth Factor Receptor Alpha; PDGFRB: Platelet-Derived Growth Factor Receptor Beta; FGFR1: Fibroblast Growth Factor Receptor 1; CEL-NOS: Chronic Eosinophilic Leukemia-Not Otherwise Specified; MDS: Myelodysplastic Syndrome; IgH: Ig Heavy Chain; EBV: Epstein-Barr virus Introduction cystic structures (e.g. hydatid cyst, neurocysticercosis) are unlikely Eosinophilia3 is defined as an AEC >500/μL [1].3 The severity ), and severe to cause eosinophilia [7]. Disseminated coccidioidomycosis and of eosinophilia has3 been arbitrarily divided into mild9 (AEC: 500- aspergillosis (when presenting as ABPA) are well-known fungal 1,500/mm ), moderate (AEC: 1,500-5,000/mm causes of eosinophilia.
    [Show full text]
  • Immune Dysregulation and Autoimmunity in Bipolar Disorder
    ANP471210.1177/0004867413499077ANZJP ArticlesRege and Hodgkinson 4990772013 Review Australian & New Zealand Journal of Psychiatry 47(12) 1136 –1151 Immune dysregulation and DOI: 10.1177/0004867413499077 © The Royal Australian and autoimmunity in bipolar disorder: New Zealand College of Psychiatrists 2013 Reprints and permissions: Synthesis of the evidence and its sagepub.co.uk/journalsPermissions.nav clinical application anp.sagepub.com Sanil Rege1,2,3 and Suzanne J Hodgkinson4,5 Abstract Objective: Increasing evidence suggests that inflammation and immune dysregulation play an important role in the pathogenesis of bipolar disorder. Because the brain can be affected by various autoimmune processes, it is possible that some psychiatric disorders may have an autoimmune basis. Method: This article reviews the literature on peripheral and central immune dysregulation and autoimmunity in bipo- lar disorder. The mechanisms of the innate and adaptive immune systems in the pathophysiology of bipolar disorder are explored. The clinical features and pathogenesis of neuropsychiatric systemic lupus erythematosus, anti-NMDA encephalitis, and Hashimoto’s encephalopathy are summarized. Results: Neuroinflammation and peripheral immune dysregulation may play a role in the pathophysiology of bipolar dis- order. This involves a complex interaction between immune cells of the central nervous system and periphery resulting in cellular damage through mechanisms involving excitotoxicity, oxidative stress, and mitochondrial dysfunction. Neu- ropsychiatric systemic lupus erythematosus, anti-NMDA encephalitis, and Hashimoto’s encephalopathy are important differentials for a psychiatrist to consider when suspecting autoimmune encephalopathy. Conclusions: The link between immune dysregulation, autoimmunity, and bipolar disorder may be closer than pre- viously thought. Psychiatrists should be vigilant for autoimmunity in presentations of bipolar disorder due to its high morbidity and therapeutic implications.
    [Show full text]