Refining Biological Monitoring of Hydromorphological Change in River Channels Using Benthic Riverfly Larvae (Ephemeroptera, Plecoptera and Trichoptera)

Total Page:16

File Type:pdf, Size:1020Kb

Refining Biological Monitoring of Hydromorphological Change in River Channels Using Benthic Riverfly Larvae (Ephemeroptera, Plecoptera and Trichoptera) Refining biological monitoring of hydromorphological change in river channels using benthic riverfly larvae (Ephemeroptera, Plecoptera and Trichoptera). Anna Doeser November 2016 Submitted to Biological and Environmental Sciences School of Natural Sciences University of Stirling Scotland. For the degree of Doctor of Philosophy Supervisor: Prof. Nigel Willby 1 Statement of Originality I hereby confirm that this PhD thesis is an original piece of work conducted independently by the undersigned and all work contained herein has not been submitted for any other degree. All research material has been duly acknowledged and cited. Signature of Candidate: Anna Doeser Date 2 General Abstract Rivers and their catchments are under mounting pressure from direct channel modification, intensification of land use, and from a legacy of decades of channelisation. Recent legislation, in the form of the EU Water Framework Directive, places a greater emphasis on the management of water bodies as holistic systems, and includes the explicit consideration of hydromorphological quality, which describes the hydrologic and geomorphic elements of river habitats. These are defined specifically as hydrological regime, river continuity and river morphology. This appreciates that sediment and flow regimes, along with the channel structure, provides the 'template' on which stream ecological structure and function is built. Invertebrate fauna contribute significantly to the biodiversity of rivers, and often form the basis of monitoring river health. However much of the fundamental ecological knowledge base on the response of invertebrates to hydromorphological change needed to make informed decisions and accurate predictions, is either lacking, inadequate or contradictory. This thesis addresses some of the key potential shortcomings in recent bio-assessment that others have alluded to, but which have rarely been explored in the context of direct channel manipulations. By using two case studies of, realignment in a natural upland catchment, and flood protection engineering in an urban stream, this study investigates the sensitivity of hydromorphological impact assessment methods that rely on biodiversity patterns of benthic riverfly (Ephemeroptera, Plecoptera and Trichoptera) larva. This work employed widely used biomonitoring indices of benthic riverfly larva abundance, species richness, alpha and beta diversity, and community composition, applied over a range of spatial scales, in combination with spatially contemporaneous physical habitat data, to describe and explain community changes in response to disturbance, and patterns of natural variation. The effects of restoration were investigated using a high degree of sample replication within channels and across the wider catchment, as well as contrasting spring and autumn seasons. To assess change in a small urban channel, approaches that explicitly consider spatial elements of community data, using spatial eigenvectors analysis, were applied to spatially detrend community data and directly investigate spatial patterns. Restoration of the Rottal Burn was found to be successful in restoring habitat diversity and geomorphic processes, and in turn increasing reach scale species richness and beta diversity through the gradual arrival of rare and specialist taxa into novel habitats. Catchment scale replication revealed high variation in diversity indices of modified and undisturbed streams, and 3 a strong temporal pattern related to antecedent flow conditions. Channels with greater habitat heterogeneity were able to maintain high gamma diversity during times of high flow stress by providing a number of low flow refuges along their length. The urban Brox Burn had surprisingly high riverfly richness and diversity driven by small scale hydraulic heterogeneity, created by bed roughness resulting in a range of microhabitats. Riverfly community responses to direct channel dredging could not be detected by measurements of average richness and diversity, however distinct changes were seen in gamma diversity, the identity of community members and their arrangement among sample patches. Impacts of sediment pollution release due to engineering were short lived and apparently had little detrimental impact on biodiversity. Strong spatial patterns of community assembly on the stream bed were uncovered, relating to longitudinal, edge and patchy patterns. Significant habitat drivers of community composition were confounded by high amounts of spatial autocorrelation, especially hydraulic variables. Due to the strongly physical and spatial nature of hydromorphological disturbance, turnover of species between sample locations at a range of scales, and the spatial arrangement of habitats and communities is of more use for detecting these types of subtle changes compared to mean richness or diversity. These findings have implications for the targeting of resources for monitoring of restoration, or engineering disturbances, in order to be sensitive to hydromorphological change. Efforts should target the main area of natural variability within the system, either replicating sampling in time or space to distinguish effects of impact. Spatial patterns, measures of beta diversity and species identity can be better exploited to identify systems with functioning geomorphological processes. Channel typologies proved misleading, and quantification of habitat and selection of control sites using multiple pre-defined criteria should be carried out. Studies of restoration operations and engineering impacts provide considerable opportunities for advancing our knowledge of the mechanisms that drive community response under a range of conditions to improve impact detection. 4 Acknowledgements Special thanks to my supervisor Professor Nigel Willby, who has been a constant source of encouragement and fruitful river "nerd-out" sessions over the past four years. This project would not have been possible without the generous funding from SEPA, and strong initial direction and enthusiastic support from Chris Bromley. Additional funding support through Stirling University Impact Studentship was also gratefully received. Thanks also to Prof. Dave Gilvear for providing a friendly welcome, early support and local allotment (sadly neglected). Many thanks to the assistance from Marshall Halliday and particularly Steve Hawkins of the Esk Rivers and Fisheries Trust for showing me the lay of the land in Glen Clova. Also the enthusiastic permission of the Rottal Estates landowner Dee Ward. Thanks to my fellow, past and present colleagues at the Number 1 Freshwater Detective Agency: Alan Law, Colin Bull, Charlie Perfect and Alex Seeney. Thanks to Roni Balfour, Scott Jackson and Helen Ewen for technical and logistical support. Also to Tim Paine for taking the time to get me looping with R, which has saved me many hours or work, and now I cannot stop. My thanks to those brave people who assisted in the lab and the field over years either for love or money: Lois Campbell, Megan Layton, Mellissa Shaw, David Eastwood, Ross Hepburn, Adam Welsh, Catherine Gibson-Pool, Renee Hermans, Junyao Sun. My special thanks David García Martínez and Clara Gajas Roig for spending a summer wading in the Broxburn, at least I took you to Glen Clova too! To my treasured Toothless and Abrosius, who have brought me great happiness and much needed exercise in the beautiful scenery of Stirling through stressful times (my bikes..). Finally, to my parents Kathy and Bernie, for always encouraging me to do what makes me happy and never doubt what I could achieve. Also to my brother Dr James Doeser; there may have been a small aspect of sibling rivalry prompting me to pursue this PhD, and my grandma Renee, who supported all my academic endeavours. 5 Table of Contents Statement of Originality ................................................................................................................ 2 General Abstract ........................................................................................................................... 3 Acknowledgements ....................................................................................................................... 5 List of Figures ............................................................................................................................. 10 List of Tables .............................................................................................................................. 18 Chapter 1 - General Introduction ................................................................................................ 22 1.1 River systems in modern society ...................................................................................... 22 1.2 Knowledge gaps in stream ecology .................................................................................. 24 1.3 Study aims and overview .................................................................................................. 26 Chapter 2 – Measuring and evaluating success of a restoration project using benthic riverfly larvae, implications for monitoring ............................................................................................. 29 2.1 Introduction ...................................................................................................................... 29 2.1.1 History of river modification ..................................................................................... 29 2.1.2 The fluvial landscape ...............................................................................................
Recommended publications
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 28, 2010
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Pteronarcella regularis (Hagen), Mt. Shasta City Park, California, USA. Photograph by Bill P. Stark PERLA NO. 28, 2010 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Publication of the Proceedings of the International Joint Meeting on Ephemeroptera and Plecoptera 2008…………………………………….………………….………….…5 Ninth North American Plecoptera Symposium………………………………………….6
    [Show full text]
  • In Baltic Amber 85
    Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic amber 85 Entomologie heute 22 (2010): 85-97 Overview and Descriptions of Fossil Stoneflies (Plecoptera) in Baltic Amber Übersicht und Beschreibungen von fossilen Steinfliegen (Plecoptera) im Baltischen Bernstein CELESTINE CARUSO & WILFRIED WICHARD Summary: Three new fossil species of stoneflies (Plecoptera: Nemouridae and Leuctridae) from Eocene Baltic amber are being described: Zealeuctra cornuta n. sp., Lednia zilli n. sp., and Podmosta attenuata n. sp.. Extant species of these three genera are found in Eastern Asia and in the Nearctic region. It is very probably that the genera must have been widely spread across the northern hemisphere in the Cretaceous period, before Europe was an archipelago in Eocene. The current state of knowledge about the seventeen Plecoptera species of Baltic amber is shortly presented. Due to discovered homonymies, the following nomenclatural corrections are proposed: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 and Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. Keywords: Fossil insects, fossil Plecoptera, Eocene, paleobiogeography Zusammenfassung: In dieser Arbeit werden drei neue fossile Steinfliegen-Arten (Plecoptera: Nemouridae und Leuctridae) des Baltischen Bernsteins beschrieben: Zealeuctra cornuta n. sp., Lednia zilli n. sp., Podmosta attenuata n. sp.. Rezente Arten der drei Gattungen sind in Ostasien und in der nearktischen Region nachgewiesen. Sehr wahrscheinlich breiteten sich die Gattungen in der Krei- dezeit über die nördliche Hemisphäre aus, noch bevor Europa im Eozän ein Archipel war. Der gegenwärtige Kenntnisstand über die siebzehn Plecoptera Arten des Baltischen Bernsteins wird kurz dargelegt. Wegen bestehender Homonymien werden folgende nomenklatorische Korrekturen vorgenommen: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 und Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010.
    [Show full text]
  • Biodiversity & Environment Biodiver & Enviro
    „Moderné„Moderné vzdelávanie vzdelávanie pre pre vedomostnú vedomostnú spoločnosť spoločnosť/ / ProjektProjekt je jespolufinancovaný spolufinancovaný zo zozdrojov zdrojov EÚ“ EÚ“ BiodiversityBiodiversity && EnvironmentEnvironment VolumeVolume 12 12 NumberNumber 1 1 PrešovPrešov 20 202020 BIODIVERSITY & ENVIRONMENT (Acta Universitatis Prešoviensis, Folia Oecologica) Ročník 12., číslo 1. Prešov 2020 Časopis je jedným z výsledkov realizácie projektu: „Inovácia vzdelávacieho a výskumného procesu ekológie ako jednej z nosných disciplín vedomostnej spoločnosti“, ITMS: 26110230119, podporeného z operačného programu Vzdelávanie, spolufinancovaného zo zdrojov EÚ. Editor: RNDr. Adriana Eliašová, PhD. Recenzenti: RNDr. Alexander Csanády, PhD. RNDr. Adriana Eliašová, PhD. doc. Ing. Ladislav Hamerlik, PhD. Ing. Martin Hauptvogl, PhD. Mgr. Tomáš Jászay, PhD. RNDr. Juliana Krokusová, PhD. doc. Mgr. Peter Manko, PhD. doc. Ing. Milan Novikmec, PhD. Ing. Jozef Oboňa, PhD. RNDr. Martin Pizňak, PhD. RNDr. Matej Žiak, PhD. Redakčná rada: Predseda: doc. Mgr. Martin Hromada, PhD. Výkonný redaktor: RNDr. Adriana Eliašová, PhD. Členovia: RNDr. Mária Balážová, PhD. RNDr. Michal Baláž, PhD. RNDr. Alexander Csanády, PhD. RNDr. Lenka Demková, PhD. prof. PaedDr. Ján Koščo, PhD. doc. Mgr. Peter Manko, PhD. doc. Ruslan Maryichuk, CSc. doc. Ing. Milan Novikmec, PhD. Ing. Jozef Oboňa, PhD. Ing. Marek Svitok, PhD. Mgr. Iveta Škodová, PhD. doc. RNDr. Marcel Uhrin, PhD. Adresa redakcie: Biodiversity & Environment Katedra ekológie FHPV PU Ulica 17. novembra č. 1 081 16 Prešov Tel: 051 / 75 70 358 e-mail: [email protected] Vydavateľ: Vydavateľstvo Prešovskej univerzity v Prešove Sídlo vydavateľa: Ulica 17. novembra č. 15, 080 01 Prešov IČO vydavateľa: 17 070 775 Periodicita: 2 čísla ročne Jazyk: slovenský/anglický/český Poradie vydania: 1/2020 Dátum vydania: jún 2020 Foto na obálke: Bufo bufo (autor Mgr.
    [Show full text]
  • Spatial and Phylogenetic Structure of DNA-Species of Alpine Stonefly
    bioRxiv preprint doi: https://doi.org/10.1101/765578; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Spatial and phylogenetic structure of DNA-species of Alpine stonefly community 2 assemblages across seven habitats 3 4 Maribet Gamboa1, Joeselle Serrana1, Yasuhiro Takemon2, Michael T. Monaghan3, Kozo 5 Watanabe1 6 7 8 1Ehime University, Department of Civil and Environmental Engineering, Matsuyama, Japan 9 10 2Water Resources Research Center, Disaster Prevention Research Institute, Kyoto University, 11 6110011 Gokasho, Uji, Japan 12 13 3Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 301, 14 12587 Berlin, Germany 15 16 17 18 19 Correspondence 20 Kozo Watanabe, Ehime University, Department of Civil and Environmental Engineering, 21 Matsuyama, Japan. E-mail: [email protected] 22 bioRxiv preprint doi: https://doi.org/10.1101/765578; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 1. Stream ecosystems are spatially heterogeneous environments due to the habitat diversity 25 that define different microhabitat patches within a single area. Despite the influence of 26 habitat heterogeneity on the biodiversity of insect community, little is known about how 27 habitat heterogeneity governs species coexistence and community assembly.
    [Show full text]
  • Bibliographia Trichopterorum
    Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94.
    [Show full text]
  • Bollettino Della Società Entomologica Italiana
    BOLL.ENTOMOL_152_3_cover.qxp_Layout 1 14/12/20 10:43 Pagina a Poste Italiane S.p.A. ISSN 0373-3491 Spedizione in % Abbonamento Postale - 70 DCB Genova BOLLETTINO DELLA SOCIETÀ ENTOMOLOGICA ITALIANA Volume 152 Fascicolo III settembre - dicembre 2020 31 dicembre 2020 SOCIETÀ ENTOMOLOGICA ITALIANA via Brigata Liguria 9 Genova BOLL.ENTOMOL_152_3_cover.qxp_Layout 1 14/12/20 10:43 Pagina b SOCIETÀ ENTOMOLOGICA ITALIANA Sede di Genova, via Brigata Liguria, 9 presso il Museo Civico di Storia Naturale n Consiglio Direttivo 2018-2020 Presidente: Francesco Pennacchio Vice Presidente: Roberto Poggi Segretario: Davide Badano Amministratore/Tesoriere: Giulio Gardini Bibliotecario: Antonio Rey Direttore delle Pubblicazioni: Pier Mauro Giachino Consiglieri: Alberto Alma, Alberto Ballerio, Andrea Battisti, Marco A. Bologna, Achille Casale, Marco Dellacasa, Loris Galli, Gianfranco Liberti, Bruno Massa, Massimo Meregalli, Luciana Tavella, Stefano Zoia Revisori dei Conti: Enrico Gallo, Giuliano Lo Pinto Revisori dei Conti supplenti: Giovanni Tognon, Marco Terrile n Consulenti Editoriali PAOLO AUDISIO (Roma) - EMILIO BALLETTO (Torino) - MAURIZIO BIONDI (L’Aquila) - MARCO A. BOLOGNA (Roma) PIETRO BRANDMAYR (Cosenza) - ROMANO DALLAI (Siena) - MARCO DELLACASA (Calci, Pisa) - ERNST HEISS (Innsbruck) - MANFRED JÄCH (Wien) - FRANCO MASON (Verona) - LUIGI MASUTTI (Padova) - ALESSANDRO MINELLI (Padova) - JOSÉ M. SALGADO COSTAS (Leon) - VALERIO SBORDONI (Roma) - BARBARA KNOFLACH-THALER (Innsbruck) STEFANO TURILLAZZI (Firenze) - ALBERTO ZILLI (Londra) - PETER ZWICK (Schlitz). ISSN 0373-3491 BOLLETTINO DELLA SOCIETÀ ENTOMOLOGICA ITALIANA Fondata nel 1869 - Eretta a Ente Morale con R. Decreto 28 Maggio 1936 Volume 152 Fascicolo III settembre - dicembre 2020 31 dicembre 2020 REGISTRATO PRESSO IL TRIBUNALE DI GENOVA AL N. 76 (4 LUGLIO 1949) Prof. Achille Casale - Direttore Responsabile Spedizione in Abbonamento Postale 70% - Quadrimestrale Pubblicazione a cura di PAGEPress - Via A.
    [Show full text]
  • High Cryptic Diversity in Aquatic Insects: an Integrative Approach to Study the Enigmatic Leuctra Inermis Species Group (Plecoptera)
    75 (3): 497– 521 20.12.2017 © Senckenberg Gesellschaft für Naturforschung, 2017. High cryptic diversity in aquatic insects: an integrative approach to study the enigmatic Leuctra inermis species group (Plecoptera) Simon Vitecek *, 1, 4, #, Gilles Vinçon 2, #, Wolfram Graf 3 & Steffen U. Pauls 4 1 Department for Limnology and Bio-Oceanography, Universität Wien, UZA I, Althanstrasse 14, 1090 Vienna, Austria; Simon Vitecek [simon. [email protected]] — 2 55 Bd Joseph Vallier, F 38100 Grenoble, France; Gilles Vinçon [[email protected]] — 3 Institute of Hydrobio- logy and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; Wolfram Graf [[email protected]] — 4 Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Steffen U. Pauls [[email protected]] — * Corresponding author; # Equally contributing authors Accepted 05.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 11.xii.2017. Editors in charge: Gavin Svenson & Klaus-Dieter Klass Abstract Within the genus Leuctra (Plecoptera: Leuctridae) the L. inermis species group comprises 17 – 18 species in which males lack the char- acteristic tergal abdominal ornamentation of many Leuctra species, and females have an accessory receptacle in the dorsal portion of the vagina. Taxonomically the group is challenging, and congruence of existing morphological species concepts and phylogenetic relationships of taxa is hitherto not assessed. Here, we estimate phylogenetic relations of morphologically defined species by concatenated maximum likelihood (ML) and Bayesian combined species tree and species delimitation analysis. We aim to clarify the status of 15 European species of the L.
    [Show full text]
  • MIAMI UNIVERSITY the Graduate School
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Mohammed Abdullah Al-Saffar Candidate for the Degree DOCTOR OF PHILOSOPHY ______________________________________ David J. Berg, Director ______________________________________ Bruce J. Cochrane, Reader ______________________________________ John C. Morse, Reader ______________________________________ Michael J. Vanni, Reader ______________________________________ Thomas O. Crist, Reader ______________________________________ Mary C. Henry, Graduate School Representative ABSTRACT CONSERVATION BIOLOGY IN POORLY STUDIED FRESHWATER ECOSYSTEMS: FROM ACCELERATED IDENTIFICATION OF WATER QUALITY BIOINDICATORS TO CONSERVATION PLANNING by Mohammed A. Al-Saffar The Tigris and Euphrates Rivers and their tributaries form the arteries of life in the central part of the Middle East, where climate change and anthropogenic disturbance have been evident in recent decades. While the Tigris River has a long history of human use, the conservation status for the majority of its basin is poorly known. In addition, planning for conservation, given limited time, funds, and prior information, has remained a challenge. In my dissertation research, I sampled 53 randomly selected sites in the Kurdistan Region (the KR) of northern Iraq, a poorly studied region of the Upper Tigris and Euphrates freshwater ecoregion, for water quality bioindicators, mayflies (Insecta, Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) (a.k.a. EPT).
    [Show full text]
  • Trichoptera) of Great Britain
    Natural England Commissioned Report NECR191 A review of the status of the caddis flies (Trichoptera) of Great Britain Trichoptera Species Status No.27 First published 11 March 2016 www.gov.uk/natural -england Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Making good decisions to conserve species WALLACE, I.D. 2016. A review of the status of should primarily be based upon an objective the caddis flies (Trichoptera) of Great Britain - process of determining the degree of threat to Species Status No.27. Natural England the survival of a species. The recognised Commissioned Reports, Number191. international approach to undertaking this is by assigning the species to one of the IUCN threat categories. This report was commissioned to update the threat status of caddis from work originally undertaken in 1987 and 1991 respectively, using the IUCN methodology for assessing threat. Reviews for other invertebrate groups will follow. Natural England Project Manager - Jon Webb, [email protected] Author - I.D. Wallace [email protected] Keywords - Caddis flies, invertebrates, red list, IUCN, status reviews, GB rarity status, Trichoptera Further information This report can be downloaded from the Natural England website: www.gov.uk/government/organisations/natural-england. For information on Natural England publications contact the Natural England Enquiry Service on 0845 600 3078 or e-mail [email protected]. This report is published by Natural England under the Open Government Licence - OGLv3.0 for public sector information.
    [Show full text]
  • (Trichoptera: Leptoceridae) in Croatia
    Biologia 72/7: 796—806, 2017 Section Zoology DOI: 10.1515/biolog-2017-0087 DNA barcoding and first records of two rare Adicella species (Trichoptera: Leptoceridae) in Croatia Anđela Cukuši´ c´1,RenataCuk´ 2,AnaPrevišic´3,MartinaPodnar4,AntunDelic´5 &MladenKučinic´3* 1Geonatura Ltd. Consultancy in Nature Protection, Fallerovo šetalište 22, 10000 Zagreb, Croatia 2Hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia 3Department of Biology, Laboratory for Entomology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; e-mail: [email protected] 4Croatian Natural History Museum, Demetrova 1, 10 000 Zagreb, Croatia 5Faculty of Ecudation, Department in Petrinja, University of Zagreb, Matice Hrvatske 12, 44250, Petrinja, Croatia Abstract: Two species of the genus Adicella, A. cremisa Malicky, 1972 and A. balcanica Botosaneanu & Novak, 1965, were recorded in the summer period of 2014 which represent the first records of these species in Croatia. The former was collected at two relatively distant sites, the Krapina and the Zrmanja rivers, while the later was collected at the Krupa River. Both species were identified by morphological characteristics as well as DNA barcoding method. We calculated the uncorrected pairwise distances within Adicella and used molecular phylogenetic approach to delimit species.A.cremisafrom Croatia showed no significant difference in the mtCOI region and they are highly similar to A. cremisa from Italy. Additionally, the ecological preferences and distribution of Adicella species are presented. Our findings represent a significant contribution to the aquatic biodiversity of the Western Balkans. Key words: molecular identification; aquatic insects; caddisfly Introduction The Croatian caddisfly fauna was encompassed in several papers using the mtCOI gene in similar con- DNA barcoding method is used to identify species of text (e.g., Previši´c et al.
    [Show full text]
  • Biological Recording in 2019 Outer Hebrides Biological Recording
    Outer Hebrides Biological Recording Discovering our Natural Heritage Biological Recording in 2019 Outer Hebrides Biological Recording Discovering our Natural Heritage Biological Recording in 2019 Robin D Sutton This publication should be cited as: Sutton, Robin D. Discovering our Natural Heritage - Biological Recording in 2019. Outer Hebrides Biological Recording, 2020 © Outer Hebrides Biological Recording 2020 © Photographs and illustrations copyright as credited 2020 Published by Outer Hebrides Biological Recording, South Uist, Outer Hebrides ISSN: 2632-3060 OHBR are grateful for the continued support of NatureScot 1 Contents Introduction 3 Summary of Records 5 Insects and other Invertebrates 8 Lepidoptera 9 Butterflies 10 Moths 16 Insects other than Lepidoptera 20 Hymenoptera (bees, wasps etc) 22 Trichoptera (caddisflies) 24 Diptera (true flies) 26 Coleopotera (beetles) 28 Odonata (dragonflies & damselflies) 29 Hemiptera (bugs) 32 Other Insect Orders 33 Invertebrates other than Insects 35 Terrestrial & Freshwater Invertebrates 35 Marine Invertebrates 38 Vertebrates 40 Cetaceans 41 Other Mammals 42 Amphibians & Reptiles 43 Fish 44 Fungi & Lichens 45 Plants etc. 46 Cyanobacteria 48 Marine Algae - Seaweeds 48 Terrestrial & Freshwater Algae 49 Hornworts, Liverworts & Mosses 51 Ferns 54 Clubmosses 55 Conifers 55 Flowering Plants 55 Sedges 57 Rushes & Woodrushes 58 Orchids 59 Grasses 60 Invasive Non-native Species 62 2 Introduction This is our third annual summary of the biological records submitted by residents and visitors, amateur naturalists, professional scientists and anyone whose curiosity has been stirred by observing the wonderful wildlife of the islands. Each year we record an amazing diversity of species from the microscopic animals and plants found in our lochs to the wild flowers of the machair and the large marine mammals that visit our coastal waters.
    [Show full text]
  • 19 Recent Plecoptera Literature
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Perla Jahr/Year: 2010 Band/Volume: 28 Autor(en)/Author(s): Redaktion Artikel/Article: Recent Plecoptera Literature 19-33 RECENT PLECOPTERA LITERATURE (CALENDAR YEAR 2009 AND EARLIER). Papers made available after 1 February 2010 will be included in the next issue. If papers were missed, please bring these to the attention of the Managing Editor. Dr. Peter Zwick is thanked for reviewing and providing additions to this present list. Adams, S. E., A. S. Adams, and W. E. Holben. 2009. Tri-trophic linkages in disease: Pathogen transmission to Rainbow Trout through stonefly prey. Environmental Entomology 38: 1022-1027. Amore, V. and R. Fochetti. 2009. Present knowledge on the presence of hemocyanin in stoneflies (Insecta: Plecoptera). Aquatic Insects, 31, Supplement 1:577-583. Amore, V, M. Belardinelli, L. Guerra, F. Buonocore, A. M. Fausto, N. Ubero-Pascal, and R. Fochetti.. 2009. Do all stoneflies nymphs have respiratory proteins? Further data on the presence of hemocyanin in the larval stages of Plecoptera species. Insect Molecular Biology 18: 203-211. Arimoro, F. O. and R. B. Ikomi. 2009. Ecological integrity of upper Warri River, Niger Delta usuing aquatic insects as bioindicators. Ecological Indicators 9: 455-461. Asiah, W. N., W. M. A., M. R. Che Salmah, and I. Sivec. 2009. Description of Etrocorema belumensis sp. n. from Royal Belum State Park, Perak, Malaysis. Illiesia 5: 182-187. Baumann, R. W. and B. C. Kondratieff. 2009. A study of the eastern Nearctic Alloperla (Plecoptera: Chloroperlidae) with hirsute epiprocts using the scanning electron microscope.
    [Show full text]