Hart Georgia R.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Global Dispersal of the Non-Endemic Invasive Red Alga Gracilariavermiculophylla in the Ecosystems of the Euro-Asia Coastal W
Review Article Oceanogr Fish Open Access J Volume 8 Issue 1 - July 2018 Copyright © All rights are reserved by Vincent van Ginneken DOI: 10.19080/OFOAJ.2018.08.555727 The Global Dispersal of the Non-Endemic Invasive Red Alga Gracilaria vermiculophylla in the Ecosystems of the Euro-Asia Coastal Waters Including the Wadden Sea Unesco World Heritage Coastal Area: Awful or Awesome? Vincent van Ginneken* and Evert de Vries Bluegreentechnologies, Heelsum, Netherlands Submission: September 05, 2017; Published: July 06, 2018 Corresponding author: Vincent van Ginneken, Bluegreentechnologies, Heelsum, Netherlands, Email: Abstract Gracilaria vermiculophylla (Ohmi) Papenfu ß 1967 (Rhodophyta, Gracilariaceae) is a red alga and was originally described in Japan in 1956 as Gracilariopsis vermiculophylla G. vermiculophylla is primarily used as a precursor for agar, which is widely used in the pharmaceutical and food industries. It has been introduced to the East . It is thought to be native and widespread throughout the Northwest Pacific Ocean. temperature) and can grow in an extremely wide variety of conditions; factors which contribute to its invasiveness. It invades estuarine areas Pacific, the West Atlantic and the East Atlantic, where it rapidly colonizes new environments. It is highly tolerant of stresses (nutrient, salinity, invaded: Atlantic, North Sea, Mediterranean and Baltic Sea. The Euro-Asian brackish Black-Sea have not yet been invaded but are very vulnerable towhere intense it out-competes invasion with native G. vermiculophylla algae species and modifies environments. The following European coastal and brackish water seas are already G. vermiculophylla among the most potent invaders out of 114 non-indigenous because they macro-algae are isolated species from indirect Europe. -
(Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a Cryptic Alien and Invasive Macroalga and Taxonomic Correction1
J. Phycol. 42, 139–141 (2005) r 2005 Phycological Society of America DOI: 10.1111/j.1529-8817.2005.00160.x NOTE GRACILARIA VERMICULOPHYLLA (RHODOPHYTA, GRACILARIALES) IN HOG ISLAND BAY, VIRGINIA: A CRYPTIC ALIEN AND INVASIVE MACROALGA AND TAXONOMIC CORRECTION1 Mads Solgaard Thomsen2 Department of Applied Sciences, Auckland University of Technology, Auckland, New Zealand Carlos Frederico Deluqui Gurgel, Suzanne Fredericq Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, Louisiana 70504-2451, USA and Karen J. McGlathery Department of Environmental Sciences, Clark Hall, University of Virginia, Charlottesville, Virginia 22903, USA Gracilaria in Virginia, USA, is abundant and Lachlan and Bird 1986). Unfortunately, in many cases, composed of thalli either having relatively flat or Gracilaria species are difficult to identify based on mor- cylindrical branches. These two morphologies were phological features (Oliveira et al. 2000, Gurgel and referred to previously as G. foliifera (Forsska˚l) Fredericq 2004). Given these difficulties and new pos- Bgesen and G. verrucosa (Hudson) Papenfuss. sibilities of accurate identification by molecular biology However, G. verrucosa is regarded an invalid techniques, Gracilaria sensu lato species are regularly name, and the flat specimens are now referred to as changing taxonomic status (Bird and Rice 1990, Bell- G. tikvahiae McLachlan. This has created confusion orin et al. 2002, Gurgel and Fredericq 2004, Gurgel about the nomenclature of Gracilaria from this re- et al. 2004). gion. Here we document that the cylindrical form Gracilaria is a particularly important genus in Vir- that dominates Hog Island Bay, Virginia, is ginia, USA, where it is abundant in lagoons and estu- G. -
Transfer of Bromoform Present in Asparagopsis Taxiformis to Milk and Urine of Lactating Dairy Cows
foods Article Safety and Transfer Study: Transfer of Bromoform Present in Asparagopsis taxiformis to Milk and Urine of Lactating Dairy Cows Wouter Muizelaar 1,2,* , Maria Groot 3 , Gert van Duinkerken 1, Ruud Peters 3 and Jan Dijkstra 2 1 Wageningen Livestock Research, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands; [email protected] 2 Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands; [email protected] 3 Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; [email protected] (M.G.); [email protected] (R.P.) * Correspondence: [email protected]; Tel.: +31-317-487-941 Abstract: Enteric methane (CH4) is the main source of greenhouse gas emissions from ruminants. The red seaweeds Asparagopsis taxiformis (AT) and Asparagopsis armata contain halogenated compounds, including bromoform (CHBr3), which may strongly decrease enteric CH4 emissions. Bromoform is known to have several toxicological effects in rats and mice and is quickly excreted by the animals. This study investigated the transfer of CHBr3 present in AT to milk, urine, feces, and animal tissue when incorporated in the diet of dairy cows. Twelve lactating Holstein-Friesian dairy cows were randomly assigned to three treatment groups, representing the target dose (low), 2× target dose (medium), and 5× target dose (high). The adaptation period lasted seven days, and subsequently Citation: Muizelaar, W.; Groot, M.; cows were fed AT for 22 days maximally. The transfer of CHBr3 to the urine at days 1 and 10 (10–148 van Duinkerken, G.; Peters, R.; µg/L) was found with all treatments. -
0Acb4972804347e820a4ee77ac
Molecules 2012, 17, 7241-7254; doi:10.3390/molecules17067241 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Aqueous Extracts of the Edible Gracilaria tenuistipitata are Protective Against H2O2-Induced DNA Damage, Growth Inhibition, and Cell Cycle Arrest Jing-Iong Yang 1, Chi-Chen Yeh 1, Jin-Ching Lee 2, Szu-Cheng Yi 2, Hurng-Wern Huang 3, Chao-Neng Tseng 4,* and Hsueh-Wei Chang 4,5,* 1 Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan 2 Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan 3 Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan 4 Department of Biomedical Science and Environmental Biology, Graduate Institute of Natural Products, Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan 5 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan * Authors to whom correspondence should be addressed; E-Mails: [email protected] (C.-N.T.); [email protected] (H.-W.C.); Tel.: +886-7-312-1101 (ext. 2691) (H.-W.C.); Fax: +886-7-312-5339 (H.-W.C.). Received: 16 April 2012; in revised form: 5 June 2012 / Accepted: 7 June 2012 / Published: 13 June 2012 Abstract: Potential antioxidant properties of an aqueous extract of the edible red seaweed Gracilaria tenuistipitata (AEGT) against oxidative DNA damage were evaluated. The AEGT revealed several antioxidant molecules, including phenolics, flavonoids and ascorbic acid. In a cell-free assay, the extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity that significantly reduced H2O2-induced plasmid DNA breaks in a dose-response manner (P < 0.001). -
AVW: Aug 21, 2020
Ag & Vet Weekly Monday August 17 – Friday August 21, 2020 All the news on ASX-listed agriculture and veterinary companies * AUGUST 21: ASX DOWN, AVW-44 UP: WIDE OPEN UP 13.5%; ANATARA DOWN 17% * CANN GROUP OVERSUBSCRIBED PLAN RAISES $25.9m, TOTAL $40.2m * A2 MILK REVENUE UP 33% TO $1.6b, PROFIT UP 34% TO $352m * TASSAL REVENUE UP 0.3% TO $562.5m, PROFIT UP 18% TO $69m * A2 MILK: OFFERS $246m TO ACQUIRE 75% OF MATAURA VALLEY MILK * CSIRO, FUTURE FEED SEAWEED TO REDUCE CATTLE METHANE * REGENEUS: US PATENT FOR SYGENUS FOR SKIN CONDITIONS * ALTHEA: 740 NEW MARIJUANA PATIENTS IN JULY FOR $692k * MEMPHASYS, NEWCASTLE UNI PARTNER FOR IVF * AVECHO: ‘TPM INCREASES MARIJUANA CBD SOLUBILIZATION, IN-VITRO’ * ROOTS REQUESTS ‘CAPITAL RAISING’ TRADING HALT * SEAFARMS PLEADS SCHULTZ TO 50% ASX PRICE QUERY * LAZARD REDUCES TO 9.25% OF RIDLEY * LAZARD BELOW 5% IN COSTA * FONTERRA APPOINTS TEH-HAN CHOW GREATER CHINA CEO * MGC: ‘10-PATIENT ARTEMIC FOR COVID-19 DATA MEETS ENDPOINTS’ MARKET REPORT The Australian stock market was down 0.1 percent on Friday August 21, 2020, with the ASX200 down 8.8 points to 6,111.2 points. Twenty-two of the AVW-44 stocks were up, 14 fell, five traded unchanged and three were untraded. Wide Open Agriculture was the best, up 16.5 cents or 13.5 percent to $1.39, with 2,179,192 shares traded. AP Hemp and Nanollose climbed more than 11 percent; Terragen was up 9.1 percent; Tassal improved 5.2 percent; Althea, Cannpal, Clean Seas and Pharmaust rose more than four percent; Elixinol was up 3.1 percent; Creso, Huon, Next Science and THC climbed two percent or more; A2 Milk, Bubs, Opyl and Palla Pharma were up more than one percent; with Apiam, Clover, Nufarm and Select Harvests up by less than one percent. -
Seaweed Resources of the Hawaiian Islands
Botanica Marina 2019; 62(5): 443–462 Review Karla J. McDermid*, Keelee J. Martin and Maria C. Haws Seaweed resources of the Hawaiian Islands https://doi.org/10.1515/bot-2018-0091 rolls, in salads, in stews, with raw fish, or even in cakes Received 4 October, 2018; accepted 15 May, 2019; online first and custards. Real seaweed connoisseurs will tell you what 25 June, 2019 species they have in the refrigerator; for some it is Gracilaria or Asparagopsis; for others it is Pyropia or Ulva. The story Abstract: Up-to-date information about the unique marine of seaweed resources in the Hawaiian Islands is influenced flora of the Hawaiian Islands – its environment, uses, cul- by the geographic isolation of the islands, their dynamic tivation, conservation, and threats – comes from many volcanic development, and the deep tradition of human sources, and is compiled here for the first time. The sea- use of marine macroalgae that can be traced to the early weed resources of the Hawaiian Islands are taxonomically Polynesian inhabitants of the islands. Numerous phycolo- diverse, biogeographically intriguing, ecologically complex, gists have made important contributions to the taxonomy of culturally significant, and economically valuable. Macroal- the Hawaiian marine flora: Charles Gaudichaud-Beaupré, gae, historically and today, are critical components of the Joseph F. Rock, Minnie Reed, Marie Neal, W.A. Setchell, Paul marine ecosystem, as well as the diet and culture of people Galtsoff, G.F. Papenfuss, Max Doty, George Hollenberg, Gerry living in the islands. Some Hawaiian seaweeds are known Kraft, Bernabé Santelices, Mitchell Hoyle, Lynn Hodgson, to contain valuable bioactive compounds that have poten- Bill Magruder, John Huisman, and most notably Isabella tial medical and pharmaceutical applications. -
"Phycology". In: Encyclopedia of Life Science
Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition. -
Australian Seaweed Industry Blueprint
Australian Seaweed Industry Blueprint A Blueprint for Growth by Jo Kelly Australian Seaweed Institute August 2020 ii © 2020 AgriFutures Australia All rights reserved. ISBN 978-1-76053-112-6 ISSN 1440-6845 Australian Seaweed Industry Blueprint – A Blueprint for Growth Publication No. 20-072 Project No. PRJ-012324 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, AgriFutures Australia, the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, AgriFutures Australia, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to AgriFutures Australia Communications Team on 02 6923 6900. -
New England Seaweed Culture Handbook Sarah Redmond University of Connecticut - Stamford, [email protected]
University of Connecticut OpenCommons@UConn Seaweed Cultivation University of Connecticut Sea Grant 2-10-2014 New England Seaweed Culture Handbook Sarah Redmond University of Connecticut - Stamford, [email protected] Lindsay Green University of New Hampshire - Main Campus, [email protected] Charles Yarish University of Connecticut - Stamford, [email protected] Jang Kim University of Connecticut, [email protected] Christopher Neefus University of New Hampshire, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/seagrant_weedcult Part of the Agribusiness Commons, and the Life Sciences Commons Recommended Citation Redmond, Sarah; Green, Lindsay; Yarish, Charles; Kim, Jang; and Neefus, Christopher, "New England Seaweed Culture Handbook" (2014). Seaweed Cultivation. 1. https://opencommons.uconn.edu/seagrant_weedcult/1 New England Seaweed Culture Handbook Nursery Systems Sarah Redmond, Lindsay Green Charles Yarish, Jang Kim, Christopher Neefus University of Connecticut & University of New Hampshire New England Seaweed Culture Handbook To cite this publication: Redmond, S., L. Green, C. Yarish, , J. Kim, and C. Neefus. 2014. New England Seaweed Culture Handbook-Nursery Systems. Connecticut Sea Grant CTSG‐14‐01. 92 pp. PDF file. URL: http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf. 92 pp. Contacts: Dr. Charles Yarish, University of Connecticut. [email protected] Dr. Christopher D. Neefus, University of New Hampshire. [email protected] For companion video series on YouTube, -
The Potential of Seaweeds As a Source of Functional Ingredients of Prebiotic and Antioxidant Value
antioxidants Review The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value Andrea Gomez-Zavaglia 1 , Miguel A. Prieto Lage 2 , Cecilia Jimenez-Lopez 2 , Juan C. Mejuto 3 and Jesus Simal-Gandara 2,* 1 Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, Calle 47 y 116, La Plata, Buenos Aires 1900, Argentina 2 Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo – Ourense Campus, E32004 Ourense, Spain 3 Department of Physical Chemistry, Faculty of Science, University of Vigo – Ourense Campus, E32004 Ourense, Spain * Correspondence: [email protected] Received: 30 June 2019; Accepted: 8 September 2019; Published: 17 September 2019 Abstract: Two thirds of the world is covered by oceans, whose upper layer is inhabited by algae. This means that there is a large extension to obtain these photoautotrophic organisms. Algae have undergone a boom in recent years, with consequent discoveries and advances in this field. Algae are not only of high ecological value but also of great economic importance. Possible applications of algae are very diverse and include anti-biofilm activity, production of biofuels, bioremediation, as fertilizer, as fish feed, as food or food ingredients, in pharmacology (since they show antioxidant or contraceptive activities), in cosmeceutical formulation, and in such other applications as filters or for obtaining minerals. In this context, algae as food can be of help to maintain or even improve human health, and there is a growing interest in new products called functional foods, which can promote such a healthy state. -
Tropical Macroalgae As a Natural Alternative for the Mitigation of Methane Emissions in Ruminant Livestock Systems
ResearchOnline@JCU This file is part of the following reference: Machado, Lorenna (2015) Tropical macroalgae as a natural alternative for the mitigation of methane emissions in ruminant livestock systems. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/46419/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/46419/ Tropical macroalgae as a natural alternative for the mitigation of methane emissions in ruminant livestock systems Thesis submitted by Lorenna Machado BSc, MSc In July 2015 for the degree of Doctor of Philosophy in the Centre for Macroalgal Resources & Biotechnology, and the College of Marine and Environmental Sciences James Cook University Statement of access ______________________________________________________________________ I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the university Library and, via the Australian Digital Theses Network, for use elsewhere. I understand that, as an unpublished work, this thesis has significant protection under the Copyright Act and I do not wish to place any further restrictions upon access to this work. __________________________ _________________________ Signature Date ii Animal ethics ______________________________________________________________________ The research presented and reported in this thesis was conducted according to experimental guidelines approved by CSIRO Animal Ethics Committee (A5/2011) and in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (NHMRC, 2004). -
Ecological and Biochemical Aspects in Algal Infectious Diseases
Cah. Biol. Mar. (2001) 42 : 91-100 Ecological and biochemical aspects in algal infectious diseases Kamal BOUARAB1, Bernard KLOAREG1, Philippe POTIN1* and Juan A. CORREA2 1 UMR 1931 CNRS-Goëmar, Station Biologique CNRS-INSU-Université Paris 6, Place Georges-Teissier, BP 74, F29682 Roscoff Cedex, France. * Fax : 33 2 98 29 23 24 - E-mail: [email protected] 2 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile. E-mail: [email protected] Abstract: Infectious diseases in algae are caused by a wide variety of organisms, from virus to other algae. In recent years, important advances in understanding some of these diseases from ecological, cellular and biochemical view points have been done. In an ecological context, epidemiological studies are very limited and restricted to red algal hosts. Those studies show that infections appear to affect large segments of host populations, and the expression of some diseases is clearly aggregated, with consistent patterns of seasonal fluctuation. This, together with host specificity trials and transplant experiments, strongly suggests a genetic base as determinant of host susceptibility and disease expression. In a biochemical context, the highly specific association established between the sporophytic phase of the red algal host Chondrus crispus and its green algal endophytic pathogen Acrochaete operculata provides an excellent model to investigate the biochemical basis of recognition and signal transduction which determines host susceptibility, specificity and pathogenicity. Our results emphasize the role of oligosaccharide signals in modulating resistance against pathogens in marine algae. These results are discussed in the light of recent reports of an oligoalginate-induced oxidative burst in the brown algal kelp Laminaria digitata and of oligoagarose-induced responses in the association between Gracilaria conferta and a pathogenic marine bacterium.