GLACIER MASS-BALANCE MEASUREMENTS a Manual for Field and Office Work O^ O^C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin. -
What Glaciers Are Telling Us About Earth's Changing Climate
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 8, 3475–3491, 2014 www.the-cryosphere-discuss.net/8/3475/2014/ doi:10.5194/tcd-8-3475-2014 TCD © Author(s) 2014. CC Attribution 3.0 License. 8, 3475–3491, 2014 This discussion paper is/has been under review for the journal The Cryosphere (TC). What glaciers are Please refer to the corresponding final paper in TC if available. telling us about Earth’s changing What glaciers are telling us about Earth’s climate changing climate W. Tangborn and M. Mosteller W. Tangborn1 and M. Mosteller2 1HyMet Inc., Vashon Island, WA, USA Title Page 2 Vashon IT, Vashon Island, WA, USA Abstract Introduction Received: 12 June 2014 – Accepted: 24 June 2014 – Published: 1 July 2014 Conclusions References Correspondence to: W. Tangborn ([email protected]) and Tables Figures M. Mosteller ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. J I J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 3475 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD A glacier monitoring system has been developed to systematically observe and docu- ment changes in the size and extent of a representative selection of the world’s 160 000 8, 3475–3491, 2014 mountain glaciers (entitled the PTAAGMB Project). Its purpose is to assess the impact 5 of climate change on human societies by applying an established relationship between What glaciers are glacier ablation and global temperatures. Two sub-systems were developed to accom- telling us about plish this goal: (1) a mass balance model that produces daily and annual glacier bal- Earth’s changing ances using routine meteorological observations, (2) a program that uses Google Maps climate to display satellite images of glaciers and the graphical results produced by the glacier 10 balance model. -
A Globally Complete Inventory of Glaciers
Journal of Glaciology, Vol. 60, No. 221, 2014 doi: 10.3189/2014JoG13J176 537 The Randolph Glacier Inventory: a globally complete inventory of glaciers W. Tad PFEFFER,1 Anthony A. ARENDT,2 Andrew BLISS,2 Tobias BOLCH,3,4 J. Graham COGLEY,5 Alex S. GARDNER,6 Jon-Ove HAGEN,7 Regine HOCK,2,8 Georg KASER,9 Christian KIENHOLZ,2 Evan S. MILES,10 Geir MOHOLDT,11 Nico MOÈ LG,3 Frank PAUL,3 Valentina RADICÂ ,12 Philipp RASTNER,3 Bruce H. RAUP,13 Justin RICH,2 Martin J. SHARP,14 THE RANDOLPH CONSORTIUM15 1Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA 2Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA 3Department of Geography, University of ZuÈrich, ZuÈrich, Switzerland 4Institute for Cartography, Technische UniversitaÈt Dresden, Dresden, Germany 5Department of Geography, Trent University, Peterborough, Ontario, Canada E-mail: [email protected] 6Graduate School of Geography, Clark University, Worcester, MA, USA 7Department of Geosciences, University of Oslo, Oslo, Norway 8Department of Earth Sciences, Uppsala University, Uppsala, Sweden 9Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 10Scott Polar Research Institute, University of Cambridge, Cambridge, UK 11Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA 12Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada 13National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA 14Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada 15A complete list of Consortium authors is in the Appendix ABSTRACT. The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. -
Glaciers and Their Significance for the Earth Nature - Vladimir M
HYDROLOGICAL CYCLE – Vol. IV - Glaciers and Their Significance for the Earth Nature - Vladimir M. Kotlyakov GLACIERS AND THEIR SIGNIFICANCE FOR THE EARTH NATURE Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, glacial epochs, glacier, glacier-derived runoff, glacier oscillations, glacio-climatic indices, glaciology, glaciosphere, ice, ice formation zones, snow line, theory of glaciation Contents 1. Introduction 2. Development of glaciology 3. Ice as a natural substance 4. Snow and ice in the Nature system of the Earth 5. Snow line and glaciers 6. Regime of surface processes 7. Regime of internal processes 8. Runoff from glaciers 9. Potentialities for the glacier resource use 10. Interaction between glaciation and climate 11. Glacier oscillations 12. Past glaciation of the Earth Glossary Bibliography Biographical Sketch Summary Past, present and future of glaciation are a major focus of interest for glaciology, i.e. the science of the natural systems, whose properties and dynamics are determined by glacial ice. Glaciology is the science at the interfaces between geography, hydrology, geology, and geophysics. Not only glaciers and ice sheets are its subjects, but also are atmospheric ice, snow cover, ice of water basins and streams, underground ice and aufeises (naleds). Ice is a mono-mineral rock. Ten crystal ice variants and one amorphous variety of the ice are known.UNESCO Only the ice-1 variant has been – reve EOLSSaled in the Nature. A cryosphere is formed in the region of interaction between the atmosphere, hydrosphere and lithosphere, and it is characterized bySAMPLE negative or zero temperature. CHAPTERS Glaciology itself studies the glaciosphere that is a totality of snow-ice formations on the Earth's surface. -
Surface Mass Balance of Davies Dome and Whisky Glacier on James Ross Island, North-Eastern Antarctic Peninsula, Based on Different Volume-Mass Conversion Approaches
CZECH POLAR REPORTS 9 (1): 1-12, 2019 Surface mass balance of Davies Dome and Whisky Glacier on James Ross Island, north-eastern Antarctic Peninsula, based on different volume-mass conversion approaches Zbyněk Engel1*, Filip Hrbáček2, Kamil Láska2, Daniel Nývlt2, Zdeněk Stachoň2 1Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Albertov 6, 128 43 Praha, Czech Republic 2Masaryk University, Faculty of Science, Department of Geography, Kotlářská 2, 611 37 Brno, Czech Republic Abstract This study presents surface mass balance of two small glaciers on James Ross Island calculated using constant and zonally-variable conversion factors. The density of 500 and 900 kg·m–3 adopted for snow in the accumulation area and ice in the ablation area, respectively, provides lower mass balance values that better fit to the glaciological records from glaciers on Vega Island and South Shetland Islands. The difference be- tween the cumulative surface mass balance values based on constant (1.23 ± 0.44 m w.e.) and zonally-variable density (0.57 ± 0.67 m w.e.) is higher for Whisky Glacier where a total mass gain was observed over the period 2009–2015. The cumulative sur- face mass balance values are 0.46 ± 0.36 and 0.11 ± 0.37 m w.e. for Davies Dome, which experienced lower mass gain over the same period. The conversion approach does not affect much the spatial distribution of surface mass balance on glaciers, equilibrium line altitude and accumulation-area ratio. The pattern of the surface mass balance is almost identical in the ablation zone and very similar in the accumulation zone, where the constant conversion factor yields higher surface mass balance values. -
Edges of Ice-Sheet Glaciology
Important Things Ice Sheets Do, but Ice Sheet Models Don’t Dr. Robert Bindschadler Chief Scientist Hydrospheric and Biospheric Sciences Laboratory NASA Goddard Space Flight Center [email protected] I’ll talk about • Why we need models – from a non-modeler • Why we need good models – recent observations have destroyed confidence in present models • Recent ice-sheet surprises • Responsible physical processes “…understanding of (possible future rapid dynamical changes in ice flow) is too limited to assess their likelihood or provide a best estimate or an upper bound for sea level rise.” IPCC Fourth Assessment Report, Summary for Policy Makers (2007) Future Sea Level is likely underestimated A1B IPCC AR4 (2007) Ice Sheets matter Globally Source: CReSIS and NASA Land area lost by 1-meter rise in sea level Impact of 1-meter sea level rise: Source: Anthoff et al., 2006 Maldives 20th Century Greenland Ice Sheet Sea level Change (mm/a) -1 0 +1 accumulation 450 Gt/a melting 225 Gt/a ice flow 225 Gt/a Approximately in “mass balance” 21st Century Greenland Ice Sheet Sea level Change (mm/a) -1 0 +1 accumulation melting ice flow Things could get a little better or a lot worse Increased ice flow will dominate the future rate of change A History Lesson • Less ice in HIGH SEA LEVEL Less warmer ice climates • Ice sheets More shrink faster LOW ice than they TEMPERATURE WARM grow • Sea level change is not COLD THEN NOW smooth Time Decreasing Mass Balance (Source: Luthcke et al., unpub.) Greenland Ice Sheet Mass Balance GREENLAND (Source: IPCC FAR) Antarctic Ice Sheet Mass Balance ANTARCTICA (Source: IPCC FAR) Pace of ice sheet changes have astonished experts is the common agent behind these changes Ice sheets HATE water! Fastest Flow at the Edges Interior: 1000’s meters thick and slow Perimeter: 100’s meters thick and fast Source: Rignot and Thomas Response time and speed of perturbation propagation are tied directly to ice flow speed 1. -
Ilulissat Icefjord
World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea. -
Mass-Balance Reconstruction for Kahiltna Glacier, Alaska
Journal of Glaciology (2018), Page 1 of 14 doi: 10.1017/jog.2017.80 © The Author(s) 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. The challenge of monitoring glaciers with extreme altitudinal range: mass-balance reconstruction for Kahiltna Glacier, Alaska JOANNA C. YOUNG,1 ANTHONY ARENDT,1,2 REGINE HOCK,1,3 ERIN PETTIT4 1Geophysical Institute, University of Alaska, Fairbanks, AK, USA 2Applied Physics Laboratory, Polar Science Center, University of Washington, Seattle, WA, USA 3Department of Earth Sciences, Uppsala University, Uppsala, Sweden 4Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, USA Correspondence: Joanna C. Young <[email protected]> ABSTRACT. Glaciers spanning large altitudinal ranges often experience different climatic regimes with elevation, creating challenges in acquiring mass-balance and climate observations that represent the entire glacier. We use mixed methods to reconstruct the 1991–2014 mass balance of the Kahiltna Glacier in Alaska, a large (503 km2) glacier with one of the greatest elevation ranges globally (264– 6108 m a.s.l.). We calibrate an enhanced temperature index model to glacier-wide mass balances from repeat laser altimetry and point observations, finding a mean net mass-balance rate of −0.74 − mw.e. a 1(±σ = 0.04, std dev. of the best-performing model simulations). Results are validated against mass changes from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites, a novel approach at the individual glacier scale. -
Glacier Movement
ISSN 2047-0371 Glacier Movement C. Scott Watson1 and Duncan Quincey1 1 School of Geography and water@leeds, University of Leeds ([email protected]) ABSTRACT: Quantification of glacier movement can supplement measurements of surface elevation change to allow an integrated assessment of glacier mass balance. Glacier velocity is also closely linked to the surface morphology of both clean-ice and debris-covered glaciers. Velocity applications include distinguishing active from inactive ice on debris-covered glaciers, identifying glacier surge events, or inferring basal conditions using seasonal observations. Surface displacements can be surveyed manually in the field using trigonometric principles and a total station or theodolite for example, or dGPS measurements, which allow horizontal and vertical movement to be quantified for accessible areas. Semi-automated remote sensing techniques such as feature tracking (using optical or radar imagery) and interferometric synthetic aperture radar (InSAR) (using radar imagery), can provide spatially distributed and multi-temporal velocity fields of horizontal glacier surface displacement. Remote-sensing techniques are more practical and can provide a greater distribution of measurements over larger spatial scales. Time-lapse imagery can also be exploited to track surface displacements, providing fine temporal and spatial resolution, although the latter is dependent upon the range between camera and glacier surface. This chapter outlines the costs, benefits, and methodological considerations -
Glacial Geomorphology☆ John Menzies, Brock University, St
Glacial Geomorphology☆ John Menzies, Brock University, St. Catharines, ON, Canada © 2018 Elsevier Inc. All rights reserved. This is an update of H. French and J. Harbor, 8.1 The Development and History of Glacial and Periglacial Geomorphology, In Treatise on Geomorphology, edited by John F. Shroder, Academic Press, San Diego, 2013. Introduction 1 Glacial Landscapes 3 Advances and Paradigm Shifts 3 Glacial Erosion—Processes 7 Glacial Transport—Processes 10 Glacial Deposition—Processes 10 “Linkages” Within Glacial Geomorphology 10 Future Prospects 11 References 11 Further Reading 16 Introduction The scientific study of glacial processes and landforms formed in front of, beneath and along the margins of valley glaciers, ice sheets and other ice masses on the Earth’s surface, both on land and in ocean basins, constitutes glacial geomorphology. The processes include understanding how ice masses move, erode, transport and deposit sediment. The landforms, developed and shaped by glaciation, supply topographic, morphologic and sedimentologic knowledge regarding these glacial processes. Likewise, glacial geomorphology studies all aspects of the mapped and interpreted effects of glaciation both modern and past on the Earth’s landscapes. The influence of glaciations is only too visible in those landscapes of the world only recently glaciated in the recent past and during the Quaternary. The impact on people living and working in those once glaciated environments is enormous in terms, for example, of groundwater resources, building materials and agriculture. The cities of Glasgow and Boston, their distinctive street patterns and numerable small hills (drumlins) attest to the effect of Quaternary glaciations on urban development and planning. It is problematic to precisely determine when the concept of glaciation first developed. -
A Strategy for Monitoring Glaciers
COVER PHOTOGRAPH: Glaciers near Mount Shuksan and Nooksack Cirque, Washington. Photograph 86R1-054, taken on September 5, 1986, by the U.S. Geological Survey. A Strategy for Monitoring Glaciers By Andrew G. Fountain, Robert M. Krimme I, and Dennis C. Trabant U.S. GEOLOGICAL SURVEY CIRCULAR 1132 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government U.S. GOVERNMENT PRINTING OFFICE : 1997 Free on application to the U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 Library of Congress Cataloging-in-Publications Data Fountain, Andrew G. A strategy for monitoring glaciers / by Andrew G. Fountain, Robert M. Krimmel, and Dennis C. Trabant. P. cm. -- (U.S. Geological Survey circular ; 1132) Includes bibliographical references (p. - ). Supt. of Docs. no.: I 19.4/2: 1132 1. Glaciers--United States. I. Krimmel, Robert M. II. Trabant, Dennis. III. Title. IV. Series. GB2415.F68 1997 551.31’2 --dc21 96-51837 CIP ISBN 0-607-86638-l CONTENTS Abstract . ...*..... 1 Introduction . ...* . 1 Goals ...................................................................................................................................................................................... 3 Previous Efforts of the U.S. Geological Survey ................................................................................................................... -
Glacier Mass Balance This Summary Follows the Terminology Proposed by Cogley Et Al
Summer school in Glaciology, McCarthy 5-15 June 2018 Regine Hock Geophysical Institute, University of Alaska, Fairbanks Glacier Mass Balance This summary follows the terminology proposed by Cogley et al. (2011) 1. Introduction: Definitions and processes Definition: Mass balance is the change in the mass of a glacier, or part of the glacier, over a stated span of time: t . ΔM = ∫ Mdt t1 The term mass budget is a synonym. The span of time is often a year or a season. A seasonal mass balance is nearly always either a winter balance or a summer balance, although other kinds of seasons are appropriate in some climates, such as those of the tropics. The definition of “year” depends on the measurement method€ (see Chap. 4). The mass balance, b, is the sum of accumulation, c, and ablation, a (the ablation is defined here as negative). The symbol, b (for point balances) and B (for glacier-wide balances) has traditionally been used in studies of surface mass balance of valley glaciers. t . b = c + a = ∫ (c+ a)dt t1 Mass balance is often treated as a rate, b dot or B dot. Accumulation Definition: € 1. All processes that add to the mass of the glacier. 2. The mass gained by the operation of any of the processes of sense 1, expressed as a positive number. Components: • Snow fall (usually the most important). • Deposition of hoar (a layer of ice crystals, usually cup-shaped and facetted, formed by vapour transfer (sublimation followed by deposition) within dry snow beneath the snow surface), freezing rain, solid precipitation in forms other than snow (re-sublimation composes 5-10% of the accumulation on Ross Ice Shelf, Antarctica).