Current Insights Into Immunology and Novel Therapeutics of Atopic Dermatitis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Single Dose of the CXCR4 Antagonist BL-8040 Induces Rapid
Published OnlineFirst August 23, 2017; DOI: 10.1158/1078-0432.CCR-16-2919 Cancer Therapy: Clinical Clinical Cancer Research Single Dose of the CXCR4 Antagonist BL-8040 Induces Rapid Mobilization for the Collection of Human CD34þ Cells in Healthy Volunteers Michal Abraham1, Yaron Pereg2, Baruch Bulvik1, Shiri Klein3, Inbal Mishalian3, Hana Wald1, Orly Eizenberg1, Katia Beider4, Arnon Nagler4, Rottem Golan2, Abi Vainstein2, Arnon Aharon2, Eithan Galun3, Yoseph Caraco5, Reuven Or6, and Amnon Peled3,4 Abstract Purpose: The potential of the high-affinity CXCR4 antagonist systemic reactions were mitigated by methylprednisolone, BL-8040 as a monotherapy-mobilizing agent and its derived paracetamol, and promethazine pretreatment. In the first part graft composition and quality were evaluated in a phase I clinical of the study, BL-8040 triggered rapid and substantial mobili- þ study in healthy volunteers (NCT02073019). zation of WBCs and CD34 cells in all tested doses. Four hours Experimental Design: The first part of the study was a ran- postdose, the count rose to a mean of 8, 37, 31, and 35 cells/mL domized, double-blind, placebo-controlled dose escalation (placebo, 0.5, 0.75, and 1 mg/kg, respectively). FACS analysis phase. The second part of the study was an open-label phase, in revealed substantial mobilization of immature dendritic, T, B, þ which 8 subjects received a single injection of BL-8040 (1 mg/kg) and NK cells. In the second part, the mean CD34 cells/kg and approximately 4 hours later underwent a standard leukapher- collected were 11.6 Â 106 cells/kg. The graft composition was esis procedure. -
Four Diseases, PLAID, APLAID, FCAS3 and CVID and One Gene
Four diseases, PLAID, APLAID, FCAS3 and CVID and one gene (PHOSPHOLIPASE C, GAMMA-2; PLCG2 ) : striking clinical phenotypic overlap and difference Necil Kutukculer1, Ezgi Yilmaz1, Afig Berdeli1, Raziye Burcu G¨uven Bilgin1, Ayca Aykut1, Asude Durmaz1, Ozgur Cogulu1, G¨uzideAksu1, and Neslihan Karaca1 1Ege University Faculty of Medicine May 15, 2020 Abstract We suggest PLAID,APLAID and FCAS3 have to be considered as same diseases,because of our long-term clinical experiences and genetic results in six patients.Small proportion of CVID patients are also PLAID/APLAID/FCAS3 patients and all these have disease-causing-mutations in PLCG2-genes,so it may be better to define all of them as “PLCG2 deficiency”. Key Clinical Message: Germline mutations in PLCG2 gene cause PLAID,APLAID,FCAS3, and CVID.Clinical experiences in patients with PLCG2 mutations led us to consider that PLAID, APLAID and FCAS3 are same diseases.It may be better to define all of them as “PLCG2 deficiency”. INTRODUCTION The PLCG2 gene which is located on the 16th chromosome (16q23.3) encodes phospholipase Cg2 (PLCG2), a transmembrane signaling enzyme that catalyzes the production of second messenger molecules utilizing calcium as a cofactor and propagates downstream signals in several hematopoietic cells (1). Recently, het- erozygous germline mutations in human PLCG2 were linked to some clinical phenotypes with some overlap- ping features|PLCg2-associated antibody deficiency and immune dysregulation syndrome (PLAID) (OMIM 614878) and autoinflammation, antibody deficiency, and immune dysregulation syndrome (APLAID) (OMIM 614878) (2-4) and familial cold autoinflammatory syndrome (FCAS3) (OMIM 614468) (5). All of them are autosomal dominant inherited diseases. -
Modulators of CXCR4 and CXCR7/ACKR3 Function
Molecular Pharmacology Fast Forward. Published on September 23, 2019 as DOI: 10.1124/mol.119.117663 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 117663 Modulators of CXCR4 and CXCR7/ACKR3 function Ilze Adlere*, Birgit Caspar*, Marta Arimont*, Sebastian Dekkers, Kirsten Visser, Jeffrey Stuijt, Chris de Graaf, Michael Stocks, Barrie Kellam, Stephen Briddon, Maikel Wijtmans, Iwan de Esch, Stephen Hill, Rob Leurs# * These authors contributed equally to this work. Downloaded from # Corresponding author molpharm.aspetjournals.org Griffin Discoveries BV, Amsterdam, The Netherlands (IA, IE, RL), Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK (BC, SJB, SJH), Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K. (BC, BK, SD, SB, SH), at ASPET Journals on September 26, 2021 School of Pharmacy, University of Nottingham, Nottingham, U.K. (SD, BK, MS), Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (MA, KS, JS, CG, MW, IE, RL), Sosei Heptares, Cambridge, U.K. (CG) 1 Molecular Pharmacology Fast Forward. Published on September 23, 2019 as DOI: 10.1124/mol.119.117663 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 117663 Running title: Modulators of CXCR4 and CXCR7/ACKR3 function Corresponding -
Dynamic Chemotherapy-Induced Upregulation of CXCR4 Expression: a Mechanism of Therapeutic Resistance in Pediatric AML
Published OnlineFirst June 10, 2013; DOI: 10.1158/1541-7786.MCR-13-0114 Molecular Cancer Cell Death and Survival Research Dynamic Chemotherapy-Induced Upregulation of CXCR4 Expression: A Mechanism of Therapeutic Resistance in Pediatric AML Edward Allan R. Sison, Emily McIntyre, Daniel Magoon, and Patrick Brown Abstract Cure rates in pediatric acute leukemias remain suboptimal. Overexpression of the cell-surface chemokine receptor CXCR4 is associated with poor outcome in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Certain nonchemotherapeutic agents have been shown to modulate CXCR4 expression and alter leukemia interactions with stromal cells in the bone marrow microenvironment. Because chemotherapy is the mainstay of AML treatment, it was hypothesized that standard cytotoxic chemotherapeutic agents induce dynamic changes in leukemia surface CXCR4 expression, and that chemotherapy-induced upregulation of CXCR4 repre- sents a mechanism of acquired therapeutic resistance. Here, it was shown that cell lines variably upregulate CXCR4 with chemotherapy treatment. Those that showed upregulation were differentially protected from chemotherapy- induced apoptosis when cocultured with stroma. The functional effects of chemotherapy-induced CXCR4 up- regulation in an AML cell line (MOLM-14, which harbors consistent upregulated CXCR4) and clinical specimens were explored. Importantly, enhanced stromal-cell derived factor-1a (SDF1A/CXCL12)-mediated chemotaxis and stromal protection from additional chemotherapy-induced apoptosis was found. Furthermore, treatment with plerixafor, a CXCR4 inhibitor, preferentially decreased stromal protection with higher chemotherapy-induced upregulation of surface CXCR4. Thus, increased chemokine receptor CXCR4 expression after treatment with conventional chemotherapy may represent a mechanism of therapeutic resistance in pediatric AML. Implications: CXCR4 may be a biomarker for the stratification and optimal treatment of patients using CXCR4 inhibitors. -
Abstract: Age-Related Immune Dysregulation and Increases In
Abstract: Age-related immune dysregulation and increases in inflammation, termed inflammaging, have been consistently implicated in most common age-related diseases, but the precise etiology of inter- individual differences in inflammaging are unknown. Changes in immunity and inflammation occur throughout the life course, but research on these processes among non-elderly populations has been limited. This is important because identifying sources of biological aging and inflammation before individuals reach older age may help identify points for intervention. The composition of the gut microbiota has been shown in animal models to have profound influence over, and interactions with, the immune system. Findings from germ-free mice suggest that commensal gut microbes are a key cause of inflammaging, but this hypothesis has not been well explored in humans. There are currently very few data examining how the microbiome relates to the fundamental aspects of aging biology, specifically inflammatory phenotypes and genomic markers of biological age. We propose to fill gaps in current microbiome research on aging, through the collection and analysis of oral and gut microbiome data in The National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative longitudinal cohort of adults with extensive social environment data and existing or ongoing analyses of genomic and phenotypic markers of inflammation and aging. The specific aims include the: 1) Collection of tongue and stool specimens with which to characterize the oral and gut microbiome in a nationally-representative sample (N ~10,155) of Add Health participants (mean age ~40); 2) Testing the association between the microbiome and biomarkers of aging and inflammation, and the creation of a novel “microbiome age clock”; 3) Examination of the relationships between life course exposures and microbiome species related to biomarkers of aging and inflammation as an adult; 4) Documentation and dissemination of data generated from this project. -
Harnessing the Immune System to Overcome Cytokine Storm And
Khadke et al. Virol J (2020) 17:154 https://doi.org/10.1186/s12985-020-01415-w REVIEW Open Access Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents Sumanth Khadke1, Nayla Ahmed2, Nausheen Ahmed3, Ryan Ratts2,4, Shine Raju5, Molly Gallogly6, Marcos de Lima6 and Muhammad Rizwan Sohail7* Abstract Background: Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, previously named 2019-nCov), a novel coronavirus that emerged in China in December 2019 and was declared a global pandemic by World Health Organization by March 11th, 2020. Severe manifestations of COVID-19 are caused by a combination of direct tissue injury by viral replication and associated cytokine storm resulting in progressive organ damage. Discussion: We reviewed published literature between January 1st, 2000 and June 30th, 2020, excluding articles focusing on pediatric or obstetric population, with a focus on virus-host interactions and immunological mechanisms responsible for virus associated cytokine release syndrome (CRS). COVID-19 illness encompasses three main phases. In phase 1, SARS-CoV-2 binds with angiotensin converting enzyme (ACE)2 receptor on alveolar macrophages and epithelial cells, triggering toll like receptor (TLR) mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ƙB) signaling. It efectively blunts an early (IFN) response allowing unchecked viral replication. Phase 2 is characterized by hypoxia and innate immunity mediated pneumocyte damage as well as capillary leak. Some patients further progress to phase 3 characterized by cytokine storm with worsening respiratory symptoms, persistent fever, and hemodynamic instability. -
Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet. -
Immune Dysfunction and Neuroinflammation in Autism
Review Acta Neurobiol Exp 2016, 76: 257–268 Immune dysfunction and neuroinflammation in autism spectrum disorder Geir Bjørklund1*, Khaled Saad2, Salvatore Chirumbolo3, Janet K. Kern4, David A. Geier4, Mark R. Geier4, and Mauricio A. Urbina5 1 Council for Nutritional and Environmental Medicine, Mo i Rana, Norway, 2 Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt, 3 Department of Neurological and Movement Science, University of Verona, Verona, Italy, 4 Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA, 5 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile, * Email: [email protected] Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder with a complex pathogenesis. Many studies over the last four decades have recognized altered immune responses among individuals diagnosed with ASD. The purpose of this critical and comprehensive review is to examine the hypothesis that immune dysfunction is frequently present in those with ASD. It was found that often individuals diagnosed with ASD have alterations in immune cells such as T cells, B cells, monocytes, natural killer cells, and dendritic cells. Also, many individuals diagnosed with ASD have alterations in immunoglobulins and increased autoantibodies. Finally, a significant portion of individuals diagnosed with ASD have elevated peripheral cytokines and chemokines and associated neuroinflammation. In conclusion, immune dysregulation and inflammation are important components in the diagnosis and treatment of ASD. Key words: autism, cytokines, innate immunity, neuroinflammation INTRODUCTION a fundamental role in ASD development, despite some concern about whether it causes ASD onset or regulates Autism spectrum disorder (ASD) is considered ASD pathogenesis and symptomatology. -
Social Change, Parasite Exposure, and Immune Dysregulation
SOCIAL CHANGE, PARASITE EXPOSURE, AND IMMUNE DYSREGULATION AMONG SHUAR FORAGER-HORTICULTURALISTS OF AMAZONIA: A BIOCULTURAL CASE-STUDY IN EVOLUTIONARY MEDICINE by TARA CEPON ROBINS A DISSERTATION Presented to the Department of Anthropology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2015 DISSERTATION APPROVAL PAGE Student: Tara Cepon Robins Title: Social Change, Parasite Exposure, and Immune Dysregulation among Shuar Forager-Horticulturalists of Amazonia: A Biocultural Case-Study in Evolutionary Medicine This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Anthropology by: J. Josh Snodgrass Chairperson Lawrence S. Sugiyama Core Member Frances J. White Core Member Brendan J.M. Bohannan Institutional Representative and Scott L. Pratt Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded June 2015 ii © 2015 Tara Cepon Robins iii DISSERTATION ABSTRACT Tara Cepon Robins Doctor of Philosophy Department of Anthropology June 2015 Title: Social Change, Parasite Exposure, and Immune Dysregulation among Shuar Forager-Horticulturalists of Amazonia: A Biocultural Case-Study in Evolutionary Medicine The Hygiene Hypothesis and Old Friends Hypothesis focus attention on the coevolutionary relationship between humans and pathogens, positing that reduced pathogen exposure in economically developed -
STAT1 and STAT3 Gain of Function
Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases Chapter 15 Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases 6th Edition The development of this publication was supported by Shire, now Takeda. 110 West Road, Suite 300 Towson, MD 21204 800.296.4433 www.primaryimmune.org [email protected] Chapter 15 Diseases of Immune Dysregulation: STAT1 and STAT3 Gain of Function Jennifer Leiding, MD, University of South Florida, Tampa, Florida, USA Lisa Forbes Satter, MD, Texas Children’s Hospital, Houston, Texas, USA Introduction Clinical Presentation Immune dysregulation occurs when the immune STAT1 GOF system cannot regulate normal control over Individuals with STAT1 GOF will present to a inflammation, leading to severe inflammatory healthcare provider because of chronic or unusual complications. Two of these diseases are called infections or severe autoimmune disease that is STAT1 Gain of Function (GOF) Disease and not easily controlled with standard immune STAT3 Gain of Function (GOF) Disease. STAT suppressing medications. stands for: signal transducer and activator of transcription. There are six STAT proteins. STATs One of the most common manifestations in are important proteins that enhance immune individuals with STAT1 GOF is chronic infections responses, particularly the production of interferon with a fungus that are mostly limited to gamma, another protein that is crucial for defense mucosal surfaces, skin, and nails, also known as against certain infections and for the control of mucocutaneous candidiasis (CMC). This occurs inflammation. Mutations in STAT proteins can lead in more than 90% of individuals. CMC is an to: infection of the mucus membranes of the mouth (called thrush), gastrointestinal tract, skin, and • Loss of function of the protein where it does nails with Candida or other common skin fungus. -
Extrinsic Targeting Strategies Against Acute Myeloid Leukemic Stem Cells Noureldien H
Integrative Cancer Science and Therapeutics Review Article ISSN: 2056-4546 Extrinsic targeting strategies against acute myeloid leukemic stem cells Noureldien H. E. Darwish1,2 and Shaker A. Mousa2* 1Department of Clinical Pathology, Hematology Unit, Mansoura University, Egypt 2The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences (ACPHS), USA Abstract Despite advances in the treatment of acute myeloid leukemia (AML), patients still show high relapse and resistance against conventional chemotherapy. This resistance is related to a small clone referred to as Leukemia Stem Cells (LSCs). New targeted strategies are directed against the LSCs’ extrinsic regulators including their microenvironment such as a CXCR4 antagonist that is used to interfere with LSCs’ homing. Targeting LSCs’ surface molecules such as CD33 for selective elimination of LSCs has variable degrees of success that may require further assessments. Trials with CARs cells were effective in eradication of acute lymphoblastic leukemia, and they may have an effective role also in AML. Other strategies are directed against the intrinsic regulators such as self-renewal mechanisms and epigenetic reprogramming of LSCs. This review highlights targeting of the extrinsic regulators of the LSCs and identifies biological differences between them and normal hematopoietic stem cells. Introduction LSCs theory and properties Acute myeloid leukemia (AML) is a hematological disorder LSCs are able to divide to progeny clonogenic blast cells, leading to characterized by a malignant clone thought to be derived from a small the concept that AML is arranged in a hierarchy, with the LSCs present number of cells known as leukemic stem cells (LSCs). LSCs have a at the apex and the more “differentiated” blasts representing the main great ability for limitless self-renewal and also generation of leukemic tumor bulk [7]. -
Regulatory T Cells: Expanding Treg Cell Numbers in Vivo
RESEARCH HIGHLIGHTS IN BRIEF REGULATORY T CELLS Expanding TReg cell numbers in vivo There is great interest in harnessing the suppressive powers of regulatory T (TReg) cells in the clinic. Although it is possible to numerically expand TReg cells ex vivo, concerns over their purity and stability remain. An alternative approach is to expand pre-existing populations of TReg cells in vivo. This study showed that a monoclonal antibody specific for CD45RB (which has a role in T cell receptor signalling) increased the frequency and absolute number of TReg cells in mice. This increase required the presence of cognate antigen and was due to homeostatic proliferation of thymus-derived TReg cells rather than increased thymic output or conversion from effector T cells. CD45RB‑specific antibody was shown to inhibit TReg cell motility, thereby increasing the contact time of the cells with dendritic cells. This increased contact time resulted in increased activation of nuclear factor of activated T cells (NFAT), which is required for TReg cell proliferation. These data describe a novel method by which TReg cell numbers may be increased in vivo. ORIGINAL RESEARCH PAPER Camirand, G. et al. CD45 ligation expands Tregs by promoting interactions with DCs. J. Clin. Invest. http://dx.doi.org/10.1172/JCI74087 (2014) IMMUNOGENETICS Human CTLA4 mutations described Cytotoxic T lymphocyte antigen 4 (CTLA4) is a crucial negative regulator of T cells. A new study describes for the first time the consequences of CTLA4 mutations in humans. Six subjects from four unrelated families suffering from severe immune dysregulation were identified as having heterozygous germline mutations in CTLA4.