1720/1721 Vectorscope (S/N B060000 & Above) 070-5846-07

Total Page:16

File Type:pdf, Size:1020Kb

1720/1721 Vectorscope (S/N B060000 & Above) 070-5846-07 Instruction Manual 1720/1721 Vectorscope (S/N B060000 & Above) 070-5846-07 Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. www.tektronix.com Copyright E Tektronix, Inc., 1986, 1990, 1993, 1995. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published ma- terial. Specifications and price change privileges reserved. The following are registered trademarks: TEKTRONIX and TEK. For product related information, phone: 800-TEKWIDE (800-835-9433), ext. TV. For further information, contact: Tektronix, Inc., Corporate Offices, P.O. Box 1000, Wilsonville, OR 97070--1000, U.S.A. Phone: (503) 627--7111; TLX: 192825; TWX: (910) 467--8708; Cable: TEKWSGT. WARRANTY Tektronix warrants that this product, that it manufactures and sells, will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If any such product proves defec- tive during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expi- ration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products re- turned to any other locations. This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inade- quate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modifica- tion or integration increases the time or difficulty of servicing the product. THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VEN- DORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DE- FECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUS- TOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAM- AGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NO- TICE OF THE POSSIBILITY OF SUCH DAMAGES. Table of Contents Table of Contents....................................................... i General Safety Summary................................................ viii Preface ............................................................... x Section 1 Introduction and Specification .................................... 1--1 Accessories ............................................................ 1--2 Standard Accessories................................................. 1--2 Optional Accessories................................................. 1--2 Options ............................................................... 1--2 CRT Options........................................................ 1--2 Power Cord Options.................................................. 1--2 Safety Information...................................................... 1--3 Specifications .......................................................... 1--3 Section 2 Operating Instructions ........................................... 2--1 Front-Panel Controls and Indicators......................................... 2--1 INPUT ............................................................ 2--2 GAIN ............................................................. 2--2 PHASE ............................................................ 2--3 DISPLAY.......................................................... 2--3 MISCELLANEOUS.................................................. 2--3 Rear-Panel Connectors................................................... 2--4 BNC Connectors.................................................... 2--4 Subminiature D-Type Connectors....................................... 2--5 Power Input........................................................ 2--6 Miscellaneous....................................................... 2--6 Using the 1720/1721 in Auxiliary Mode..................................... 2--6 INPUT Switching.................................................... 2--7 REF Switching...................................................... 2--7 LINE SELECT...................................................... 2--7 STORE ............................................................ 2--7 RECALL .......................................................... 2--7 Measurement Applications................................................ 2--14 Color Measurements................................................. 2--14 Functional Use of the Vector Graticule...................................... 2--18 Measurement of Color Bars............................................ 2--18 Differential Gain and Phase Measurements............................... 2--20 X Y Measurements...................................................... 2--22 Making Stereo Audio Phase Measurements............................... 2--22 Looking at Incidental Carrier Phase Modulation........................... 2--23 Service Safety Summary................................................. s--1 Section 3 Installation ..................................................... 3--1 Packaging.......................................................... 3--1 Electrical Installation.................................................... 3--1 1720/1721 i Table of Contents Power Source....................................................... 3--1 Mains Frequency and Voltage Ranges.................................... 3--1 Operating Options................................................... 3--1 X Y INPUT Connector............................................... 3--1 Auxiliary Connector.................................................. 3--3 Mechanical Installation................................................... 3--4 Cabinetizing........................................................ 3--4 Securing the Instrument in its Cabinet................................... 3--6 Rack Mounting...................................................... 3--7 Custom Installation.................................................. 3--9 Section 4 Theory of Operation ............................................. 4--1 Overview .............................................................. 4--1 Block Diagram......................................................... 4--2 Video Input......................................................... 4--2 Luminance Processing................................................ 4--2 Microprocessor...................................................... 4--2 Gain Cell .......................................................... 4--3 Chrominance Processing.............................................. 4--3 Demodulators....................................................... 4--4 Output Amplifiers................................................... 4--4 CRT Blanking...................................................... 4--4 Circuit Descriptions..................................................... 4--5 DIAGRAM 1 INPUT AND DEFLECTION AMPLIFIERS....................... 4--5 Video Input Amplifiers............................................... 4--5 Gain Cell .......................................................... 4--6 DIAGRAM 2 SUBCARRIER REGENERATOR............................... 4--6 Reference Switch.................................................... 4--7 Luminance and Chrominance Amplifiers................................. 4--8 Sync Separator...................................................... 4--8 Bowes Oscillator.................................................... 4--8 Back Porch Sample.................................................. 4--8 Loop Phase Detector and Amplifier..................................... 4--8 Quadrature Phase Detector and Amplifier................................. 4--9 Burst Clamp........................................................ 4--9 Lock Detector and Bandwidth Switch.................................... 4--9 Error Amplifier..................................................... 4--9 PAL Phasing........................................................ 4--10 VCXO ............................................................. 4--10 DIAGRAM 3 DEMODULATOR........................................... 4--11 V-Axis Switcher..................................................... 4--11 Chrominance
Recommended publications
  • Tau-100 Test Report S/N: 02280382
    TAU-100 TEST REPORT S/N: 02280382 Prepared by: Aaron Sivacoe Date: April 8, 2005 Contents Contents ____________________________________________________________________ 2 Test Equipment______________________________________________________________ 3 Performance Specifications ____________________________________________________ 4 Visual Power Output Rating ___________________________________________________ 4 Visual Power Adjustment Capability ____________________________________________ 5 Aural Power Output Rating ___________________________________________________ 6 Carrier Frequency Tolerance __________________________________________________ 8 Visual Frequency Response __________________________________________________ 11 Intermodulation Distortion ___________________________________________________ 14 Spurious Emissions_________________________________________________________ 16 Modulation _______________________________________________________________ 18 K Pulse to Bar (Kpb) Rating__________________________________________________ 19 2T Pulse K (K2T) Rating ____________________________________________________ 20 Chrominance-Luminance Gain Inequality _______________________________________ 21 Chrominance-Luminance Delay Inequality ______________________________________ 22 Differential Gain Distortion __________________________________________________ 23 Differential Phase Distortion _________________________________________________ 24 Group Delay Response ______________________________________________________ 25 Horizontal Timing__________________________________________________________
    [Show full text]
  • Iq-Analyzer Manual
    iQ-ANALYZER User Manual 6.2.4 June, 2020 Image Engineering GmbH & Co. KG . Im Gleisdreieck 5 . 50169 Kerpen . Germany T +49 2273 99 99 1-0 . F +49 2273 99 99 1-10 . www.image-engineering.de Content 1 INTRODUCTION ........................................................................................................... 5 2 INSTALLING IQ-ANALYZER ........................................................................................ 6 2.1. SYSTEM REQUIREMENTS ................................................................................... 6 2.2. SOFTWARE PROTECTION................................................................................... 6 2.3. INSTALLATION ..................................................................................................... 6 2.4. ANTIVIRUS ISSUES .............................................................................................. 7 2.5. SOFTWARE BY THIRD PARTIES.......................................................................... 8 2.6. NETWORK SITE LICENSE (FOR WINDOWS ONLY) ..............................................10 2.6.1. Overview .......................................................................................................10 2.6.2. Installation of MxNet ......................................................................................10 2.6.3. Matrix-Net .....................................................................................................11 2.6.4. iQ-Analyzer ...................................................................................................12
    [Show full text]
  • Tektronix Television Systems Measurement Concepts 062-1064-00
    Measurement Concepts Television Systems TELEVISION SYSTEM MEASUREMENTS BY GERALD A. EASTMAN MEASUREMENT CONCEPTS INTRODUCTION The primary intent of this book is to acquaint the reader with the functional elements of a television broadcast studio and some of the more common diagnostic and measurement concepts on which video measurement techniques are based. In grouping the functional elements of the broadcasting studio, two areas of primary concern can be identified -- video signal sources and the signal routing path from the source to the transmitter. The design and maintenance of these functional elements is based in large measure on their use and purpose. Understanding the use and purpose of any device always enhances the engineer's or technician's ability to maintain the performance initially designed into the equipment. The functional elements of the broadcast studio will be described in the first portion of this book including a brief discussion of how these functional elements interrelate to form an integrated system. In the broadcasting studio, once the video sources and routing systems are initially established, maintaining quality control of both the sources and the routing path becomes one of the major concerns of the broadcast engineer. Since the picture information is transmitted as a video waveform, quality control can in large measure be accomplished in terms of waveform distortions and subjective picture quality degradations. Four major test waveforms, each designed to observe and measure a specific type of distortion, are commonly used in a broadcast studio. The diagnostic information contained in each waveform will be described in the latter portion of this book in terms of the measurements commonly made with each of the four waveforms.
    [Show full text]
  • Master Thesis
    v v v v vv v v v v v v v v v v v v v v v v v v Fachhochschule Köln Fakultät für Informations-, Medien- und Elektrotechnik Institut für Medien- und Phototechnik Masterstudiengang Medien- und Bildtechnologie Masterarbeit Entwicklung einer Softwareschnittstelle für objektive Analyse der Videobildqualität Borys Golik Matr.-Nr. 11038740 Erstgutachter: Prof. Dr.-Ing. Klaus Ruelberg, Fachhochschule Köln Zweitgutachter: Dipl.-Ing. Dietmar Wueller, Image Engineering 19. Februar 2010 v v v v vv v v v v v v v v v v v v v v v v v v Cologne University of Applied Sciences Faculty of Information, Media and Electrical Engineering Institute of Media and Imaging Technology Degree program of Master of Engineering in Media and Imaging Technology Master Thesis Software Interface for Video Image Quality Analysis Borys Golik Matriculation No. 11038740 First Reviewer: Prof. Dr.-Ing. Klaus Ruelberg, Cologne University of Applied Sciences Second Reviewer: Dipl.-Ing. Dietmar Wueller, Image Engineering February 19, 2010 Zusammenfassung Titel: Entwicklung einer Softwareschnittstelle für objektive Analyse der Videobildqualität Autor: Dipl.-Ing. Borys Golik Gutachter: Prof. Dr. Klaus Ruelberg, Dipl.-Ing. Dietmar Wueller Zusammenfassung: Einer der zentralen Aspekte in der Videoproduktion ist die Frage nach der Bildqualität. Im Bezug auf Messtechnik birgt die Umstellung auf digitale Systeme viel Potenzial, aber auch neue Frage- stellungen. Die Entwicklung und die Umsetzung einer Softwareschnitt- stelle, die eine objektive softwarebasierete Auswertung der Bildqualität ermöglicht, sind ein wesentlicher Bestandteil dieser Arbeit. Der schriftli- che Teil beschreibt ausgewälte Gebiete der Messtechnik im Hinblick auf die Farbmetrik und erläutert die Implementierung der Software. Stichwörter: Video, Bildqualität, Messtechnik Sperrvermerk: Die vorgelegte Arbeit unterliegt keinem Sperrvermerk.
    [Show full text]
  • Critical RF Measurements in Cable, Satellite and Terrestrial DTV Systems
    Application Note Critical RF Measurements in Cable, Satellite and Terrestrial DTV Systems The secret to maintaining reliable and high-quality services over different digital television transmission systems is to focus on critical factors that may compromise the integrity of the system. This application note describes those critical RF measurements which help to detect such problems before viewers lose their service and picture completely. Critical RF Measurements in Cable, Satellite and Terrestrial DTV Systems Application Note Modern digital cable, satellite, and terrestrial systems behave The Key RF parameters quite differently when compared to traditional analog TV as the signal is subjected to noise, distortion, and interferences RF signal strength How much signal is being received along its path. Todays consumers are familiar with simple analog TV reception. If the picture quality is poor, an indoor Constellation diagram Characterizes link and modulator antenna can usually be adjusted to get a viewable picture. performance Even if the picture quality is still poor, and if the program is of MER An early indicator of signal degradation, MER enough interest, the viewer will usually continue watching as (Modulation is the ratio of the power of the signal to the long as there is sound. Error Ratio) power of the error vectors, expressed in dB DTV is not this simple. Once reception is lost, the path EVM EVM is a measurement similar to MER but to recovery isn t always obvious. The problem could be (Error Vector expressed differently. EVM is the ratio of the caused by MPEG table errors, or merely from the RF power Magnitude) amplitude of the RMS error vector to the dropping below the operational threshold or the cliff point.
    [Show full text]
  • Ntsc/Pal Vectorscope
    VOLUME 2 NUMBER 2 NTSC/PAL VECTORSCOPE Leader's Model 5212 represents the new 3-Channel Operation generation of vectorscopes. It is equally at home Despite a multi-fold increase in operating in NTSC and PAL operations, and this will give functions, the front panel of the 5212 remains us an opportunity to compare monitoring aspects simple and familiar. Look at Figure 2-1. The of both systems in this issue. Other operating INPUT selectors show a choice of three features that will be covered include 3-channel channels plus an EXTernal reference. The latter operation, simplified, high-resolution may raise a question because the sync REF key measurements of differential gain and phase, also refers to INT/EXT. So what's EXT doing in precise inter-signal phase measurements, Y/C the INPUT group? The answer is that keying operation, and the use of the vectorscope in EXT in the INPUT group causes the burst of the stereo monitoring. Other aspects include menu- external reference to appear on the vector selected calibration, the use of presets and display. This means that you can overlay one to remote control. three channels and also display the burst of the external reference at the same time. Figure 2-2 Fig. 2-1 Front panel of Leader's NTSC/PAL 3-channel vectorscope, Model 5212. Teleproduction Test is produced by Leader Instruments Corporation, a manufacturer of video, audio and industrial test instruments. Permission is granted to reprint part or all of the contents provided a credit line is included listing the following: Leader Instruments Corporation 6484 Commerce Drive Cypress, CA 9060 1 800 645-5104 • 714 527-7490 Figure 2-2 Three-channel overlay with the burst of the Figure 2-3 Main menu called up by pressing the MENU key external reference on the (B-Y) axis.
    [Show full text]
  • Cable Technician Pocket Guide Subscriber Access Networks
    RD-24 CommScope Cable Technician Pocket Guide Subscriber Access Networks Document MX0398 Revision U © 2021 CommScope, Inc. All rights reserved. Trademarks ARRIS, the ARRIS logo, CommScope, and the CommScope logo are trademarks of CommScope, Inc. and/or its affiliates. All other trademarks are the property of their respective owners. E-2000 is a trademark of Diamond S.A. CommScope is not sponsored, affiliated or endorsed by Diamond S.A. No part of this content may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from CommScope, Inc and/or its affiliates ("CommScope"). CommScope reserves the right to revise or change this content from time to time without obligation on the part of CommScope to provide notification of such revision or change. CommScope provides this content without warranty of any kind, implied or expressed, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. CommScope may make improvements or changes in the products or services described in this content at any time. The capabilities, system requirements and/or compatibility with third-party products described herein are subject to change without notice. ii CommScope, Inc. CommScope (NASDAQ: COMM) helps design, build and manage wired and wireless networks around the world. As a communications infrastructure leader, we shape the always-on networks of tomor- row. For more than 40 years, our global team of greater than 20,000 employees, innovators and technologists have empowered customers in all regions of the world to anticipate what's next and push the boundaries of what's possible.
    [Show full text]
  • The Effects of Single Ended, Push-Pull, and Feedforward Distribution Systems on High Speed Data and Video Signals
    THE EFFECTS OF SINGLE ENDED, PUSH-PULL, AND FEEDFORWARD DISTRIBUTION SYSTEMS ON HIGH SPEED DATA AND VIDEO SIGNALS RONALD J. HRANAC Western Division Engineer JONES INTERCABLE, INC. Englewood, Colorado ABSTRACT Do different types of cable television distribution electronics-- single ended, push-pull, Field testing was conducted to investigate the and feedforward -- have any effect on video or high effects of cable television system electronics on speed data signals in the downstream path? Are video downstream video and high speed data transmission. signals and high speed data signals affected Three system configurations were used for the similarly by cable system characteristics such as testing: a 15 year old single ended 12 channel plant; a frequency response, noise, channel loading, and 3 year old 35 channel push-pull plant; and a 1 year old signal levels? 54 channel feed forward plant. Various RF, video, and digital tests and measurements were performed to To address these questions, several tests and determine if a relationship exists between typical measurements were performed in cable systems cable television system operating characteristics operating with single ended, push-pull, and and the performance of video and high speed data feedforward distribution electronics. Measurements signals on these systems. were made to determine the extent of video delay and phase distortions, data errors, and data waveform INTRODUCTION envelope distortions in the three types of distribution systems. Analog RF tests and Cable television systems have provided operators measurements determined the effects of frequency with an excellent means of delivering entertainment response, carrier to noise, channel loading, signal services to subscribers for over 30 years.
    [Show full text]
  • Instruction Manual 1720SCH-Series Vectorscope/SCH Monitor S/N
    Instruction Manual 1720SCH-Series Vectorscope/SCH Monitor S/N B040000 & Above 070-8341-04 Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved. Printed in the U.S.A. Tektronix, Inc., P.O. Box 1000, Wilsonville, OR 97070–1000 TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. WARRANTY Tektronix warrants that this product, that it manufactures and sells, will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If any such product proves defec- tive during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expi- ration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located.
    [Show full text]
  • TDS3VID Extended Video Application Module User Manual
    User Manual TDS3VID Extended Video Application Module 071-0328-02 *P071032802* 071032802 Copyright E Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved. TEKTRONIX, TEK, TEKPROBE, and TekSecure are registered trademarks of Tektronix, Inc. DPX, WaveAlert, and e*Scope are trademarks of Tektronix, Inc. Contacting Tektronix Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA For product information, sales, service, and technical support: H In North America, call 1-800-833-9200. H Worldwide, visit www.tektronix.com to find contacts in your area. Contents Safety Summary............................. 2 Installing the Application Module................ 5 TDS3VID Features........................... 5 Accessing Extended Video Functions............ 7 Extended Video Conventions................... 10 Changes to the Video Trigger Menu.............. 11 Changes to the Display Menu................... 15 Changes to the Acquire Menu.................. 19 Video QuickMenu............................ 19 Examples.................................. 25 1 Safety Summary To avoid potential hazards, use this product only as specified. While using this product, you may need to access other parts of the system. Read the General Safety Summary in other system manuals for warnings and cautions related to operating the system. Preventing Electrostatic Damage CAUTION. Electrostatic discharge (ESD) can damage components in the oscilloscope and its accessories. To prevent ESD, observe these precautions when directed to do so. Use a Ground Strap. Wear a grounded antistatic wrist strap to discharge the static voltage from your body while installing or removing sensitive components.
    [Show full text]
  • (SN B040000 and Above) PAL/NTSC Vectorscope 070-7635-04
    Instruction Manual 1725 (SN B040000 and Above) PAL/NTSC Vectorscope 070-7635-04 Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. Copyright E Tektronix, Inc., 1991, 1993, 1995. All rights reserved. Printed in U.S.A. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved. The following are registered trademarks: TEKTRONIX and TEK. For further information, contact: Tektronix, Inc., Corporate Offices, P.O. Box 1000, Wilsonville, OR 97070–1000, U.S.A. Phone: (503) 627–7111; TLX: 192825; TWX: (910) 467–8708; Cable: TEKWSGT. Tektronix’ Television Division participates in the Broadcast Professionals Forum (BPFORUM) on the CompuServe Information Service. Press releases on new products, product-specific newsletters, application information and technical papers are among the types of information uploaded. Additionally, product specialists from Tektronix will be “on line” to answer questions regarding product applications, operation and maintenance. Instructions for accessing the information on CompuServe can be found in the current Tektronix Television Products Catalog. CompuServe access is currently available in the U.S.A., Canada, Europe, Japan, Australia, New Zealand, Argentina, Venezuela, Korea, and Taiwan. WARRANTY Tektronix warrants that this product, that it manufactures and sells, will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If any such product proves defec- tive during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.
    [Show full text]
  • Color Correction for Video, Second Edition, by Steve Finland +41 52 675 3777 Hullfish and Jaime Fowler
    3 USING SCOPES AS CREATIVE TOOLS The next two important tools — after the video monitor itself — in analyzing a video image are a waveform monitor and vector- scope. There are three general categories of scopes available. The fi rst type is completely hardware based, with the waveform and vectorscope trace and graticule presented on a screen built into the scope (see Figure 3-2 ). The second type uses dedicated hard- ware to display the scopes on a separate computer display or as an overlay on your video monitor (see Figure 3-1 ). This is often referred to as a rasterizer or hybrid. The third type is soft- ware based using a video card, with the resulting image of the scope displayed in the software UI on your computer monitor (see Figure 3-3 ). Choosing Your Scope One of the main aspects that distinguish good scopes from bad is the resolution of the trace. One of the main aspects that distinguish good scopes from bad is the resolution of the trace. The trace, which is the scope ’ s visual representation of the video signal on the monitor, has a much higher resolution in hardware-based scopes and rasterizers. The resolution of the trace is particularly important when analyzing the video signal to be color corrected. This is where almost all software scopes — and even some hybrid scopes that are displayed on the video monitor — suffer. Hybrid scopes presented on a com- puter monitor are preferable to those presented on a video monitor because of the increased resolution possible with computer CRTs or LCDs.
    [Show full text]