Knee Pain and Leg-Length Discrepancy After Retrograde Femoral Nailing Ricardo Reina, MD, Fernando E

Total Page:16

File Type:pdf, Size:1020Kb

Knee Pain and Leg-Length Discrepancy After Retrograde Femoral Nailing Ricardo Reina, MD, Fernando E (aspects of trauma • an original study) Knee Pain and Leg-Length Discrepancy After Retrograde Femoral Nailing Ricardo Reina, MD, Fernando E. Vilella, MD, Norman Ramírez, MD, Richard Valenzuela, MD, Gil Nieves, MD, and Christian A. Foy, MD ABSTRACT an antegrade entry point at the pirifor- MATERIALS AND METHODS We retrospectively studied postop- mis fossa.1,2,4,8-12 This technique has Between October 1998 and April 2000, erative knee function and leg-length several drawbacks, including a dif- a surgeon at University of Puerto Rico discrepancy (LLD) in 31 patients ficult starting point at the piriformis District Hospital and Puerto Rico with femoral diaphyseal fractures fossa, postoperative Trendelenburg Medical Center used retrograde IMN treated with retrograde intramedul- gait, iatrogenic fracture of the femo- to treat 46 femoral shaft fractures con- lary nailing (IMN) between October 1998 and April 2000. Mean follow-up ral neck, need for a fracture table secutively. For the purpose of this study, was 25 months, mean knee range of with difficult patient positioning, and we selected only those fractures motion was 126°, mean Hospital for limitations in use with concomitant located both 5 cm below the lesser Special Surgery knee scores were surgical procedures.3,5,6 trochanter14 and above the femoral 89.2 (pain) and 78.3 (function), and Over the past 20 years, retrograde condyles. Patients were contacted by mean LLD was 1.19 cm. Despite the IMN has emerged as an alternative telephone, by mail, or through local theoretically higher knee pain and that overcomes the shortcomings of government agencies. LLD rates associated with retrograde antegrade IMN in treating femoral Of the 46 patients, 15 (33%) were IMN, we believe it may offer a viable shaft fractures.1,3-5,7,8,13,14 The advan- excluded (4 had passed away, and 11 treatment option when the antegrade nailing technique is restricted. ractures of the femoral shaft “...indications for retrograde intramedullary are associated with high- nailing have expanded...” energy trauma. Different treatments have had varied Fresults.1-3 Closed intramedullary nail- tages of retrograde IMN include no had insufficient follow-up because of ing (IMN) has been shown to be an need for fracture table, ease of entry poor patient compliance, or they were effective treatment, with high success at the intercondylar notch, and acces- unavailable for evaluation at a specif- rates and minimal complications.1-8 sibility for performing additional ic clinic). The remaining 31 patients The current standard of care for surgical procedures with the patient (67%) had a minimum follow-up of 1 femoral shaft fractures is IMN through in a supine position.5 The original year and were evaluated by the senior indications for retrograde IMN were authors at a clinic specially set up Dr. Reina is in private practice, San Juan, femoral shaft fractures with ipsilat- for this study. In accordance with the Puerto Rico. eral femoral neck fractures, femoral approved protocol of our Institutional Dr. Vilella is Third-Year Resident, Dr. shaft fractures in polytrauma patients, Review Board, all patients received a Ramírez is Director of Research, Dr. and obese patients.1,2,7-9,14 With the complete orientation to the study and Valenzuela and Dr. Nieves are First- advantages of this technique, indi- signed release and consent forms for Year Residents, and Dr. Foy is Research Fellow, Department of Orthopaedic cations for retrograde IMN have participation. Surgery, School of Medicine, University expanded. The increasing popularity The medical records of these of Puerto Rico, San Juan, Puerto Rico. of the procedure has raised concerns patients were reviewed for vari- in the orthopedic community about ables such as accident type, associ- Requests for reprints: Norman Ramírez, MD, Department of Orthopaedic Surgery, possible complications with respect ated injuries, degree of comminution, School of Medicine, University of Puerto to knee function, knee pain, and leg- open fracture classification, compli- Rico, San Juan, PR 00936 (tel, 787-264- length discrepancy (LLD) secondary cations, and need for concomitant 2066; fax, 787-264-4483; e-mail, norman- to the procedure.4,6 surgical procedures. For each patient, [email protected]). In the study reported here, we the Winquist and Hansen classifica- Am J Orthop. 2007;36(6):325-328. reviewed postoperative knee function tion for comminution of femur frac- Copyright Quadrant HealthCom Inc. and LLD after retrograde IMN for tures was used: 0 (no comminution), 2007. femoral diaphyseal fractures. 1 (insignificant butterfly fragment), June 2007 325 Pain and Leg-Length Discrepancy After Retrograde Femoral Nailing In each patient, a scanogram was included for evaluation in the study. obtained to objectively determine Minimum follow-up was 1 year, LLD, defined as more than a 2-cm and mean follow-up was 25 months difference between the legs.9 (range, 12-38 months). Mean age was 33.9 years (range, 18-80 years). Surgical Technique There were 17 right and 10 left femur Each patient was placed on a radio- fractures, and 4 patients had bilat- lucent operating room table in supine eral femur fractures. The most com- position, and the affected lower mon fracture mechanism was motor extremity was prepped and draped in vehicle accident (70%) (Figures 1A, standard surgical fashion. 1B), followed by gunshot wound The knee was positioned in 40° of (17%) (Figures 2A, 2B) and fall from flexion with a bolster, and a 4-cm skin a height (13%). Ten (29%) of the 35 incision was made just medial to the fractures were open: 3 of these were patellar tendon, from the inferior pole type I, 5 were type II, and 2 were type of the patella to the tibial tubercle. III. There were 18 Winquist grade 0 The infrapatellar fat pad was partially fractures, 4 Winquist grade 1 frac- excised, and then a medial patellar tures, 6 Winquist grade 2 fractures, knee arthrotomy was performed. 4 Winquist grade 3 fractures, and 3 With the help of the fluoroscope, a Winquist grade 4 fractures. guided pin was inserted in the mid- Eleven patients had multiple inju- line just anterior to the intercondylar ries, and 20 had isolated femur frac- A B notch in the anteroposterior view. In tures. Associated injuries included Figure 1. Twenty-year-old man with the lateral view, the pin should be head trauma (2 patients), peroneal distal shaft femur fracture sustained above the Blumensaat line. A cannu- nerve palsies (2 patients), vascular in a motor vehicle accident. Antero- lated drill was used to open the dis- injuries (2 patients), 1 radioulnar posterior (A) and lateral (B) plain tal femur metaphysis. A ball-tipped fracture, 1 humeral fracture, 1 pilon films obtained 24 months after ret- guide wire was inserted through the fracture, 1 simultaneous talus and cal- rograde intramedullary nailing show fracture union. entry points just to the distal fracture caneous fracture, 1 acetabular frac- border. After the fracture was reduced, ture, 1 odontoid fracture, 1 abdominal 2 (large butterfly fragment less than the guide wire was introduced across trauma, 1 pneumothorax, 1 testicular 50% the width of the bone), 3 (large the fracture to maintain the alignment contusion, and 1 urethral injury. butterfly fragment more than 50% of the reduction. Flexible reaming the width of the bone), 4 (segmental was performed until adequate cortical comminution). Open fractures were contact was achieved. classified according to Gustilo and For implants, Russell-Taylor femo- Anderson: type I, low-energy trauma ral nails (Smith & Nephew Richards, with wound size less than 1 cm; Memphis, Tenn) were used. The type II, moderate-energy trauma with intramedullary nail was placed to wound size 10 cm or less; type III, a level below the lesser trochanter high-energy trauma with wound size proximally and flush to the chondral more than 10 cm. surface distally. The length of this Knee pain and function were nail was selected after using a radi- assessed with Hospital for Special opaque ruler, or by measuring the Surgery (HSS) knee scores.15 Patients contralateral femur in case of severe were assigned one of the standard comminution; the selected width was clinical categories: excellent (90-100 1 mm less than the largest reamer points), good (80-89 points), fair (70- diameter. Distal locking was done 79 points), poor (<70 points). Plain with the insertion handle jig, and films of the involved femur and ipsi- proximal locking was performed with lateral hip and knee were obtained. the freehand technique. Radiographic union was defined as The rehabilitation protocol was presence of a bridging callus across 3 identical for each patient. Figure 2. Fifty-five-year-old man with cortices on anteroposterior and lateral distal shaft femur fracture caused by a gunshot. Anteroposterior (A) and plain films. Clinical union was diag- RESULTS lateral (B) plain films obtained 18 nosed when there was no pain with Thirty-one patients (25 men, 6 months after retrograde intramedul- ambulation or single leg stance.9,14 women) with 35 femur fractures were lary nailing show fracture union. 326 The American Journal of Orthopedics® R. Reina et al Mean knee range of motion (ROM) pudendal nerve palsy, and need for a metallurgy, malunion, nonunion, and was 126° (range, 85°-130°). At fol- fracture table. Other limitations are implant failure.2,4 Incidence of knee low-up, 8 (23%) of 35 femur frac- hip stiffness, reduced walking dis- pain after retrograde IMN for femoral tures showed loss of knee ROM; of tance, Trendelenburg gait, weak hip shaft fractures has varied from 0% to these, 5 had lost more than 10° of abductors, difficult entry point, and 60%.3-5,7-9,14,21 In a comparative study ROM, and the remaining patients had hip or thigh pain.1,3,6,10,14 of retrograde versus antegrade nail- less than 10° of limitation.
Recommended publications
  • Blount, Anteversion and Torsion: What's It All About?
    Blount, Anteversion and Torsion: What’s it all about? Arthur B. Meyers, MD Assistant Professor of Radiology Children’s Hospital of WisConsin/ MediCal College of WisConsin Disclosures • Author for Amirsys/Elsevier, reCeiving royalGes Lower Extremity Alignment in Children • Lower extremity rotaGon – Femoral version / Gbial torsion – Normal values & CliniCal indiCaGons – Imaging • Blount disease – Physiologic bowing – Blount disease Lower Extremity RotaGonal Alignment Primarily determined by: 1. Femoral version 2. Tibial torsion 3. PosiGon of the foot Rosenfeld SB. Approach to the Child with in-toeing. Up-to-date. 2/2014 Lower Extremity RotaGonal Alignment Primarily determined by: 1. Femoral version 2. Tibial torsion 3. PosiGon of the foot Rosenfeld SB. Approach to the Child with in-toeing. Up-to-date. 2/2014 Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long
    [Show full text]
  • Femur Pelvis HIP JOINT Femoral Head in Acetabulum Acetabular
    Anatomy of the Hip Joint Overview The hip joint is one of the largest weight-bearing HIP JOINT joints in the body. This ball-and-socket joint allows the leg to move and rotate while keeping the body Femoral head in stable and balanced. Let's take a closer look at the acetabulum main parts of the hip joint's anatomy. Pelvis Bones Two bones meet at the hip joint, the femur and the pelvis. The femur, commonly called the "thighbone," is the longest and heaviest bone of the body. At the top of the femur, positioned on the femoral neck, is the femoral head. This is the "ball" of the hip joint. The other part of the joint – the Femur "socket" – is found in the pelvis. The pelvis is a bone made of three sections: the ilium, the ischium and the pubis. The socket is located where these three sections fuse. The proper name of the socket is the "acetabulum." The head of the femur fits tightly into this cup-shaped cavity. Articular Cartilage The femoral head and the acetabulum are covered Acetabular with a layer of articular cartilage. This tough, smooth tissue protects the bones. It allows them to labrum glide smoothly against each other as the ball moves in the socket. Soft Tissues Several soft tissue structures work together to hold the femoral head securely in place. The acetabulum is surrounded by a ring of cartilage called the "acetabular labrum." This deepens the socket and helps keep the ball from slipping out of alignment. It also acts as a shock absorber.
    [Show full text]
  • Compression Garments for Leg Lymphoedema
    Compression garments for leg lymphoedema You have been fitted with a compression garment to help reduce the lymphoedema in your leg. Compression stockings work by limiting the amount of fluid building up in your leg. They provide firm support, enabling the muscles to pump fluid away more effectively. They provide most pressure at the foot and less at the top of the leg so fluid is pushed out of the limb where it will drain away more easily. How do I wear it? • Wear your garment every day to control the swelling in your leg. • Put your garment on as soon as possible after getting up in the morning. This is because as soon as you stand up and start to move around extra fluid goes into your leg and it begins to swell. • Take the garment off before bedtime unless otherwise instructed by your therapist. We appreciate that in hot weather garments can be uncomfortable, but unfortunately this is when it is important to wear it as the heat can increase the swelling. If you would like to leave off your garment for a special occasion please ask the clinic for advice. What should I look out for? Your garment should feel firm but not uncomfortable: • If you notice the garment is rubbing or cutting in, adjust the garment or remove it and reapply it. • If your garment feels tight during the day, try and think about what may have caused this. If you have been busy, sit down and elevate your leg and rest for at least 30 minutes.
    [Show full text]
  • Sports Ankle Injuries Assessment and Management
    FOCUS Sports injuries Sports ankle injuries Drew Slimmon Peter Brukner Assessment and management Background Case study Lucia is a female, 16 years of age, who plays netball with the Sports ankle injuries present commonly in the general state under 17s netball team. She presents with an ankle injury practice setting. The majority of these injuries are inversion sustained at training the previous night. She is on crutches and plantar flexion injuries that result in damage to the and is nonweight bearing. Examination raises the possibility of lateral ligament complex. a fracture, but X-ray is negative. You diagnose a severe lateral Objective ligament sprain and manage Lucia with ice, a compression The aim of this article is to review the assessment and bandage and a backslab initially. She then progresses through management of sports ankle injuries in the general practice a 6 week rehabilitation program and you recommend she wear setting. an ankle brace for at least 6 months. Discussion Assessment of an ankle injury begins with a detailed history to determine the severity, mechanism and velocity of the injury, what happened immediately after and whether there is a past history of inadequately rehabilitated ankle injury. Examination involves assessment of weight bearing, inspection, palpation, movement, and application of special examination tests. Plain X-rays may be helpful to exclude a fracture. If the diagnosis is uncertain, consider second The majority of ankle injuries are inversion and plantar line investigations including bone scan, computerised flexion injuries that result in damage to the lateral tomography or magnetic resonance imaging, and referral to a ligament complex (Figure 1).
    [Show full text]
  • Intracapsular Femoral Neck Fractures—A Surgical Management Algorithm
    medicina Review Intracapsular Femoral Neck Fractures—A Surgical Management Algorithm James W. A. Fletcher 1,2,* , Christoph Sommer 3, Henrik Eckardt 4, Matthias Knobe 5 , Boyko Gueorguiev 1 and Karl Stoffel 4 1 AO Research Institute Davos, 7270 Davos, Switzerland; [email protected] 2 Department for Health, University of Bath, Bath BA2 7AY, UK 3 Cantonal Hospital Graubünden, 7000 Chur, Switzerland; [email protected] 4 University Hospital Basel, 4052 Basel, Switzerland; [email protected] (H.E.); [email protected] (K.S.) 5 Department of Orthopaedics and Trauma Surgery, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Background and Objectives: Femoral neck fractures are common and constitute one of the largest healthcare burdens of the modern age. Fractures within the joint capsule (intracapsular) provide a specific surgical challenge due to the difficulty in predicting rates of bony union and whether the blood supply to the femoral head has been disrupted in a way that would lead to avascular necrosis. Most femoral neck fractures are treated surgically, aiming to maintain mobility, whilst reducing pain and complications associated with prolonged bedrest. Materials and Methods: We performed a narrative review of intracapsular hip fracture management, highlighting the latest advancements in fixation techniques, generating an evidence-based algorithm for their management. Results: Multiple different fracture configurations are encountered within the category of intracapsular Citation: Fletcher, J.W.A.; Sommer, hip fractures, with each pattern having different optimal surgical strategies. Additionally, these C.; Eckardt, H.; Knobe, M.; Gueorguiev, B.; Stoffel, K. injuries typically occur in patients where further procedures due to operative complications are Intracapsular Femoral Neck associated with a considerable increase in mortality, highlighting the need for choosing the correct Fractures—A Surgical Management index operation.
    [Show full text]
  • Evaluation of Union of Neglected Femoral Neck Fractures Treated with Free Fibular Graft
    ORIGINAL ARTICLE Evaluation of Union of Neglected Femoral Neck Fractures Treated with Free Fibular Graft Nasir Ali, Muhammad Shahid Riaz, Muhammad Ishaque Khan, Muhammad Rafiq Sabir ABSTRACT Objective To evaluate the frequency of union of neglected femoral neck fractures treated with free fibular graft. Study design Descriptive case series. Place & Department of Orthopedics Bahawal Victoria Hospital Bahawalpur, from April 2009 to Duration of January 2010. study Methodology Patients of neglected femoral neck fracture (one month postinjury) were included in the study. They were operated and internal fixation was done with concellous screws and free fibular graft placed. They were followed till the evidence of radiological union. Results Out of 55 patients there were 40 males and 15 females. Ages ranged from 20 year to 50 year. The duration of injury was from 4 weeks to 6 months. Fifty patients achieved complete union while five patients developed non-union with complaint of pain. There was no wound infection and hardware failure. Conclusion Fracture reduction and internal fixation with use of free fibular graft and concellous screws for neglected femoral neck fractures is the treatment of choice. Key words Bony union, Fracture- femur, Fibular graft. INTRODUCTION: time of injury to seek medical help.7 With delay these Fractures of neck of femur are great challenge to factures usually result in non union. The rate of non orthopaedic surgeons. With increase in life union is between 10-30% for such neglected expectancy and addition of geriatric population to fractures.8,9 Delay in surgery leads to variable degree society, the frequency of fracture neck of femur is of neck absorption, proximal migration of distal increasing day by day.1 Fracture neck of femur in fragment and disuse osteoporosis.
    [Show full text]
  • Intramedullary Nailing for Femur Fracture Management a Guide for Parents
    514-412-4400, ext. 23310 thechildren.com/trauma Intramedullary Nailing for Femur Fracture Management A Guide for Parents The femur is the longest bone in the body. It begins at the hip joint and ends at the knee. A femur fracture is typically sustained from high-energy impact such as motor vehicle collisions, falls from playground equipment, falls from furniture or resulting from a twisting mechanism. Children who have sustained a femur fracture are hospitalized on the Surgical/Trauma Unit in order to receive appropriate medical, nursing and rehabilitation care. FEMUR (thigh bone) Head Greater Neck trochanter Lesser trochanter Shaft Medial Lateral epicondyle epicondyle Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. © 2016 MCH Trauma. All rights reserved. FEMUR FRACTURE MANAGEMENT The pediatric Orthopedic Surgeon will assess your child in order to determine the optimal treatment method. Treatment goals include: achieving proper bone realignment, rapid healing, and the return to normal daily activities. The treatment method chosen is primarily based on the child’s age but also taken into consideration are: fracture type, location and other injuries sustained if applicable. Prior to the surgery, your child may be placed in skin traction. This will ensure the bone is in an optimal healing position until it is surgically repaired. Occasionally, traction may be used for a longer period of time. The surgeon will determine if this management is needed based on the specific fracture type and/or location. ELASTIC/FLEXIBLE INTRAMEDULLARY NAILING This surgery is performed by the Orthopedic Surgeon in the Operating Room under general anesthesia. The surgeon will usually make two small incisions near the knee joint in order to insert two flexible titanium rods (intramedullary nails) Flexible through the femur.
    [Show full text]
  • ANTERIOR KNEE PAIN Home Exercises
    ANTERIOR KNEE PAIN Home Exercises Anterior knee pain is pain that occurs at the front and center of the knee. It can be caused by many different problems, including: • Weak or overused muscles • Chondromalacia of the patella (softening and breakdown of the cartilage on the underside of the kneecap) • Inflammations and tendon injury (bursitis, tendonitis) • Loose ligaments with instability of the kneecap • Articular cartilage damage (chondromalacia patella) • Swelling due to fluid buildup in the knee joint • An overload of the extensor mechanism of the knee with or without malalignment of the patella You may feel pain after exercising or when you sit too long. The pain may be a nagging ache or an occasional sharp twinge. Because the pain is around the front of your knee, treatment has traditionally focused on the knee itself and may include taping or bracing the kneecap, or patel- la, and/ or strengthening the thigh muscle—the quadriceps—that helps control your kneecap to improve the contact area between the kneecap and the thigh bone, or femur, beneath it. Howev- er, recent evidence suggests that strengthening your hip and core muscles can also help. The control of your knee from side to side comes from the glutes and core control; that is why those areas are so important in management of anterior knee pain. The exercises below will work on a combination of flexibility and strength of your knee, hip, and core. Although some soreness with exercise is expected, we do not want any sharp pain–pain that gets worse with each rep of an exercise or any increased soreness for more than 24 hours.
    [Show full text]
  • How to Self-Bandage Your Leg(S) and Feet to Reduce Lymphedema (Swelling)
    Form: D-8519 How to Self-Bandage Your Leg(s) and Feet to Reduce Lymphedema (Swelling) For patients with lower body lymphedema who have had treatment for cancer, including: • Removal of lymph nodes in the pelvis • Removal of lymph nodes in the groin, or • Radiation to the pelvis Read this resource to learn: • Who needs self-bandaging • Why self-bandaging is important • How to do self-bandaging Disclaimer: This pamphlet is for patients with lymphedema. It is a guide to help patients manage leg swelling with bandages. It is only to be used after the patient has been taught bandaging by a clinician at the Cancer Rehabilitation and Survivorship (CRS) Clinic at Princess Margaret Cancer Centre. Do not self-bandage if you have an infection in your abdomen, leg(s) or feet. Signs of an infection may include: • Swelling in these areas and redness of the skin (this redness can quickly spread) • Pain in your leg(s) or feet • Tenderness and/or warmth in your leg(s) or feet • Fever, chills or feeling unwell If you have an infection or think you have an infection, go to: • Your Family Doctor • Walk-in Clinic • Urgent Care Clinic If no Walk-in clinic is open, go to the closest hospital Emergency Department. 2 What is the lymphatic system? Your lymphatic system removes extra fluid and waste from your body. It plays an important role in how your immune system works. Your lymphatic system is made up of lymph nodes that are linked by lymph vessels. Your lymph nodes are bean-shaped organs that are found all over your body.
    [Show full text]
  • Back of Leg I
    Back of Leg I Dr. Garima Sehgal Associate Professor “Only those who risk going too far, can possibly find King George’s Medical University out how far one can go.” UP, Lucknow — T.S. Elliot DISCLAIMER Presentation has been made only for educational purpose Images and data used in the presentation have been taken from various textbooks and other online resources Author of the presentation claims no ownership for this material Learning Objectives By the end of this teaching session on Back of leg – I all the MBBS 1st year students must be able to: • Enumerate the contents of superficial fascia of back of leg • Write a short note on small saphenous vein • Describe cutaneous innervation in the back of leg • Write a short note on sural nerve • Enumerate the boundaries of posterior compartment of leg • Enumerate the fascial compartments in back of leg & their contents • Write a short note on flexor retinaculum of leg- its attachments & structures passing underneath • Describe the origin, insertion nerve supply and actions of superficial muscles of the posterior compartment of leg Introduction- Back of Leg / Calf • Powerful superficial antigravity muscles • (gastrocnemius, soleus) • Muscles are large in size • Inserted into the heel • Raise the heel during walking Superficial fascia of Back of leg • Contains superficial veins- • small saphenous vein with its tributaries • part of course of great saphenous vein • Cutaneous nerves in the back of leg- 1. Saphenous nerve 2. Posterior division of medial cutaneous nerve of thigh 3. Posterior cutaneous
    [Show full text]
  • Getting a Leg up on Land
    GETTING A LEG UP in the almost four billion years since life on earth oozed into existence, evolution has generated some marvelous metamorphoses. One of the most spectacular is surely that which produced terrestrial creatures ON bearing limbs, fingers and toes from water-bound fish with fins. Today this group, the tetrapods, encompasses everything from birds and their dinosaur ancestors to lizards, snakes, turtles, frogs and mammals, in- cluding us. Some of these animals have modified or lost their limbs, but their common ancestor had them—two in front and two in back, where LAND fins once flicked instead. Recent fossil discoveries cast The replacement of fins with limbs was a crucial step in this transfor- mation, but it was by no means the only one. As tetrapods ventured onto light on the evolution of shore, they encountered challenges that no vertebrate had ever faced be- four-limbed animals from fish fore—it was not just a matter of developing legs and walking away. Land is a radically different medium from water, and to conquer it, tetrapods BY JENNIFER A. CLACK had to evolve novel ways to breathe, hear, and contend with gravity—the list goes on. Once this extreme makeover reached completion, however, the land was theirs to exploit. Until about 15 years ago, paleontologists understood very little about the sequence of events that made up the transition from fish to tetrapod. We knew that tetrapods had evolved from fish with fleshy fins akin to today’s lungfish and coelacanth, a relation first proposed by American paleontologist Edward D.
    [Show full text]
  • Alexander 2013 Principles-Of-Animal-Locomotion.Pdf
    .................................................... Principles of Animal Locomotion Principles of Animal Locomotion ..................................................... R. McNeill Alexander PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Second printing, and first paperback printing, 2006 Paperback ISBN-13: 978-0-691-12634-0 Paperback ISBN-10: 0-691-12634-8 The Library of Congress has cataloged the cloth edition of this book as follows Alexander, R. McNeill. Principles of animal locomotion / R. McNeill Alexander. p. cm. Includes bibliographical references (p. ). ISBN 0-691-08678-8 (alk. paper) 1. Animal locomotion. I. Title. QP301.A2963 2002 591.47′9—dc21 2002016904 British Library Cataloging-in-Publication Data is available This book has been composed in Galliard and Bulmer Printed on acid-free paper. ∞ pup.princeton.edu Printed in the United States of America 1098765432 Contents ............................................................... PREFACE ix Chapter 1. The Best Way to Travel 1 1.1. Fitness 1 1.2. Speed 2 1.3. Acceleration and Maneuverability 2 1.4. Endurance 4 1.5. Economy of Energy 7 1.6. Stability 8 1.7. Compromises 9 1.8. Constraints 9 1.9. Optimization Theory 10 1.10. Gaits 12 Chapter 2. Muscle, the Motor 15 2.1. How Muscles Exert Force 15 2.2. Shortening and Lengthening Muscle 22 2.3. Power Output of Muscles 26 2.4. Pennation Patterns and Moment Arms 28 2.5. Power Consumption 31 2.6. Some Other Types of Muscle 34 Chapter 3.
    [Show full text]