The Value of Mediated Communication Andrés Salamanca
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Three Puzzles on Mathematics, Computation, and Games
P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (551–606) THREE PUZZLES ON MATHEMATICS, COMPUTATION, AND GAMES G K Abstract In this lecture I will talk about three mathematical puzzles involving mathemat- ics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible? 1 Introduction The theory of computing and computer science as a whole are precious resources for mathematicians. They bring up new questions, profound new ideas, and new perspec- tives on classical mathematical objects, and serve as new areas for applications of math- ematics and mathematical reasoning. In my lecture I will talk about three mathematical puzzles involving mathematics and computation (and, at times, other fields) that have preoccupied me over the years. The connection between mathematics and computing is especially strong in my field of combinatorics, and I believe that being able to person- ally experience the scientific developments described here over the past three decades may give my description some added value. For all three puzzles I will try to describe in some detail both the large picture at hand, and zoom in on topics related to my own work. Puzzle 1: What can explain the success of the simplex algorithm? Linear program- ming is the problem of maximizing a linear function subject to a system of linear inequalities. The set of solutions to the linear inequalities is a convex polyhedron P . -
Matchings and Games on Networks
Matchings and games on networks by Linda Farczadi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics and Optimization Waterloo, Ontario, Canada, 2015 c Linda Farczadi 2015 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We investigate computational aspects of popular solution concepts for different models of network games. In chapter 3 we study balanced solutions for network bargaining games with general capacities, where agents can participate in a fixed but arbitrary number of contracts. We fully characterize the existence of balanced solutions and provide the first polynomial time algorithm for their computation. Our methods use a new idea of reducing an instance with general capacities to an instance with unit capacities defined on an auxiliary graph. This chapter is an extended version of the conference paper [32]. In chapter 4 we propose a generalization of the classical stable marriage problem. In our model the preferences on one side of the partition are given in terms of arbitrary bi- nary relations, that need not be transitive nor acyclic. This generalization is practically well-motivated, and as we show, encompasses the well studied hard variant of stable mar- riage where preferences are allowed to have ties and to be incomplete. Our main result shows that deciding the existence of a stable matching in our model is NP-complete. -
Three Puzzles on Mathematics Computations, and Games
January 5, 2019 17:43 icm-961x669 main-pr page 551 P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (551–606) THREE PUZZLES ON MATHEMATICS, COMPUTATION, AND GAMES G K Abstract In this lecture I will talk about three mathematical puzzles involving mathemat- ics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible? 1 Introduction The theory of computing and computer science as a whole are precious resources for mathematicians. They bring up new questions, profound new ideas, and new perspec- tives on classical mathematical objects, and serve as new areas for applications of math- ematics and mathematical reasoning. In my lecture I will talk about three mathematical puzzles involving mathematics and computation (and, at times, other fields) that have preoccupied me over the years. The connection between mathematics and computing is especially strong in my field of combinatorics, and I believe that being able to person- ally experience the scientific developments described here over the past three decades may give my description some added value. For all three puzzles I will try to describe in some detail both the large picture at hand, and zoom in on topics related to my own work. Puzzle 1: What can explain the success of the simplex algorithm? Linear program- ming is the problem of maximizing a linear function subject to a system of linear inequalities. -
Sergiu HART PUBLICATIONS A. Book B. Books Edited C. Lecture Notes
Sergiu HART Kusiel–Vorreuter University Professor (Emeritus) Professor (Emeritus) of Economics; Professor (Emeritus) of Mathematics Federmann Center for the Study of Rationality The Hebrew University of Jerusalem Feldman Building, Givat-Ram, 9190401 Jerusalem, Israel phone: +972–2–6584135 • e-mail: [email protected] fax: +972–2–6513681 • web page: http://www.ma.huji.ac.il/hart PUBLICATIONS A. Book 1. Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics, World Scien- tific Publishing (2013), xxxviii + 296 pp (with Andreu Mas-Colell) B. Books Edited 2. Handbook of Game Theory, with Economic Applications, Elsevier Science Publishers / North Holland, Amsterdam (co-edited with Robert J. Aumann): Volume I (1992), xxvi + 733 pp. Volume II (1994), xxviii + 786 pp. Volume III (2002), xxx + 832 pp. 3. Game and Economic Theory, The University of Michigan Press, Ann Arbor (1995), vi + 463 pp. (co-edited with Abraham Neyman) 4. Cooperation: Game Theoretic Approaches, Springer Verlag (1997), vi + 328 pp. (co-edited with Andreu Mas-Colell) C. Lecture Notes and Other Publications 5. “Lecture Notes on Special Topics in Game Theory,” Institute for Mathematical Studies in the Social Sciences, Stanford University (1979) 6. “Stable Matchings and Medical Students: A Theory and Its Applications” [in Hebrew], Kimat 2000 (Almost 2000) 18 (1998), 14–16 (with Omri Eshhar) 7. “An Interview with Robert Aumann,” Macroeconomic Dynamics 9 (2005), 683–740 —. “An Interview with Robert Aumann,” in Inside the Economist’s Mind: Conversations with Eminent Economists, Paul A. Samuelson and William A. Barnett (editors), Blackwell Publishing (2006), 327–391 1 Sergiu Hart – Publications 2 —. “An Interview with Robert Aumann,” Mitteilungen der Deutschen Mathematiker- Vereinigung 14 (2006), 1, 16–22 [excerpts] —. -
A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas
A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas Compiled by Thomas Zaslavsky Manuscript prepared with Marge Pratt Department of Mathematical Sciences Binghamton University Binghamton, New York, U.S.A. 13902-6000 E-mail: [email protected] Submitted: March 19, 1998; Accepted: July 20, 1998. Sixth Edition, Revision a 20 July 1998 Mathematical Subject Classications (1991): Primary 05-02, 05C99; Secondary 05B20, 05B25, 05B35, 05C10, 05C15, 05C20, 05C25, 05C30, 05C35, 05C38, 05C45, 05C50, 05C60, 05C65, 05C70, 05C75, 05C80, 05C85, 05C90, 05E25, 05E30, 06A07, 06A09, 05C10, 15A06, 15A15, 15A39, 15A99, 20B25, 20F55, 34C11, 51D20, 51E20, 52B12, 52B30, 52B40, 52C07, 68Q15, 68Q25, 68Q35, 68R10, 82B20, 82D30, 90A08, 90B10, 90C08, 90C27, 90C35, 90C60, 92D40, 92E10, 92H30, 92J10, 92K10, 94B25. Colleagues: HELP! If you have any suggestions whatever for items to include in this bibliography, or for other changes, please let me hear from you. Thank you. Typeset by AMS-TEX Index A1 H48 O83 V 110 B8 I59 P84 W 111 C20 J60 Q90 X 118 D28 K63 R90 Y 118 E32 L71 S94 Z 115 F36 M76 T104 G39 N82 U109 Preface A signed graph is a graph whose edges are labeled by signs. This is a bibliography of signed graphs and related mathematics. I regard as fundamental the notion of balance of a circuit (sign product equals +, the sign group identity) and the vertex-edge incidence matrix (whose column for a negative edge has two +1’s or two 1’s, for a positive edge one +1 and one 1, the rest being zero). Hence I have included work on gain graphs (where the edge labels are taken from any group) and “consistency” in vertex-signed or marked graphs (where the vertices are signed), and generalizable work on two-graphs (the set of unbalanced triangles of a signed complete graph) and on even and odd polygons and paths in graphs and digraphs.