Oviposition Behavior of the Female Coconut Rhinoceros Beetle, Oryctes Rhinoceros

Total Page:16

File Type:pdf, Size:1020Kb

Oviposition Behavior of the Female Coconut Rhinoceros Beetle, Oryctes Rhinoceros Oviposition Behavior of the Female Coconut Rhinoceros Beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae) A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS IN SCIENCE IN ENTOMOLOGY DECEMBER 2017 By Megan E. Manley Thesis Committee: Helen Spafford, Co-chairperson Michael Melzer, Co-chairperson Mark Wright Keywords: Coconut rhinoceros beetle, Oryctes rhinoceros, oviposition DEDICATION To my mother, Marilyn Noble Manley, for sacrificing so much to raise me and my sisters and for showing us what a strong woman is. Thank you for never giving up on me and helping me to grow into a woman I know Lolo would be proud of. I love you Mom. AKNOWLEDGEMENTS This thesis was completed with tremendous support from my committee co-chairs, Dr. Helen Spafford and Dr. Michael Melzer, as well as my committee member Dr. Mark Wright. I would like to thank them for giving me this opportunity, and without their constant guidance and advice, I would not have had such a great experience throughout my journey to completing my thesis. I would like to give a special thank you to Dr. Helen Spafford for being an exceptional human being, understanding me as a person, and inspiring me as a woman in science. I also extend an immense amount of gratitude to Dr. Shizu Watanabe for being there for me personally and professionally, and for acting as a true mentor; you are greatly appreciated. I would like to thank the CRB Response Team, Dr. Keith Weiser, Tomie Vowell, Nelson Masang, Scott Appelbaum, Allie Kong, Matthew Kellar, and Brandi Adams for working on the beetle colony with me and helping me with numerous tasks pertaining to my research. I would like to additionally show my appreciation for my fellow lab-mates, Gerald Crank, Priscilla Seabourn, and Leyla Kaufman for supporting me, encouraging me, and offering any help and advice they could even when they had their own busy schedules to tend to. I would also like to thank the many PEPS graduate students for their friendship and support during my time in this program. Most importantly, I would like to thank my giant family, my roommates and my best friends (Lori Anderson, Kristen Cowell, Chloe Facenda, and Michaela Miller) for supporting me fully throughout this process, always being proud and loving me, and always being there for me even when I was not at the best version of myself. Finally, this thesis would not have been possible without funding through USDA- APHIS Farm Bill, the Hawai‘i Invasive Species Council, and the Hawai‘i Department of Agriculture. 1 ABSTRACT The coconut rhinoceros beetle (CRB), Oryctes rhinoceros (L.) (Coleoptera: Scarbaeidae), has become one of the most important coconut and oil palm pests to date. CRB recently emerged in December 2013 as a new invasive pest of coconut palms on O‘ahu, Hawai‘i. Since its detection, efforts have been expended performing delimiting and monitoring surveys, detecting and sanitizing breeding sites, and developing methods for eradication and control. To aid these efforts, information on the factors influencing female adult oviposition behavior and identifying these behaviors is needed. In this study, data and observations were collected from a series of substrate choice tests and depth observations to assess if both lab-reared and wild-caught CRB have a preference for oviposition site or egg-laying pattern. Small or large particle sizes, as well as high (8dS/m) or low (2 dS/m) salinity substrates, were tested and oviposition depths were observed using an observational chamber. Female CRB were found to prefer small particle size substrate and lay their eggs in an aggregated dispersion pattern at various depths up to 119 cm. No preference for substrate salinity was found. Additionally, female CRB were found to differ significantly in their oviposition behavior between lab-reared and wild- caught beetle types. These results can help to identify potential breeding sites and can also be implemented into management programs for future eradication and prevention efforts. 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS ....................................................................................................................... 1 ABSTRACT ............................................................................................................................................... 2 TABLE OF CONTENTS ........................................................................................................................... 3 LIST OF TABLES ..................................................................................................................................... 5 LIST OF FIGURES .................................................................................................................................... 6 CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW ....................................................... 7 IMPACTS OF CRB .................................................................................................................................... 8 LIFE HISTORY ....................................................................................................................................... 10 Egg ....................................................................................................................................................................... 11 Larva ................................................................................................................................................................... 11 Pupa .................................................................................................................................................................... 12 Adult .................................................................................................................................................................... 12 Reproduction .................................................................................................................................................. 13 PEST MANAGEMENT ............................................................................................................................. 14 Monitoring and Trapping .......................................................................................................................... 14 Cultural Management .................................................................................................................................. 15 Chemical Management ................................................................................................................................ 16 Biological Control .......................................................................................................................................... 16 MONITORING AND ERADICATION IN HAWAI‘I ..................................................................................... 19 RESEARCH OBJECTIVES ........................................................................................................................ 22 CHAPTER 2: PREFERENCES OF LAB-REARED AND WILD-CAUGHT COCONUT RHINOCEROS BEETLE (ORYCTES RHINOCEROS, COLEOPTERA: SCARABAEIDAE) FOR OVIPOSITION SITES IN RELATION TO SUBSTRATE PARTICLE SIZE AND SALINITY ..... 23 INTRODUCTION ..................................................................................................................................... 23 MATERIALS AND METHODS ................................................................................................................. 26 Insect Colony ................................................................................................................................................... 26 Choice Tests ..................................................................................................................................................... 27 3 Particle Size ...................................................................................................................................................... 28 Salinity ............................................................................................................................................................... 29 Biometrics ........................................................................................................................................................ 29 Data Analysis ................................................................................................................................................... 30 RESULTS ............................................................................................................................................... 31 Particle Size Choice ....................................................................................................................................... 31 Salinity Choice ................................................................................................................................................ 33 Wild-caught vs. Lab-reared ....................................................................................................................... 36 DISCUSSION .......................................................................................................................................... 41 CHAPTER 3: OBSERVATIONS ON COCONUT RHINOCEROS BEETLE (ORYCTES RHINOCEROS, COLEOPTERA: SCARABAEIDAE) OVIPOSITION DEPTH IN A CONTROLLED ENVIRONMENT ......................................................................................................
Recommended publications
  • The Oil Palm (Elaeis Guineensis)
    PALM S Rival & Levang: Oil Palm Vol. 59(1) 2015 ALAIN RIVAL The Oil Palm Centre de Coopération Internationale en Recherche (Elaeis Agronomique pour le Développement guineensis ): Jakarta, Indonesia [email protected] Research AND Challenges PATRICE LEVANG Institut de Recherche pour Beyond le Développement Yaoundé, Cameroon Controversies [email protected] Scientists certainly have a part to play in the debate over oil palm ( Elaeis guineensis Jacq.) cultivation, which has captured and polarized public opinion, kindled and undoubtedly shaped by the media. How can this palm be viewed as a “miracle plant” by both the agro-food industry in the North and farmers in the tropical zone, but a serious ecological threat by non-governmental organizations (NGOs) campaigning for the environment or the rights of indigenous peoples? The time has come to move on from this biased and often irrational debate, which is rooted in topical issues of contemporary society in the North, such as junk food, biodiversity, energy policy and ethical consumption. One of the reasons the public has developed as nuclear energy, genetically modified crops such fixed ideas is that there has been a lack or shale gas) that is causing controversy but an of accurate information on the sector and its entire agrom-food sector that has come to actors and a clear-headed analysis of what is symbolize the conflict between the at stake. We point out that the production and conservation of natural spaces and de- processing of palm oil are part of a complex velopment. Consumers, elected representatives globalized agrom-industrial sector shared by and scientists are finally forced to take sides for multiple actors and stakeholders with often or against palm oil, with no room for ifs and conflicting interests.
    [Show full text]
  • Nölken Palm(Kernel)Oil-Statement
    2 Nölken Palm oil and palm kernel oil Statement Palm oil is one of the most important vegetable oils as well as the displacement of indigenous people and in the world and is used in many consumer goods. the destruction of biodiversity. During the extraction of palm oil from the fruit, it is also possible to obtain palm kernel oil. This oil from For the variety of care and cosmetics products which palm kernel is a key ingredient for the production of we produce, we use raw materials such as surfactants washing and cleaning substances, e.g. for cosmetics and or emulsifiers based on renewable raw materials with detergents. Palm oil is also used in the food industry and palm kernel oil for example as a primary material. These as fuels or combustibles. However, the cultivation of oil raw materials are identified as palm oil or palm kernel palms (Elaeis guineensis) is often criticised because the oil derivatives. As a result of their productivity, palm production of palm oil is still associated with negative kernel oil derivatives are best suited to the production effects such as the clearance of rain forests, cultivation of cosmetic products. on peat soil with the emission of large amounts of CO2, Replacing palm kernel oil with other oils is not really a non-governmental organisations (i.e. WWF, Greenpea- solution. The shift to soy oil for example, the second ce) call not for an end to the use of palm (kernel) oil most important vegetable oil in the world, would then but for a transfer to a sustainable cultivation of palm cause problems in other countries.
    [Show full text]
  • Current Knowledge on Interspecific Hybrid Palm Oils As Food and Food
    foods Review Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient Massimo Mozzon , Roberta Foligni * and Cinzia Mannozzi * Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; m.mozzon@staff.univpm.it * Correspondence: r.foligni@staff.univpm.it (R.F.); c.mannozzi@staff.univpm.it (C.M.); Tel.: +39-071-220-4010 (R.F.); +39-071-220-4014 (C.M.) Received: 6 April 2020; Accepted: 10 May 2020; Published: 14 May 2020 Abstract: The consumers’ opinion concerning conventional palm (Elaeis guineensis) oil is negatively affected by environmental and nutritional issues. However, oils extracted from drupes of interspecific hybrids Elaeis oleifera E. guineensis are getting more and more interest, due to their chemical and × nutritional properties. Unsaturated fatty acids (oleic and linoleic) are the most abundant constituents (60%–80% of total fatty acids) of hybrid palm oil (HPO) and are mainly acylated in position sn-2 of the glycerol backbone. Carotenes and tocotrienols are the most interesting components of the unsaponifiable matter, even if their amount in crude oils varies greatly. The Codex Committee on Fats and Oils recently provided HPO the “dignity” of codified fat substance for human consumption and defined the physical and chemical parameters for genuine crude oils. However, only few researches have been conducted to date on the functional and technological properties of HPO, thus limiting its utilization in food industry. Recent studies on the nutritional effects of HPO softened the initial enthusiasm about the “tropical equivalent of olive oil”, suggesting that the overconsumption of HPO in the most-consumed processed foods should be carefully monitored.
    [Show full text]
  • Natasha Final 1202.Pdf (4.528Mb)
    University of São Paulo “Luiz de Queiroz” College of Agriculture Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth Natasha Sant´Anna Iwanicki Thesis presented to obtain the degreee of Doctor in Science. Area: Entomology Piracicaba 2020 UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth PhD THESIS 2020 – Natasha Sant´Anna Iwanicki Natasha Sant´Anna Iwanicki Agronomic Engineer Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth Advisors: Prof. Dr. ITALO DELALIBERA JUNIOR Prof. PhD and Dr. agro JØRGEN EILENBERG Co-advisor for transcriptomic studies: Associate professor PhD HENRIK H. DE FINE LICHT Thesis presented to obtain the double-degreee of Doctor in Science of the University of São Paulo and PhD at University of Copenhagen. Area: Entomology Piracicaba 2020 2 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP Iwanicki, Natasha Sant´Anna Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth / Natasha Sant´Anna Iwanicki. - - Piracicaba, 2020. 248 p. Tese (Doutorado) - - USP / Escola Superior de Agricultura “Luiz de Queiroz”. 1. Blastosporos 2. Fermentação líquida 3. Dimorfismo fúngico 4. Fungos entomopatogênicos I. Título 3 4 ACKNOWLEDGMENTS First, I would like to thank my supervisors, Prof. Italo Delalibera Júnior and Prof. Jørgen Eilenberg for their confidence in my potential as a student, for the opportunities they gave me and the knowledge they shared, for their guidance and friendship over these years. I also thank my co-advisors, Prof.
    [Show full text]
  • Oil Palm in Indonesia— the Limits of Certification and Zero— Deforestation Pledges
    LEAVES POLICY BRIEF FEBRUARY 2019 OIL PALM IN INDONESIA— THE LIMITS OF CERTIFICATION AND ZERO— DEFORESTATION PLEDGES Highlights • Oil palm (Elaeis guineensis) is one of the more visible and profitable agricultural commodities driving the expansion of industrial- and small-scale plantations into forest areas, particularly in Southeast Asia. • Between 2000 and 2010, around 4.5 million hectares (ha) of forests were lost in Indonesia with others estimating that the total amount could be over 7 million ha. Around 20% of this deforestation occurred on oil palm plantations. • In Indonesia, initiatives that mitigate and manage deforestation due to palm oil production include standards and certification, zero-deforestation pledges, improvements to smallholder productivity, and jurisdictional management. This policy brief examines how well these initiatives address the causes deforestation and environmental degradation and their acceptability among stakeholders. • Palm oil production in Africa and Asia has as of yet to cause large scale deforestation of primary forest as much of the land being used for plantations was previously cleared for agriculture. • Development partners can further mitigate palm oil’s impact on deforestation by identifying financially viable and sustainable small-scale models, improving the taxation models for plantations and supply chains, strengthening the legality of jurisdictional approaches, and improving traceability in the palm oil supply chain. Introduction and eventual conversion of natural forests and peatland beginning with forestry concessions. In Southeast Asia, Globally, tropical deforestation, forest fires, and peatland oil palm cultivation has become synonymous with tropical degradation are a major cause of greenhouse gas emissions deforestation and subject to numerous environmental and biodiversity loss.
    [Show full text]
  • Comparative Genomics of Knoxdaviesia Species in the Core Cape Subregion
    Comparative genomics of Knoxdaviesia species in the Core Cape Subregion by Janneke Aylward Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Science at Stellenbosch University Supervisor: Prof. Léanne L. Dreyer Co-supervisors: Dr. Francois Roets Prof. Emma T. Steenkamp Prof. Brenda D. Wingfield Prof. Michael J. Wingfield March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Janneke Aylward Date: March 2017 Copyright © 2017 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za ABSTRACT Knoxdaviesia capensis and K. proteae are saprotrophic fungi that inhabit the seed cones (infructescences) of Protea plants in the Core Cape Subregion (CCR) of South Africa. Arthropods, implicated in the pollination of Protea species, disperse these native fungi from infructescences to young flower heads (inflorescences). Knoxdaviesia proteae is a specialist restricted to one Protea species, while the generalist K. capensis occupies a range of Protea species. Within young flower heads, Knoxdaviesia species grow vegetatively, but switch to sexual reproduction once flower heads mature into enclosed infructescences. Nectar becomes depleted and infructescences are colonised by numerous other organisms, including the arthropod vectors of the fungi. The aim of this dissertation was to study the ecology of K.
    [Show full text]
  • THE BIODIVERSITY LOSS CRISIS in SOUTHEAST ASIA a Literature Review on Current Research
    Louise Nilsson Kultur och Samhälle Urbana Studier MV109C Miljövetenskap: Kandidatkurs VT 2019 Handledare: Jonas Lundgren & Johanna Nygren Spanne Picture 1: Cacao pods at plantation in Pulau Samosir, Sumatera Utara, Indonesia, Louise Nilsson, 2018. THE BIODIVERSITY LOSS CRISIS IN SOUTHEAST ASIA A literature review on current research Louise Nilsson Kultur och samhälle Urbana studier MV109C Miljövetenskap: Kandidatkurs VT 2019 Abstract This bachelor thesis focuses on the biodiversity loss problematics in Southeast Asia, since it is one of the most species rich places on Earth, coupled with the highest rate of loss of species. Four biodiversity hotspots encompasses Southeast Asia which implies areas of high endemism coupled with high rates habitat loss. This thesis aim to understand what current research in the field focuses on and what ways of protecting biodiversity in the area that exists. The main driver of biodiversity loss in Southeast Asia as well as in the rest of the world, are land-use alterations; forests and natural habitat being converted to monoculture plantations, as well as agricultural- and urban expansions. Through a systematic literature review of scientific material from 2010- 2019, the biodiversity research in Southeast Asia is reviewed. What the literature review concluded was that an array of environmental- as well as socioeconomic problems intensifies each other in the area, such as poverty and biodiversity loss. International cooperation to halt biodiversity loss and the global demand for products produced in the area which greatly damages ecosystems needs to be addressed urgently. Actions to halt the mass-extinction of species and their connected ecosystem services needs to be taken by providing means to organizations and to scientists that work in the area and could possibly be addressed by moving from anthropocentrism towards a biocentric nature view.
    [Show full text]
  • Transmission of the Coconut Cadang-Cadang Viroid to Six Species of Palm by Inoculation with Nucleic Acid Extracts
    Plant Pathology {\9H5) 34, 391-401 Transmission of the coconut cadang-cadang viroid to six species of palm by inoculation with nucleic acid extracts JULITA S. \MPER\ALand ROSEMARIE M. BAUTISTA Philippine Coconut Authority, Albav Research Center. Banao, Guinobatan, Albay, Philippines JOHN W. RANDLES Plant Pathology Department, Waite Agricultural Research Institute, University of Adelaide, South Australia Seedlings of Areca catechu (betel nut palm), Corypha elata (buri palm), Adonidia merrillii (manila palm), Elaeis guineensis (oil palm), Chrysalidocarpus lutescens (palmera) and Oreodoxa regia (royal palm) were inoculated with nucleic acid extracts from coconut palms with cadang-cadang disease. Within 2 years of inoculation, analysis using a ^-P-labelled DNA probe complementary to the coconut cadang-cadang viroid (CCCV) showed that RNA sequences identical to CCCV were present in the inoculated seedlings. Electrophoresis in polyacrylamide gels showed that these palms also contained an RNA with mobility identical to CCCW. Four to five years after inoculation, the infected palms of four species were usually stunted compared with uninoculated palms, while betel nut and palmera were not stunted. Yellowing of leaflets was observed with defined spots or mottling of the older fronds in all except betel nut palms. All infected palms showed mild or severe yellow- leaf spotting. These results widen the known host range and. hence, the potential number of viroid reservoir species in the field. INTRODUCTION examined. The presence of alternative plant The viroid associated with cadang-cadang infec- reservoirs in the field is one important aspect tion of coconut (Cocos nucifera L.) (Randies. and studies are in progress on the identification 1975) has been shown to cause the disease when of additional species that are susceptible to inoculated to coconut palm (Zelazny et al.
    [Show full text]
  • Pest Categorisation of Cadang‐Cadang Viroid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Brescia SCIENTIFIC OPINION ADOPTED: 27 June 2017 doi: 10.2903/j.efsa.2017.4928 Pest categorisation of Cadang-Cadang viroid EFSA Panel on Plant Health (PLH), Michael Jeger, Claude Bragard, David Caffier, Thierry Candresse, Katharina Dehnen-Schmutz, Gianni Gilioli, Jean-Claude Gregoire, Josep Anton Jaques Miret, Alan MacLeod, Maria Navajas Navarro, Bjorn€ Niere, Stephen Parnell, Roel Potting, Trond Rafoss, Vittorio Rossi, Gregor Urek, Ariena Van Bruggen, Wopke Van der Werf, Jonathan West, Elisavet Chatzivassiliou, Stephan Winter, Gabor Hollo and Thierry Candresse Abstract The EFSA Panel on Plant Health performed a pest categorisation of Cadang-Cadang viroid for the European Union (EU) territory. Coconut cadang-cadang viroid (CCCVd) is a well-known viroid for which efficient molecular detection assays are available. It is transmitted by vegetative multiplication of infected hosts, by seed and pollen and, possibly, by the action of unknown vector(s). CCCVd is reported from a few countries in Asia and is not known to occur in the EU. It therefore does not meet one of the criteria for being a Union regulated non-quarantine pest. The host range of CCCVd is restricted to Arecaceae species (palms), in particular coconut and it is listed on all known hosts in Annex IIAI of Directive 2000/29/EC. CCCVd is expected to be able to enter in the EU and to be able to establish in the open in the southernmost regions of the EU and elsewhere under protected cultivation.
    [Show full text]
  • Secrets of Palm Oil Biosynthesis Revealed
    COMMENTARY Secrets of palm oil biosynthesis revealed Toni Voelker1 Monsanto, Davis, CA 95616 lobally, vegetable oils are har- Not only is oil palm by far the most diacylglycerol or phosphatidyl choline to vested from a handful of oil productive oil crop, with annual yields of- TAG. So, how then is the oil palm meso- G crops at an annual rate ex- ten exceeding 4 tons/ha, but during fruit carp cell programmed for the divergence ceeding 100 million tons (1). maturation, its mesocarp cells efficiently of almost all photosynthate to lipid stor- Most oils are used for human or animal convert photosynthate to TAGs, which age, when date palm cells store photosyn- consumption, although a minor fraction is subsequently accumulate to levels as high thate simply as sugars? A priori one would derivatized to oleochemicals. More re- as exceeding 90% of the tissue dry weight predict that there must be an up-regula- cently, an increasing amount of vegetable at maturity. In contrast, in the mesocarp of tion of all of the pertinent components oil is being diverted to the production of date palm, no TAGs are found. Instead, from FA biosynthesis, precursor supply, as biodiesel [i.e., fatty acid (FA) methyl- large amounts of sugars accumulate during well as lipid assembly. However, this is not esters], and is an attractive feedstock for maturation to levels as high as 50% of what Bourgis et al. (9) find. Surprisingly, the so-called “drop-in” biofuels of the fu- dry weight (9). For their study in PNAS, none of the ER enzymes of the so-called ture, further increasing the demand on this Bourgis et al.
    [Show full text]
  • The Threat of Cadang-Cadang Disease
    19931 MARAMOROSCH:CADANG-CADANG t87 Principes,37(4), 1993, pp. r87-r96 The Threat of Cadang-CadangDisease Kenr Menerr,roRoscH Department ofEntomology, Cook College, New Jersey Agricuhural Experiment Station, Rutgers-The State Uniuersity, Neu Brunswick, Nl 08903 "milk") ABSTRACT (coconut and the palms provide the only shade and building material. of cadang-cadang disease In 1975 the viroid cause Cadang-cadang disease occurs and of coconut and other palms became established in the Philippines and Guam. The suspected occurrence of spreads currently.on Luzon and a number this disease on other Pacific inlands requires confir- of other Philippine islands, as well as on mation. Replanting with the early maturing Mawa Cuam. The diseasehas been suspected on cultivar, widely advocated in the Philippines, merely a few other Pacific islands recently. provides a temporary but inadequate remedy because this cultivar is susceptible to viroid infection. The HistoricalBackground spread of the disease could be controlled by proper "dying-dying," extension work, requiring the thorough decontami- Cadang-cadang means nation of tools used by plantation workers. Concen- or slowly dying in Bicolano, the language trated sodium carbonate solution can degrade RNA viroids, remaining stable and retaining its RNA- spoken in southeastern Luzon. The first destroying activity under tropical conditions. An well-documented outbreak of the disease extensive testing program for resistance to cadang- was noticed on San Miguel Island off Luzon Such a long-term program will cadang is imperative. in 1928. By 1933 nearly 257o of the require proper funding, commitment, trained person- nel and quarantined importation of coconut cultivars coconut palms had died there and the plan- from all parts of the world.
    [Show full text]
  • Horizontal Gene Transfer Allowed the Emergence of Broad Host Range Entomopathogens
    Horizontal gene transfer allowed the emergence of broad host range entomopathogens Qiangqiang Zhanga,1, Xiaoxuan Chena,1, Chuan Xua, Hong Zhaoa, Xing Zhanga, Guohong Zenga, Ying Qiana, Ran Liua, Na Guoa, Wubin Mia, Yamin Menga, Raymond J. St. Legerb, and Weiguo Fanga,2 aMOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Science, Zhejiang University, Hangzhou 310058, China; and bDepartment of Entomology, University of Maryland, College Park, MD 20742 Edited by Thomas A. Richards, University of Exeter, Exeter, United Kingdom, and accepted by Editorial Board Member W. F. Doolittle March 10, 2019 (received for review September 24, 2018) The emergence of new pathogenic fungi has profoundly impacted Systematic studies have shown that horizontal gene transfer global biota, but the underlying mechanisms behind host shifts (HGT, i.e., the movement of genetic material between distant or- remain largely unknown. The endophytic insect pathogen Metarhizium ganisms) is prevalent in prokaryotes, in which it serves as an im- robertsii evolved from fungi that were plant associates, and entomo- portant mechanism for the emergence of new bacterial pathogens. pathogenicity is a more recently acquired adaptation. Here we report However, the extent to which HGT contributes to the evolution of that the broad host-range entomopathogen M. robertsii has 18 genes eukaryotic pathogens is largely unknown (12), in large measure that are derived via horizontal gene transfer (HGT). The necessity of because of a lack of systematic functional characterization of HGTs degrading insect cuticle served as a major selective pressure to retain (13). In this study, we report that HGT of 18 genes, many involved these genes, as 12 are up-regulated during penetration; 6 were con- in cuticle penetration, was a key mechanism in the emergence of firmed to have a role in penetration, and their collective actions are entomopathogenicity in Metarhizium, and that acquisition and/or indispensable for infection.
    [Show full text]