Three Puzzles on Mathematics Computations, and Games
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Three Puzzles on Mathematics, Computation, and Games
P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (551–606) THREE PUZZLES ON MATHEMATICS, COMPUTATION, AND GAMES G K Abstract In this lecture I will talk about three mathematical puzzles involving mathemat- ics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible? 1 Introduction The theory of computing and computer science as a whole are precious resources for mathematicians. They bring up new questions, profound new ideas, and new perspec- tives on classical mathematical objects, and serve as new areas for applications of math- ematics and mathematical reasoning. In my lecture I will talk about three mathematical puzzles involving mathematics and computation (and, at times, other fields) that have preoccupied me over the years. The connection between mathematics and computing is especially strong in my field of combinatorics, and I believe that being able to person- ally experience the scientific developments described here over the past three decades may give my description some added value. For all three puzzles I will try to describe in some detail both the large picture at hand, and zoom in on topics related to my own work. Puzzle 1: What can explain the success of the simplex algorithm? Linear program- ming is the problem of maximizing a linear function subject to a system of linear inequalities. The set of solutions to the linear inequalities is a convex polyhedron P . -
Matchings and Games on Networks
Matchings and games on networks by Linda Farczadi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics and Optimization Waterloo, Ontario, Canada, 2015 c Linda Farczadi 2015 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We investigate computational aspects of popular solution concepts for different models of network games. In chapter 3 we study balanced solutions for network bargaining games with general capacities, where agents can participate in a fixed but arbitrary number of contracts. We fully characterize the existence of balanced solutions and provide the first polynomial time algorithm for their computation. Our methods use a new idea of reducing an instance with general capacities to an instance with unit capacities defined on an auxiliary graph. This chapter is an extended version of the conference paper [32]. In chapter 4 we propose a generalization of the classical stable marriage problem. In our model the preferences on one side of the partition are given in terms of arbitrary bi- nary relations, that need not be transitive nor acyclic. This generalization is practically well-motivated, and as we show, encompasses the well studied hard variant of stable mar- riage where preferences are allowed to have ties and to be incomplete. Our main result shows that deciding the existence of a stable matching in our model is NP-complete. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
Integrity, Authentication and Confidentiality in Public-Key Cryptography Houda Ferradi
Integrity, authentication and confidentiality in public-key cryptography Houda Ferradi To cite this version: Houda Ferradi. Integrity, authentication and confidentiality in public-key cryptography. Cryptography and Security [cs.CR]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE045. tel- 01745919 HAL Id: tel-01745919 https://tel.archives-ouvertes.fr/tel-01745919 Submitted on 28 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT de l’Université de recherche Paris Sciences et Lettres PSL Research University Préparée à l’École normale supérieure Integrity, Authentication and Confidentiality in Public-Key Cryptography École doctorale n◦386 Sciences Mathématiques de Paris Centre Spécialité Informatique COMPOSITION DU JURY M. FOUQUE Pierre-Alain Université Rennes 1 Rapporteur M. YUNG Moti Columbia University et Snapchat Rapporteur M. FERREIRA ABDALLA Michel Soutenue par Houda FERRADI CNRS, École normale supérieure le 22 septembre 2016 Membre du jury M. CORON Jean-Sébastien Université du Luxembourg Dirigée par -
Sergiu HART PUBLICATIONS A. Book B. Books Edited C. Lecture Notes
Sergiu HART Kusiel–Vorreuter University Professor (Emeritus) Professor (Emeritus) of Economics; Professor (Emeritus) of Mathematics Federmann Center for the Study of Rationality The Hebrew University of Jerusalem Feldman Building, Givat-Ram, 9190401 Jerusalem, Israel phone: +972–2–6584135 • e-mail: [email protected] fax: +972–2–6513681 • web page: http://www.ma.huji.ac.il/hart PUBLICATIONS A. Book 1. Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics, World Scien- tific Publishing (2013), xxxviii + 296 pp (with Andreu Mas-Colell) B. Books Edited 2. Handbook of Game Theory, with Economic Applications, Elsevier Science Publishers / North Holland, Amsterdam (co-edited with Robert J. Aumann): Volume I (1992), xxvi + 733 pp. Volume II (1994), xxviii + 786 pp. Volume III (2002), xxx + 832 pp. 3. Game and Economic Theory, The University of Michigan Press, Ann Arbor (1995), vi + 463 pp. (co-edited with Abraham Neyman) 4. Cooperation: Game Theoretic Approaches, Springer Verlag (1997), vi + 328 pp. (co-edited with Andreu Mas-Colell) C. Lecture Notes and Other Publications 5. “Lecture Notes on Special Topics in Game Theory,” Institute for Mathematical Studies in the Social Sciences, Stanford University (1979) 6. “Stable Matchings and Medical Students: A Theory and Its Applications” [in Hebrew], Kimat 2000 (Almost 2000) 18 (1998), 14–16 (with Omri Eshhar) 7. “An Interview with Robert Aumann,” Macroeconomic Dynamics 9 (2005), 683–740 —. “An Interview with Robert Aumann,” in Inside the Economist’s Mind: Conversations with Eminent Economists, Paul A. Samuelson and William A. Barnett (editors), Blackwell Publishing (2006), 327–391 1 Sergiu Hart – Publications 2 —. “An Interview with Robert Aumann,” Mitteilungen der Deutschen Mathematiker- Vereinigung 14 (2006), 1, 16–22 [excerpts] —. -
Indian Mathematicians and Their Contributions
Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396 Indian Mathematicians and Their Contributions By: G. Nagamani M.sc,M.Ed Teacher, Nalgonda-Telangana State ABSTRACT Indian mathematics has its roots in Vedic literature. Between 1000 B.C. and 1800 A.D. various treatises on mathematics were authored by Indian mathematicians in which were set forth for the first time, the concept of zero, numeral system, techniques of algebra and algorithm, square root and cube root. However, despite widely available, reliable information, there is a distinct and inequitable neglect off the contributions of the sub-continent. Many of the developments of Indian mathematics remain almost completely ignored, or worse, attributed to scholars of other nationalities, often European. However a few historians (mainly European) are reluctant to acknowledge the contributions of Indian mathematicians. They believe Indians borrowed the knowledge of mathematics from Greeks. In this article author has written the significant Indian mathematicians brief history and their contributions. 1. RAMANUJAN: He was born on 22na of December 1887 in a small village of Tanjore district, Madras. He failed in English in Intermediate, so his formal studies were stopped but his self-study of mathematics continued. He sent a set of 120 theorems to Professor Hardy of Cambridge. As a result he invited Ramanujan to England. Ramanujan showed that any big number can be written as sum of not more than four prime numbers. He showed that how to divide the number into two or more squares or cubes. when Mr Litlewood came to see Ramanujan in taxi number 1729, Ramanujan said that 1729 is the smallest number which can be written in the form of sum of cubes of two numbers in two ways, i.e. -
Three Puzzles on Mathematics, Computation, and Games
THREE PUZZLES ON MATHEMATICS, COMPUTATION, AND GAMES GIL KALAI HEBREW UNIVERSITY OF JERUSALEM AND YALE UNIVERSITY ABSTRACT. In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible? 1. INTRODUCTION The theory of computing and computer science as a whole are precious resources for mathematicians. They bring new questions, new profound ideas, and new perspectives on classical mathematical ob- jects, and serve as new areas for applications of mathematics and of mathematical reasoning. In my lecture I will talk about three mathematical puzzles involving mathematics and computation (and, at times, other fields) that have preoccupied me over the years. The connection between mathematics and computing is especially strong in my field of combinatorics, and I believe that being able to per- sonally experience the scientific developments described here over the last three decades may give my description some added value. For all three puzzles I will try to describe with some detail both the large picture at hand, and zoom in on topics related to my own work. Puzzle 1: What can explain the success of the simplex algorithm? Linear programming is the problem of maximizing a linear function φ subject to a system of linear inequalities. The set of solutions for the linear inequalities is a convex polyhedron P . The simplex algorithm was developed by George Dantzig. -
Online Optimization: Probabilistic Analysis and Algorithm Engineering
Online Optimization: Probabilistic Analysis and Algorithm Engineering vorgelegt von Dipl.-Inf. Benjamin Hiller Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Berichter: Prof. Dr. Dr. h.c. mult. Martin Grötschel Dr. Tjark Vredeveld Vorsitzender: Prof. Dr. Fredi Tröltzsch Tag der wissenschaftlichen Aussprache: 15. Dezember 2009 Berlin 2010 D 83 Zusammenfassung Diese Arbeit beschäftigt sich mit Online-Optimierung, also der Steuerung von Systemen, bei denen die für die optimierte Steuerung relevanten Daten erst mit der Zeit, d. h. online, bekannt werden. Wir konzentrieren uns dabei auf kombinatorische Online-Optimierungsprobleme, bei denen die Steuerungsentscheidungen diskret sind. Im ersten, praktisch orientierten Teil der Arbeit werden Reoptimie- rungsalgorithmen für die Online-Steuerung komplexer realer Systeme vorgestellt. Ein Reoptimierungsalgorithmus trifft seine Steuerungsent- scheidung so, dass sie in einem bestimmten Sinn “günstig” für die aktuelle Situation ist. Wir benutzen Techniken der mathematischen Optimierung, insbesondere ganzzahlige Optimierung, um fortgeschrit- tene Reoptimierungsalgorithmen zu entwickeln. Unsere erste Anwen- dung ist die automatische Disposition von Pannenhilfefahrzeugen des ADAC. Hier zeigt sich, dass mathematische Optimierungsmethoden den Dispositionsprozess gegenüber der Planung mit einfachen Heuristiken verbessern und kürzere Wartezeiten für die -
News Letter Since: 11/11/2016 Dr
Editor-in-Chief Volume 1, Issue 7 News Letter Since: 11/11/2016 Dr. N.Anbazhagan Professor & Head, DM Associate Editor Mrs. B. Sundara Vadivoo We are delighted to bring to you this issue of ALU Mathematics Assistant Professor, DM News, a monthly newsletter dedicated to the emerging field of Editors Mathematics. This is the first visible ―output from the Department Dr. J. Vimala of Mathematics, Alagappa University. We are committed to make Assistant Professor, DM Dr. R. Raja ALU Mathematics News a continuing and Assistant Professor, RCHM effective vehicle to promote Dr. S. Amutha Assistant Professor, RCHM communication, education and networking, Dr. R. Jeyabalan as well as stimulate sharing of research, Assistant Professor, DM innovations and technological Dr. M. Mullai developments in the field. However, we Assistant Professor, DDE would appreciate your feedback regarding Technical & Editorial how we could improve this publication and Assistance enhance its value to the community. We are R.Suganya VS.Anushya Ilamathy keen that this publication eventually grows Dr. N. Anbazhagan D.Gandhi Mathi beyond being a mere ―news letter to J.Arockia Reeta become an invaluable information resource K.Surya prabha C.Sowmiya for the entire Mathematics community, and look forward to your L.Vijayalakshmi inputs to assist us in this endeavor. FIELDS MEDAL Fields Medal is highest honored award for Mathematics and its a prize awarded to two,three or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union(IMU), a meeting that takes place every four years. Affiliation at the ce California Year Name time of the award Wend 2006 Werner Université Paris-Sud CNRS - Institut de elin Avila Mathématiques de Institut des Hautes 2014 Artur Cordeiro Laure Jussieu-Paris Rive 2002 Lafforgue Études Scientifiques de Melo nt Gauche Manj Princeton Vladi Institute for 2014 Bhargava 2002 Voevodsky ul University, mir Advanced Study Marti University of Richa University of 2014 Hairer 1998 Borcherds n Warwick rd E. -
Algorithms and Hardness for Linear Algebra on Geometric Graphs
Algorithms and Hardness for Linear Algebra on Geometric Graphs∗ Josh Alman† Timothy Chu‡ Aaron Schild§ Zhao Song¶ Abstract d d d For a function K : R R R≥ , and a set P = x ,...,xn R of n points, the K × → 0 { 1 } ⊂ graph GP of P is the complete graph on n nodes where the weight between nodes i and j is given by K(xi, xj ). In this paper, we initiate the study of when efficient spectral graph theory is possible on these graphs. We investigate whether or not it is possible to solve the following 1+o(1) o(1) problems in n time for a K-graph GP when d<n : • Multiply a given vector by the adjacency matrix or Laplacian matrix of GP • Find a spectral sparsifier of GP • Solve a Laplacian system in GP ’s Laplacian matrix 2 For each of these problems, we consider all functions of the form K(u, v) = f( u v 2) for a function f : R R. We provide algorithms and comparable hardness resultsk for−manyk such K, including the→ Gaussian kernel, Neural tangent kernels, and more. For example, in dimension d = Ω(log n), we show that there is a parameter associated with the function f for which low parameter values imply n1+o(1) time algorithms for all three of these problems and high parameter values imply the nonexistence of subquadratic time algorithms assuming Strong Exponential Time Hypothesis (SETH), given natural assumptions on f. As part of our results, we also show that the exponential dependence on the dimension d in the celebrated fast multipole method of Greengard and Rokhlin cannot be improved, assuming SETH, for a broad class of functions f. -
Algorithms and Hardness for Linear Algebra on Geometric Graphs
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) Algorithms and Hardness for Linear Algebra on Geometric Graphs Josh Alman Timothy Chu Aaron Schild Zhao Song [email protected] [email protected] [email protected] [email protected] Harvard U. Carnegie Mellon U. U. of Washington Columbia, Princeton, IAS d d Abstract—For a function K : R × R → R≥0, and a set learning. The first task is a celebrated application of the P {x ,...,x }⊂Rd n K G P = 1 n of points, the graph P of fast multipole method of Greengard and Rokhlin [GR87], n is the complete graph on nodes where the weight between [GR88], [GR89], voted one of the top ten algorithms of the nodes i and j is given by K(xi,xj ). In this paper, we initiate the study of when efficient spectral graph theory is possible twentieth century by the editors of Computing in Science and on these graphs. We investigate whether or not it is possible Engineering [DS00]. The second task is spectral clustering to solve the following problems in n1+o(1) time for a K-graph [NJW02], [LWDH13], a popular algorithm for clustering o(1) GP when d<n : data. The third task is to label a full set of data given only • Multiply a given vector by the adjacency matrix or a small set of partial labels [Zhu05b], [CSZ09], [ZL05], Laplacian matrix of GP which has seen increasing use in machine learning. One • G Find a spectral sparsifier of P notable method for performing semi-supervised learning is • Solve a Laplacian system in GP ’s Laplacian matrix the graph-based Laplacian regularizer method [LSZ+19b], For each of these problems, we consider all functions of the K u, v f u − v2 f R → R [ZL05], [BNS06], [Zhu05a]. -
CECS 328 Lectures
CECS 328 Lectures Darin Goldstein 1 Review of Asymptotics 1. The Force: Certain functions are always eventually larger than others. This list goes from smallest to largest. (a) constants, sin, cos, tan−1 constant (b) (log n) (c) nconstant (d) constantn (e) n! (f) nn Be very careful with the final two levels. YOU MAY ONLY USE THE FORCE ADDITIVELY, NOT MULTIPLICATIVELY! Examples below. 2. Growth of functions: All functions we consider in this class will be even- tually positive. (a) O: f = O(g) ) There exists constants c > 0 and Nc such that for 2 3 every n ≥ Nc, f(x) ≤ cg(x). Example: 5x + 20 = O(x ) (b) Ω: f = Ω(g) ) There exists constants c > 0 and Nc such that for x3 2 every n ≥ Nc, f(x) ≥ cg(x). Example: 3 − 9x = Ω(x ) (c) Θ: f = Θ(g) ) f = O(g) and f = Ω(g). Example: 3x2 − 8x + 2 = Θ(x2) f(x) 2 3 (d) o: f = o(g) ) limx!1 g(x) = 0. Example: x = o(x ) g(x) p (e) !: f = !(g) ) limx!1 f(x) = 0. Example: x = !(log x) The following are exercises based on what you've learned so far: 1. Find the smallest n so that f = O(xn) if such an exists. Find the largest n so that f = Ω(xn) if such an n exists. Find a function g so that f = Θ(g). (a) f(x) = (x3 + x2 log x)(log x + 1) + (17 log x + 19)(x3 + 2) 6 x −3x+12p (b) f(x) = x2 log x+πx x 1 2 3 p 5x log x+x (c) f(x) = x(log x)2+x3 log x (d) f(x) = (2x + x2)(x3 + 3x) x 2 (e) f(x) = x2 + xx 2.