A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas

Total Page:16

File Type:pdf, Size:1020Kb

A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas Compiled by Thomas Zaslavsky Manuscript prepared with Marge Pratt Department of Mathematical Sciences Binghamton University Binghamton, New York, U.S.A. 13902-6000 E-mail: [email protected] Submitted: March 19, 1998; Accepted: July 20, 1998. Sixth Edition, Revision a 20 July 1998 Mathematical Subject Classications (1991): Primary 05-02, 05C99; Secondary 05B20, 05B25, 05B35, 05C10, 05C15, 05C20, 05C25, 05C30, 05C35, 05C38, 05C45, 05C50, 05C60, 05C65, 05C70, 05C75, 05C80, 05C85, 05C90, 05E25, 05E30, 06A07, 06A09, 05C10, 15A06, 15A15, 15A39, 15A99, 20B25, 20F55, 34C11, 51D20, 51E20, 52B12, 52B30, 52B40, 52C07, 68Q15, 68Q25, 68Q35, 68R10, 82B20, 82D30, 90A08, 90B10, 90C08, 90C27, 90C35, 90C60, 92D40, 92E10, 92H30, 92J10, 92K10, 94B25. Colleagues: HELP! If you have any suggestions whatever for items to include in this bibliography, or for other changes, please let me hear from you. Thank you. Typeset by AMS-TEX Index A1 H48 O83 V 110 B8 I59 P84 W 111 C20 J60 Q90 X 118 D28 K63 R90 Y 118 E32 L71 S94 Z 115 F36 M76 T104 G39 N82 U109 Preface A signed graph is a graph whose edges are labeled by signs. This is a bibliography of signed graphs and related mathematics. I regard as fundamental the notion of balance of a circuit (sign product equals +, the sign group identity) and the vertex-edge incidence matrix (whose column for a negative edge has two +1’s or two 1’s, for a positive edge one +1 and one 1, the rest being zero). Hence I have included work on gain graphs (where the edge labels are taken from any group) and “consistency” in vertex-signed or marked graphs (where the vertices are signed), and generalizable work on two-graphs (the set of unbalanced triangles of a signed complete graph) and on even and odd polygons and paths in graphs and digraphs. Nevertheless, it was not always easy to decide what belongs. I have employed the following principles: Only works with mathematical content are included, except for a few (not very care- fully) selected representatives of applications papers and surveys (e.g., Taylor (1970a) and Wasserman and Faust (1993a) for psychosociology and Trinajstic (1983a) for chemistry). I do try to include: Any (mathematical) work in which signed graphs are mentioned by name or signs are put on the edges of graphs, regardless of whether it makes essential use of signs. (Exceptions: In order to maintain “balance” in the bibliography, and due to lack of time, I have included only a limited selection of items concerning signed digraphs, two-graphs, and applications. For the rst, esp. for qualitative matrix theory, see e.g. Maybee and Quirk (1969a) and Brualdi and Shader (1995a). For the second, see any of the review articles by Seidel. I have hopelessly slighted statistical physics, as a keyword search of Mathematical Reviews for “frustrat*” will plainly show.) Any work in which the notion of balance of a polygon plays a role. Example: gain graphs. (Exception: purely topological papers concerning ordinary graph embedding.) Any work in which ideas of signed graph theory are anticipated, or generalized, or transferred to other domains. Examples: marked graphs; signed posets and matroids. Any mathematical structure that is an example, however disguised, of a signed or gain graph or generalization, and is treated in a way that seems in the spirit of signed graph theory. Examples: even-cycle and bicircular matroids; bidirected graphs; some of the literature on two-graphs and double covering graphs. And some works that have suggested ideas of value for signed graph theory or that have promise of doing so in the future. Plainly, judgment is required to apply these criteria. I have employed mine freely, taking account of suggestions from my colleagues. Still I know that the bibliography is far from complete, due to the quantity and even more the enormous range and dispersion of work in the relevant areas. I will continue to add both new and old works to future editions and I heartily welcome further suggestions. There are certainly many errors, some of them egregious. For these I hand over re- sponsibility to Sloth, Pride, Ambition, Envy, and Confusion. Corrections, however, will be gratefully accepted by me. Bibliographical Data. Authors’ names are given usually in only one form, even should the name appear in dierent (but recognizably similar) forms on dierent publica- tions. Journal abbreviations follow the style of Mathematical Reviews (MR) with minor ‘improvements’. Reviews and abstracts are cited from MR and its electronic form Math- SciNet, from Zentralblatt fur Mathematik (Zbl.) and its electronic form MATH Database (For early volumes, “Zbl. VVV, PPP” denotes printed volume and page; the electronic item number is “(e VVV.PPPNN)”.), and occasionally from Chemical Abstracts (CA). A review marked (q.v.) has signicance, possibly an insight, a criticism, or a viewpoint orthogonal to mine. Some—not all—of the most fundamental works are marked with a †. This is a personal selection. Annotations. I try to describe the relevant content in a consistent terminology and notation, in the language of signed graphs despite occasional clumsiness (hoping that this will suggest generalizations), and sometimes with my [bracketed] editorial comments. I sometimes try also to explain idiosyncratic terminology, in order to make it easier to read the original item. Several of the annotations incorporate open problems (of widely varying degrees of importance and diculty). I use these standard symbols: is a graph (undirected), possibly allowing loops and multiple edges. It is normally nite unless otherwise indicated. is a signed graph. Its vertex and edge sets are V and E ; its order is n = |V |. E+ , E are the sets of positive and negative edges and + , are the corresponding spanning subgraphs (unsigned). [] is the switching class of . A( ) is the adjacency matrix. is a gain graph. is a biased graph. l( ) is the frustration index (= line index of imbalance). G( ) is the bias matroid of a signed, gain, or biased graph. Acknowledgement. I cannot name all the people who have contributed advice and criticism, but many of the annotations have beneted from suggestions by the authors or others and a number of items have been brought to my notice by helpful correspondents. I am very grateful to you all. Thanks also to the people who maintain the invaluable MR and Zbl. indices. However, I insist on my total responsibility for the nal form of all entries, including such things as my restatement of results in signed or gain graphic language and, of course, all the praise and criticism (but not errors; see above) that they contain. Subject Classication Codes Acodeinlower case means the topic appears implicitly but not explicitly. A sux w on SG, SD, VS denotes signs used as weights, i.e., treated as the numbers +1 and 1, added, and (usually) the sum compared to 0. A Adjacency matrix, eigenvalues. Alg Algorithms. Appl Applications other than (Chem), (Phys), (PsS). Aut Automorphisms, symmetries, group actions. B Balance (mathematical), cobalance. Bic Bicircular matroids. Col Vertex coloring. ECol Edge coloring. Chem Applications to chemistry. Cl Clustering. Cov Covering graphs, double coverings. D Duality (matroids or matrices). E Enumeration of types of signed graphs, etc. EC Even-cycle matroids. Exr Interesting exercises (in an expository work). Exp Expository. Fr Frustration index (line index of imbalance) and other measures of imbalance. G Connections with geometry, including toric varieties, complex complement, etc. Gen Generalization. GD Digraphs with gains (voltages). GG Gain graphs, voltage graphs, biased graphs; includes Dowling lattices. GN Generalized or gain networks. (Multiplicative real gains.) I Incidence matrix, Kirchho matrix. K Signed complete graphs. Knot Connections with knot theory (sparse coverage if signs are purely notational). LG Line graphs. M Matroids, chain-groups, ows. N Numerical and algebraic invariants of signed graphs, etc. O Orientations, bidirected graphs. OG Ordered gains. P All-negative or antibalanced signed graphs; parity-biased graphs. p Includes problems on even or odd length of paths or polygons (partial coverage). Phys Applications in physics. PsS Structural balance (psychological, sociological, and anthropological applications). QM Qualitative (sign) matrices: sign stability, sign solvability, etc. Rand Random signs or gains, signed or gain graphs. Ref Many references. S Signed objects other than graphs and hypergraphs: mathematical properties. SD Signed digraphs: mathematical properties. SG Signed graphs: mathematical properties. SH Signed hypergraphs: mathematical properties. Sol Sign solvability, sign nonsingularity (partial coverage). Sta Sign stability (partial coverage). Str Structure theory. Sw Switching of signs or gains. T Topology of the graph, surface embeddings. TG Two-graphs, graph (Seidel) switching (partial coverage). VS Vertex-signed graphs (“marked graphs”); signed vertices and edges. WD Weighted digraphs. WG Weighted graphs. 1 A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas Robert P. Abelson 1967a Mathematical models in social psychology. In: Leonard Berkowitz, ed., Advances in Experimental Social Psychology, Vol. 3, pp. 1–54. Academic Press, New York, 1967. Sect. II: “Mathematical models of social structure.” Part B: “The balance principle.” Reviews basic notions of balance and clusterability in signed (di)graphs and measures of degree of balance or clustering. Notes that signed T Kn is balanced i I +A = vv , v = 1-vector. Proposes: degree of balance = 1/n,where1 = largest eigenvalue of I + A() and n = order of the (di)graph. [Cf. Phillips (1967a).] Part C, 3: “Clusterability revisited.” (SG, SD: B, Cl, Fr, A) Robert P. Abelson and Milton J. Rosenberg 1958a Symbolic psycho-logic: a model of attitudinal cognition. Behavioral Sci. 3 (1958), 1–13. Analyzes switching via Hadamard product with “passive T -matrices”. Pro- poses frustration index (“complexity”, p. 12) l() as measure of imbalance. (Cf. Harary (1959b).) Thm. 14: max l(), over all of order n, equals b(n 1)2/4c.
Recommended publications
  • On Excluded Minors and Biased Graph Representations of Frame Matroids
    On excluded minors and biased graph representations of frame matroids by Daryl Funk M.Sc., University of Victoria, 2009 B.Sc., Simon Fraser University, 1992 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Mathematics Faculty of Science c Daryl Funk 2015 SIMON FRASER UNIVERSITY Spring 2015 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for \Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Daryl Funk Degree: Doctor of Philosophy (Mathematics) Title of Thesis: On excluded minors and biased graph representations of frame matroids Examining Committee: Dr. Jonathan Jedwab, Chair Professor, Department of Mathematics Dr. Matthew DeVos Senior Supervisor Associate Professor, Department of Mathematics Dr. Luis Goddyn Co-Supervisor Professor, Department of Mathematics Dr. Bojan Mohar Internal Examiner Professor, Department of Mathematics Dr. Daniel Slilaty External Examiner Professor, Department of Department of Mathematics and Statistics Wright State University Date Defended: 8 January 2015 ii Partial Copyright Licence iii ABSTRACT A biased graph is a graph in which every cycle has been given a bias, either balanced or un- balanced. Biased graphs provide representations for an important class of matroids, the frame matroids. As with graphs, we may take minors of biased graphs and of matroids, and a family of biased graphs or matroids is minor-closed if it contains every minor of every member of the family.
    [Show full text]
  • Three Puzzles on Mathematics, Computation, and Games
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (551–606) THREE PUZZLES ON MATHEMATICS, COMPUTATION, AND GAMES G K Abstract In this lecture I will talk about three mathematical puzzles involving mathemat- ics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible? 1 Introduction The theory of computing and computer science as a whole are precious resources for mathematicians. They bring up new questions, profound new ideas, and new perspec- tives on classical mathematical objects, and serve as new areas for applications of math- ematics and mathematical reasoning. In my lecture I will talk about three mathematical puzzles involving mathematics and computation (and, at times, other fields) that have preoccupied me over the years. The connection between mathematics and computing is especially strong in my field of combinatorics, and I believe that being able to person- ally experience the scientific developments described here over the past three decades may give my description some added value. For all three puzzles I will try to describe in some detail both the large picture at hand, and zoom in on topics related to my own work. Puzzle 1: What can explain the success of the simplex algorithm? Linear program- ming is the problem of maximizing a linear function subject to a system of linear inequalities. The set of solutions to the linear inequalities is a convex polyhedron P .
    [Show full text]
  • Projective Planarity of Matroids of 3-Nets and Biased Graphs
    AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 76(2) (2020), Pages 299–338 Projective planarity of matroids of 3-nets and biased graphs Rigoberto Florez´ ∗ Deptartment of Mathematical Sciences, The Citadel Charleston, South Carolina 29409 U.S.A. [email protected] Thomas Zaslavsky† Department of Mathematical Sciences, Binghamton University Binghamton, New York 13902-6000 U.S.A. [email protected] Abstract A biased graph is a graph with a class of selected circles (“cycles”, “cir- cuits”), called “balanced”, such that no theta subgraph contains exactly two balanced circles. A 3-node biased graph is equivalent to an abstract partial 3-net. We work in terms of a special kind of 3-node biased graph called a biased expansion of a triangle. Our results apply to all finite 3-node biased graphs because, as we prove, every such biased graph is a subgraph of a finite biased expansion of a triangle. A biased expansion of a triangle is equivalent to a 3-net, which, in turn, is equivalent to an isostrophe class of quasigroups. A biased graph has two natural matroids, the frame matroid and the lift matroid. A classical question in matroid theory is whether a matroid can be embedded in a projective geometry. There is no known general answer, but for matroids of biased graphs it is possible to give algebraic criteria. Zaslavsky has previously given such criteria for embeddability of biased-graphic matroids in Desarguesian projective spaces; in this paper we establish criteria for the remaining case, that is, embeddability in an arbitrary projective plane that is not necessarily Desarguesian.
    [Show full text]
  • Matchings and Games on Networks
    Matchings and games on networks by Linda Farczadi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics and Optimization Waterloo, Ontario, Canada, 2015 c Linda Farczadi 2015 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We investigate computational aspects of popular solution concepts for different models of network games. In chapter 3 we study balanced solutions for network bargaining games with general capacities, where agents can participate in a fixed but arbitrary number of contracts. We fully characterize the existence of balanced solutions and provide the first polynomial time algorithm for their computation. Our methods use a new idea of reducing an instance with general capacities to an instance with unit capacities defined on an auxiliary graph. This chapter is an extended version of the conference paper [32]. In chapter 4 we propose a generalization of the classical stable marriage problem. In our model the preferences on one side of the partition are given in terms of arbitrary bi- nary relations, that need not be transitive nor acyclic. This generalization is practically well-motivated, and as we show, encompasses the well studied hard variant of stable mar- riage where preferences are allowed to have ties and to be incomplete. Our main result shows that deciding the existence of a stable matching in our model is NP-complete.
    [Show full text]
  • Two-Graphs and Skew Two-Graphs in Finite Geometries
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Two-Graphs and Skew Two-Graphs in Finite Geometries G. Eric Moorhouse Department of Mathematics University of Wyoming Laramie Wyoming Dedicated to Professor J. J. Seidel Submitted by Aart Blokhuis ABSTRACT We describe the use of two-graphs and skew (oriented) two-graphs as isomor- phism invariants for translation planes and m-systems (including avoids and spreads) of polar spaces in odd characteristic. 1. INTRODUCTION Two-graphs were first introduced by G. Higman, as natural objects for the action of certain sporadic simple groups. They have since been studied extensively by Seidel, Taylor, and others, in relation to equiangular lines, strongly regular graphs, and other notions; see [26]-[28]. The analogous oriented two-graphs (which we call skew two-graphs) were introduced by Cameron [7], and there is some literature on the equivalent notion of switching classes of tournaments. Our exposition focuses on the use of two-graphs and skew two-graphs as isomorphism invariants of translation planes, and caps, avoids, and spreads of polar spaces in odd characteristic. The earliest precedent for using two-graphs to study ovoids and caps is apparently owing to Shult [29]. The degree sequences of these two-graphs and skew two-graphs yield the invariants known as fingerprints, introduced by J. H. Conway (see Chames [9, lo]). Two LZNEAR ALGEBRA AND ITS APPLZCATZONS 226-228:529-551 (1995) 0 Elsevier Science Inc., 1995 0024-3795/95/$9.50 655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(95)00242-J 530 G.
    [Show full text]
  • Hadamard and Conference Matrices
    Hadamard and conference matrices Peter J. Cameron December 2011 with input from Dennis Lin, Will Orrick and Gordon Royle Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI. A matrix attaining the bound is a Hadamard matrix. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? A matrix attaining the bound is a Hadamard matrix. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI.
    [Show full text]
  • On Sign-Symmetric Signed Graphs∗
    ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 19 (2020) 83–93 https://doi.org/10.26493/1855-3974.2161.f55 (Also available at http://amc-journal.eu) On sign-symmetric signed graphs∗ Ebrahim Ghorbani Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16765-3381, Tehran, Iran Willem H. Haemers Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands Hamid Reza Maimani , Leila Parsaei Majd y Mathematics Section, Department of Basic Sciences, Shahid Rajaee Teacher Training University, P.O. Box 16785-163, Tehran, Iran Received 24 October 2019, accepted 27 March 2020, published online 10 November 2020 Abstract A signed graph is said to be sign-symmetric if it is switching isomorphic to its negation. Bipartite signed graphs are trivially sign-symmetric. We give new constructions of non- bipartite sign-symmetric signed graphs. Sign-symmetric signed graphs have a symmetric spectrum but not the other way around. We present constructions of signed graphs with symmetric spectra which are not sign-symmetric. This, in particular answers a problem posed by Belardo, Cioaba,˘ Koolen, and Wang in 2018. Keywords: Signed graph, spectrum. Math. Subj. Class. (2020): 05C22, 05C50 1 Introduction Let G be a graph with vertex set V and edge set E. All graphs considered in this paper are undirected, finite, and simple (without loops or multiple edges). A signed graph is a graph in which every edge has been declared positive or negative. In fact, a signed graph Γ is a pair (G; σ), where G = (V; E) is a graph, called the underlying ∗The authors would like to thank the anonymous referees for their helpful comments and suggestions.
    [Show full text]
  • Pretty Good State Transfer in Discrete-Time Quantum Walks
    Pretty good state transfer in discrete-time quantum walks Ada Chan and Hanmeng Zhan Department of Mathematics and Statistics, York University, Toronto, ON, Canada fssachan, [email protected] Abstract We establish the theory for pretty good state transfer in discrete- time quantum walks. For a class of walks, we show that pretty good state transfer is characterized by the spectrum of certain Hermitian adjacency matrix of the graph; more specifically, the vertices involved in pretty good state transfer must be m-strongly cospectral relative to this matrix, and the arccosines of its eigenvalues must satisfy some number theoretic conditions. Using normalized adjacency matrices, cyclic covers, and the theory on linear relations between geodetic an- gles, we construct several infinite families of walks that exhibits this phenomenon. 1 Introduction arXiv:2105.03762v1 [math.CO] 8 May 2021 A quantum walk with nice transport properties is desirable in quantum com- putation. For example, Grover's search algorithm [12] is a quantum walk on the looped complete graph, which sends the all-ones vector to a vector that almost \concentrate on" a vertex. In this paper, we study a slightly stronger notion of state transfer, where the target state can be approximated with arbitrary precision. This is called pretty good state transfer. Pretty good state transfer has been extensively studied in continuous-time quantum walks, especially on the paths [9, 22, 1, 5, 21]. However, not much 1 is known for the discrete-time analogues. The biggest difference between these two models is that in a continuous-time quantum walk, the evolution is completely determined by the adjacency or Laplacian matrix of the graph, while in a discrete-time quantum walk, the transition matrix depends on more than just the graph - usually, it is a product of two unitary matrices: U = SC; where S permutes the arcs of the graph, and C, called the coin matrix, send each arc to a linear combination of the outgoing arcs of the same vertex.
    [Show full text]
  • Hadamard Matrices Include
    Hadamard and conference matrices Peter J. Cameron University of St Andrews & Queen Mary University of London Mathematics Study Group with input from Rosemary Bailey, Katarzyna Filipiak, Joachim Kunert, Dennis Lin, Augustyn Markiewicz, Will Orrick, Gordon Royle and many happy returns . Happy Birthday, MSG!! Happy Birthday, MSG!! and many happy returns . Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI. A matrix attaining the bound is a Hadamard matrix. This is a nice example of a continuous problem whose solution brings us into discrete mathematics. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? A matrix attaining the bound is a Hadamard matrix. This is a nice example of a continuous problem whose solution brings us into discrete mathematics. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI.
    [Show full text]
  • Three Puzzles on Mathematics Computations, and Games
    January 5, 2019 17:43 icm-961x669 main-pr page 551 P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (551–606) THREE PUZZLES ON MATHEMATICS, COMPUTATION, AND GAMES G K Abstract In this lecture I will talk about three mathematical puzzles involving mathemat- ics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible? 1 Introduction The theory of computing and computer science as a whole are precious resources for mathematicians. They bring up new questions, profound new ideas, and new perspec- tives on classical mathematical objects, and serve as new areas for applications of math- ematics and mathematical reasoning. In my lecture I will talk about three mathematical puzzles involving mathematics and computation (and, at times, other fields) that have preoccupied me over the years. The connection between mathematics and computing is especially strong in my field of combinatorics, and I believe that being able to person- ally experience the scientific developments described here over the past three decades may give my description some added value. For all three puzzles I will try to describe in some detail both the large picture at hand, and zoom in on topics related to my own work. Puzzle 1: What can explain the success of the simplex algorithm? Linear program- ming is the problem of maximizing a linear function subject to a system of linear inequalities.
    [Show full text]
  • On D. G. Higman's Note on Regular 3-Graphs
    Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 6 (2013) 99–115 On D. G. Higman’s note on regular 3-graphs Daniel Kalmanovich Department of Mathematics Ben-Gurion University of the Negev 84105 Beer Sheva, Israel Received 17 October 2011, accepted 25 April 2012, published online 4 June 2012 Abstract We introduce the notion of a t-graph and prove that regular 3-graphs are equivalent to cyclic antipodal 3-fold covers of a complete graph. This generalizes the equivalence of regular two-graphs and Taylor graphs. As a consequence, an equivalence between cyclic antipodal distance regular graphs of diameter 3 and certain rank 6 commutative association schemes is proved. New examples of regular 3-graphs are presented. Keywords: Antipodal graph, association scheme, distance regular graph of diameter 3, Godsil- Hensel matrix, group ring, Taylor graph, two-graph. Math. Subj. Class.: 05E30, 05B20, 05E18 1 Introduction This paper is mainly a clarification of [6] — a short draft written by Donald Higman in 1994, entitled “A note on regular 3-graphs”. The considered generalization of two-graphs was introduced by D. G. Higman in [5]. As in the famous correspondence between two-graphs and switching classes of simple graphs, t-graphs are interpreted as equivalence classes of an appropriate switching relation defined on weights, which play the role of simple graphs. In his note Higman uses certain association schemes to characterize regular 3-graphs and to obtain feasibility conditions for their parameters. Specifically, he provides a graph theoretic interpretation of a weight and from the resulted graph he constructs a rank 4 symmetric association scheme and a rank 6 fission of it.
    [Show full text]
  • 2020 Ural Workshop on Group Theory and Combinatorics
    Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center 2020 Ural Workshop on Group Theory and Combinatorics Yekaterinburg – Online, Russia, August 24-30, 2020 Abstracts Yekaterinburg 2020 2020 Ural Workshop on Group Theory and Combinatorics: Abstracts of 2020 Ural Workshop on Group Theory and Combinatorics. Yekaterinburg: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 2020. DOI Editor in Chief Natalia Maslova Editors Vladislav Kabanov Anatoly Kondrat’ev Managing Editors Nikolai Minigulov Kristina Ilenko Booklet Cover Desiner Natalia Maslova c Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center, 2020 2020 Ural Workshop on Group Theory and Combinatorics Conents Contents Conference program 5 Plenary Talks 8 Bailey R. A., Latin cubes . 9 Cameron P. J., From de Bruijn graphs to automorphisms of the shift . 10 Gorshkov I. B., On Thompson’s conjecture for finite simple groups . 11 Ito T., The Weisfeiler–Leman stabilization revisited from the viewpoint of Terwilliger algebras . 12 Ivanov A. A., Densely embedded subgraphs in locally projective graphs . 13 Kabanov V. V., On strongly Deza graphs . 14 Khachay M. Yu., Efficient approximation of vehicle routing problems in metrics of a fixed doubling dimension .
    [Show full text]