The Effects of Single Ended, Push-Pull, and Feedforward Distribution Systems on High Speed Data and Video Signals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tau-100 Test Report S/N: 02280382
TAU-100 TEST REPORT S/N: 02280382 Prepared by: Aaron Sivacoe Date: April 8, 2005 Contents Contents ____________________________________________________________________ 2 Test Equipment______________________________________________________________ 3 Performance Specifications ____________________________________________________ 4 Visual Power Output Rating ___________________________________________________ 4 Visual Power Adjustment Capability ____________________________________________ 5 Aural Power Output Rating ___________________________________________________ 6 Carrier Frequency Tolerance __________________________________________________ 8 Visual Frequency Response __________________________________________________ 11 Intermodulation Distortion ___________________________________________________ 14 Spurious Emissions_________________________________________________________ 16 Modulation _______________________________________________________________ 18 K Pulse to Bar (Kpb) Rating__________________________________________________ 19 2T Pulse K (K2T) Rating ____________________________________________________ 20 Chrominance-Luminance Gain Inequality _______________________________________ 21 Chrominance-Luminance Delay Inequality ______________________________________ 22 Differential Gain Distortion __________________________________________________ 23 Differential Phase Distortion _________________________________________________ 24 Group Delay Response ______________________________________________________ 25 Horizontal Timing__________________________________________________________ -
Specific Assumptions Milestone 1
Specific Assumptions Milestone 1 - Advisory Committee Final Report A. Assumptions 1. Advisory Committee completes final report on current schedule 2. Advisory Committee report recommends system choice 3. No litigation that impedes process Task 2 - NPRM Generation & Channel Allotment A. Assumptions 1. FCC issues NPRM on announced schedule 2. Channels are allotted to cities at release of NPRM 3. FCC accepts Advisory Committee recommendation on system choice 4. No litigation that impedes process Task 3 - Comment & Decision Period A. Assumptions 1. Allows time for comments & reply comments 2. Provides time for preparation of Final Report & Order 3. No litigation that impedes process Milestone 4 - FCC Report & Order A. Assumptions 1. Final Report & Order confirms choice of single system Task 5 - Station Assignment Process A. Assumptions 1. Station channel assignment conducted after Final Report & Order 2. Stations cannot begin designs until after channel assignment 3. No litigation that impedes process Task 6 - Litigation A. Assumptions 1. Stations will experience some delay from litigation 2. All litigation, wherever in process, aggregated at this point 3. Litigation is not extended, is resolved on expedited basis 4. Litigation affects certainty of channel assignment for stations -2- Task 7 - Transmitter Site Acquisition A. Assumptions 1. Station determines non-usability of existing tower well in advance 2. Station begins search for land in advance of FCC decision 3. Station waits for end of litigation before completing acquisition 4. Little suitable space available in major metropolitan areas 5. Sufficient space can ultimately be found on the market Task 8 - AntennalTower Design A. Assumptions 1. Station will not begin final design until channel & location are certain 2. -
ANSI/SCTE 232 2016 Key Performance Metrics
ENGINEERING COMMITTEE Energy Management Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 232 2016 Key Performance Metrics: Energy Efficiency & Functional Density of CMTS, CCAP, and Time Server Equipment ANSI/SCTE 232 2016 NOTICE The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interchangeability, best practices and ultimately the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members. SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents, and accepts full responsibility for any damage and/or claims arising from the adoption of such documents. Attention is called to the possibility that implementation of this document may require the use of subject matter covered by patent rights. By publication of this document, no position is taken with respect to the existence or validity of any patent rights in connection therewith. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. -
Iq-Analyzer Manual
iQ-ANALYZER User Manual 6.2.4 June, 2020 Image Engineering GmbH & Co. KG . Im Gleisdreieck 5 . 50169 Kerpen . Germany T +49 2273 99 99 1-0 . F +49 2273 99 99 1-10 . www.image-engineering.de Content 1 INTRODUCTION ........................................................................................................... 5 2 INSTALLING IQ-ANALYZER ........................................................................................ 6 2.1. SYSTEM REQUIREMENTS ................................................................................... 6 2.2. SOFTWARE PROTECTION................................................................................... 6 2.3. INSTALLATION ..................................................................................................... 6 2.4. ANTIVIRUS ISSUES .............................................................................................. 7 2.5. SOFTWARE BY THIRD PARTIES.......................................................................... 8 2.6. NETWORK SITE LICENSE (FOR WINDOWS ONLY) ..............................................10 2.6.1. Overview .......................................................................................................10 2.6.2. Installation of MxNet ......................................................................................10 2.6.3. Matrix-Net .....................................................................................................11 2.6.4. iQ-Analyzer ...................................................................................................12 -
Cable Network Handbook
CEL-TR-HFC-HANDBOOK-V4_3-091001 Technical Report Cable Network Handbook; Overview of Architecture, Technical Features and Services of Integrated Broadband and Cable TV Networks CEL-TR-HFC-HANDBOOK-V4_3-091001 2 Cable Network Handbook Keywords Cable Network, HFC Network, Television, Broadband Services Cable Europe Labs Cable House Avenue des Arts 41 B – 1040 Brussels BELGIUM Tel.: +32 2 521 17 63 Fax: +32 2 521 79 76 Important notice This technical report is the result of a cooperative effort undertaken at the direction of Cable Europe Labs for the benefit of the cable industry and its customers. This document may contain references to other documents not owned or controlled by Cable Europe Labs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. Neither Cable Europe Labs nor any member company is responsible to any party for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document, or any document referenced herein. This document is furnished on an "AS IS" basis and neither Cable Europe Labs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. Individual copies of the present document can be downloaded from: http://www.cable-europe.eu/labs The present document may be made available in more than one electronic version or in print. -
?R~Ctical Aspects Op Home Teletext Gary W. Stanton
?R~CTICAL ASPECTS OP HOME TELETEXT GARY W. STANTON SOUTHERN SATELLITE SYSTEMS, INC. TULSA, OKLAHOMA 74136 ABSTRACT transmitted on the vertical blanking interval on a satellite signal. Since There have been many learned papers that date, knowledge has been obtained describing the detailed technical on the various parameters that affect aspects of teletext transmission; most successfull vertical blanking interval in language only understood by others transmission to and through the cable with an intimate knowledge of the environment. subject. This paper defines the During the last four years requirements for the practical knowledge has been gained, various implement~tion of home teletext standards have evolved, equipment has reception in the cable television been designed and services implemented environment. using vertical blanking interval Since data integrity is the measure technology. Numerous degradation factors of technical success, the items which peculiar to satellite television effect data integrity are deliniated. transmission and to the cable Included are the satellite path, receive environment have been identified. To earth station, satellite receiver, cable offset these factors, error correcting modulators, AML link, and the cable techniques have been developed which plant itself. Results of various give several orders of magnitude measurements and observations describing improvement in data integrity. With the effect of each subsystem have been these improvements, home teletext is made and the results will be described. suitable not only for video display, but Practical suggestions for achieving also for electronic mail and downloading desired results in the most critical of computer software and games. areas are presented. HISTORY INTRODUCTION It is generally acknowledged that The first vertical interval the first commercial use of vertical transmission to the cable television blanking interval technology was by the industry was conducted at the NCTA British Broadcasting Company in Great Convention in Las Vegas in 1979. -
1720/1721 Vectorscope (S/N B060000 & Above) 070-5846-07
Instruction Manual 1720/1721 Vectorscope (S/N B060000 & Above) 070-5846-07 Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. www.tektronix.com Copyright E Tektronix, Inc., 1986, 1990, 1993, 1995. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published ma- terial. Specifications and price change privileges reserved. The following are registered trademarks: TEKTRONIX and TEK. For product related information, phone: 800-TEKWIDE (800-835-9433), ext. TV. For further information, contact: Tektronix, Inc., Corporate Offices, P.O. Box 1000, Wilsonville, OR 97070--1000, U.S.A. Phone: (503) 627--7111; TLX: 192825; TWX: (910) 467--8708; Cable: TEKWSGT. WARRANTY Tektronix warrants that this product, that it manufactures and sells, will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If any such product proves defec- tive during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expi- ration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. -
Wide Dynamic Range Field Strength Meter
Thomas M. Alldread, VA7TA 7056 Railway Ave, Courtenay, BC V9J 1N4, Canada; [email protected] Wide Dynamic Range Field Strength Meter This portable 90-dB dynamic range RF field strength meter is simple to build. While reviewing the specification sheet during normal use this broadband sensitive sensitivity to 200 mA by adding a suitable for the venerable AD8307 logarithmic instrument is very often in close proximity to shunt resistance. The AD8307 and 200 mA RF detector IC, I noticed that the output the sense antenna. Thus an EMI-noisy digital panel meter along with a few surrounding circuit type shown in a block diagram is a design could result in sensitivity-limiting passive components are all that are needed current source. It occurred to me that this residual readings. Additionally, analog to build a reasonably accurate, wide dynamic feature could be easily utilized to drive a meters can be read at a glance and are easy range FSM. conventional analog meter directly. Although to view in bright sunlight — a typical field Expanding the Scale I enjoy building gear that utilizes modern measurement environment. Finally, while After experimenting with the prototype day microcontrollers and wireless devices adjusting equipment to obtain maximum proof-of-concept basic circuit and confirming my thoughts became focused on how simple or minimum signal strength, analog meters that it worked as expected, I decided that it would be to build a wide dynamic range provide a much easier to use peak or null a 10:1 scale expander capability would be field strength meter (FSM) by mixing recent signal strength indicator than a digital beneficial. -
Field Strength Meter and Spectrum Analyzer
FIELD STRENGTH METERS & SPECTRUM ANALYZERS BROADCAST, CABLE, SATELLITE, IPTV, OPTICAL AND WIFI RANGER Neo EASY OPERATION HEVC H.265 WIFI ANALYZER WIDEBAND LNB Hybrid user interface High Efficiency Video Dual display: Extended SAT band on (touch + keyboard) Codec SPECTRUM and DATA a single SPAN www.promaxelectronics.com High efficiency Video Codec HEVC H.265 decoding RANGERNeo is the new industry standard in field strength meters, TV and spectrum analyzers. It covers from 5 to 2500 MHz and it includes HEVC decoding. ULTRA FAST SPECTRUM TRIPLE SPLIT DISPLAY LIGHT WEIGHT (< 3 kg) SMART BATTERY CONTROL -2- CHECK COMPARISON TABLE For broadcasters Network delay margin Network planners determine what time instant transmitters should use to broadcast the transport stream bits. They all have to do it at a precise given time, i.e 700 ms in the picture. The difference between the network delay and the required transmission time (700 ms in the example) is called the “network delay margin” and it will be different depending on the specific transmitter location. The lower the 'network delay margin' the higher the chances of that particular transmitter missing the assigned transmission time. Receiving and analyzing T2-MI signals T2-MI is the modulator interface signal used in the 2nd generation digital terrestrial television broadcasting system. It is physically transported to the TV towers using IP or RF and it is accessible via network devices in the form of ASI or IP signals. RANGERNeo can receive a T2-MI signal in both these formats, performing IP transport quality measurements, T2-MI packet analysis and PLP de-encapsulation. -
Tektronix Television Systems Measurement Concepts 062-1064-00
Measurement Concepts Television Systems TELEVISION SYSTEM MEASUREMENTS BY GERALD A. EASTMAN MEASUREMENT CONCEPTS INTRODUCTION The primary intent of this book is to acquaint the reader with the functional elements of a television broadcast studio and some of the more common diagnostic and measurement concepts on which video measurement techniques are based. In grouping the functional elements of the broadcasting studio, two areas of primary concern can be identified -- video signal sources and the signal routing path from the source to the transmitter. The design and maintenance of these functional elements is based in large measure on their use and purpose. Understanding the use and purpose of any device always enhances the engineer's or technician's ability to maintain the performance initially designed into the equipment. The functional elements of the broadcast studio will be described in the first portion of this book including a brief discussion of how these functional elements interrelate to form an integrated system. In the broadcasting studio, once the video sources and routing systems are initially established, maintaining quality control of both the sources and the routing path becomes one of the major concerns of the broadcast engineer. Since the picture information is transmitted as a video waveform, quality control can in large measure be accomplished in terms of waveform distortions and subjective picture quality degradations. Four major test waveforms, each designed to observe and measure a specific type of distortion, are commonly used in a broadcast studio. The diagnostic information contained in each waveform will be described in the latter portion of this book in terms of the measurements commonly made with each of the four waveforms. -
Master Thesis
v v v v vv v v v v v v v v v v v v v v v v v v Fachhochschule Köln Fakultät für Informations-, Medien- und Elektrotechnik Institut für Medien- und Phototechnik Masterstudiengang Medien- und Bildtechnologie Masterarbeit Entwicklung einer Softwareschnittstelle für objektive Analyse der Videobildqualität Borys Golik Matr.-Nr. 11038740 Erstgutachter: Prof. Dr.-Ing. Klaus Ruelberg, Fachhochschule Köln Zweitgutachter: Dipl.-Ing. Dietmar Wueller, Image Engineering 19. Februar 2010 v v v v vv v v v v v v v v v v v v v v v v v v Cologne University of Applied Sciences Faculty of Information, Media and Electrical Engineering Institute of Media and Imaging Technology Degree program of Master of Engineering in Media and Imaging Technology Master Thesis Software Interface for Video Image Quality Analysis Borys Golik Matriculation No. 11038740 First Reviewer: Prof. Dr.-Ing. Klaus Ruelberg, Cologne University of Applied Sciences Second Reviewer: Dipl.-Ing. Dietmar Wueller, Image Engineering February 19, 2010 Zusammenfassung Titel: Entwicklung einer Softwareschnittstelle für objektive Analyse der Videobildqualität Autor: Dipl.-Ing. Borys Golik Gutachter: Prof. Dr. Klaus Ruelberg, Dipl.-Ing. Dietmar Wueller Zusammenfassung: Einer der zentralen Aspekte in der Videoproduktion ist die Frage nach der Bildqualität. Im Bezug auf Messtechnik birgt die Umstellung auf digitale Systeme viel Potenzial, aber auch neue Frage- stellungen. Die Entwicklung und die Umsetzung einer Softwareschnitt- stelle, die eine objektive softwarebasierete Auswertung der Bildqualität ermöglicht, sind ein wesentlicher Bestandteil dieser Arbeit. Der schriftli- che Teil beschreibt ausgewälte Gebiete der Messtechnik im Hinblick auf die Farbmetrik und erläutert die Implementierung der Software. Stichwörter: Video, Bildqualität, Messtechnik Sperrvermerk: Die vorgelegte Arbeit unterliegt keinem Sperrvermerk. -
Distributed PON Architectures for North American MSO's Next
FEATURED TOPIC Distributed PON Architectures for North American MSO’s Next-Generation Access Keiichi TSUJIMOTO*, Yohei HAMADA, Howard ABRAMSON, and Kazuya MATSUMOTO ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- A traditional PON (passive optical network) consists of an OLT (optical line terminal) installed in a cable television headend and ONUs (optical network units) at subscriber premises (Fiber-to-the-Premise, FTTP) or a distribution point serving multiple subscribers (Fiber-to-the-Distribution-Point, FTTdp). This paper describes a new class of products Sumitomo Electric Industries, Ltd. is introducing to assist North American MSOs (multiple system operators) to address fundamental requirements for their access networks such as distance, subscribers served per port, trunk fiber conservation, uniform operations support systems, and the cost of space, power, and cooling of equipment. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Keywords: 10G-EPON, FTTH, DPoE 1. Introduction PON (passive optical network) is an efficient, economical, large capacity method for providing network access to subscribers. A conventional PON architecture, which