Marine Algae of Virginia As a Source of Agar and Agaroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Global Dispersal of the Non-Endemic Invasive Red Alga Gracilariavermiculophylla in the Ecosystems of the Euro-Asia Coastal W
Review Article Oceanogr Fish Open Access J Volume 8 Issue 1 - July 2018 Copyright © All rights are reserved by Vincent van Ginneken DOI: 10.19080/OFOAJ.2018.08.555727 The Global Dispersal of the Non-Endemic Invasive Red Alga Gracilaria vermiculophylla in the Ecosystems of the Euro-Asia Coastal Waters Including the Wadden Sea Unesco World Heritage Coastal Area: Awful or Awesome? Vincent van Ginneken* and Evert de Vries Bluegreentechnologies, Heelsum, Netherlands Submission: September 05, 2017; Published: July 06, 2018 Corresponding author: Vincent van Ginneken, Bluegreentechnologies, Heelsum, Netherlands, Email: Abstract Gracilaria vermiculophylla (Ohmi) Papenfu ß 1967 (Rhodophyta, Gracilariaceae) is a red alga and was originally described in Japan in 1956 as Gracilariopsis vermiculophylla G. vermiculophylla is primarily used as a precursor for agar, which is widely used in the pharmaceutical and food industries. It has been introduced to the East . It is thought to be native and widespread throughout the Northwest Pacific Ocean. temperature) and can grow in an extremely wide variety of conditions; factors which contribute to its invasiveness. It invades estuarine areas Pacific, the West Atlantic and the East Atlantic, where it rapidly colonizes new environments. It is highly tolerant of stresses (nutrient, salinity, invaded: Atlantic, North Sea, Mediterranean and Baltic Sea. The Euro-Asian brackish Black-Sea have not yet been invaded but are very vulnerable towhere intense it out-competes invasion with native G. vermiculophylla algae species and modifies environments. The following European coastal and brackish water seas are already G. vermiculophylla among the most potent invaders out of 114 non-indigenous because they macro-algae are isolated species from indirect Europe. -
(Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a Cryptic Alien and Invasive Macroalga and Taxonomic Correction1
J. Phycol. 42, 139–141 (2005) r 2005 Phycological Society of America DOI: 10.1111/j.1529-8817.2005.00160.x NOTE GRACILARIA VERMICULOPHYLLA (RHODOPHYTA, GRACILARIALES) IN HOG ISLAND BAY, VIRGINIA: A CRYPTIC ALIEN AND INVASIVE MACROALGA AND TAXONOMIC CORRECTION1 Mads Solgaard Thomsen2 Department of Applied Sciences, Auckland University of Technology, Auckland, New Zealand Carlos Frederico Deluqui Gurgel, Suzanne Fredericq Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, Louisiana 70504-2451, USA and Karen J. McGlathery Department of Environmental Sciences, Clark Hall, University of Virginia, Charlottesville, Virginia 22903, USA Gracilaria in Virginia, USA, is abundant and Lachlan and Bird 1986). Unfortunately, in many cases, composed of thalli either having relatively flat or Gracilaria species are difficult to identify based on mor- cylindrical branches. These two morphologies were phological features (Oliveira et al. 2000, Gurgel and referred to previously as G. foliifera (Forsska˚l) Fredericq 2004). Given these difficulties and new pos- Bgesen and G. verrucosa (Hudson) Papenfuss. sibilities of accurate identification by molecular biology However, G. verrucosa is regarded an invalid techniques, Gracilaria sensu lato species are regularly name, and the flat specimens are now referred to as changing taxonomic status (Bird and Rice 1990, Bell- G. tikvahiae McLachlan. This has created confusion orin et al. 2002, Gurgel and Fredericq 2004, Gurgel about the nomenclature of Gracilaria from this re- et al. 2004). gion. Here we document that the cylindrical form Gracilaria is a particularly important genus in Vir- that dominates Hog Island Bay, Virginia, is ginia, USA, where it is abundant in lagoons and estu- G. -
0Acb4972804347e820a4ee77ac
Molecules 2012, 17, 7241-7254; doi:10.3390/molecules17067241 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Aqueous Extracts of the Edible Gracilaria tenuistipitata are Protective Against H2O2-Induced DNA Damage, Growth Inhibition, and Cell Cycle Arrest Jing-Iong Yang 1, Chi-Chen Yeh 1, Jin-Ching Lee 2, Szu-Cheng Yi 2, Hurng-Wern Huang 3, Chao-Neng Tseng 4,* and Hsueh-Wei Chang 4,5,* 1 Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan 2 Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan 3 Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan 4 Department of Biomedical Science and Environmental Biology, Graduate Institute of Natural Products, Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan 5 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan * Authors to whom correspondence should be addressed; E-Mails: [email protected] (C.-N.T.); [email protected] (H.-W.C.); Tel.: +886-7-312-1101 (ext. 2691) (H.-W.C.); Fax: +886-7-312-5339 (H.-W.C.). Received: 16 April 2012; in revised form: 5 June 2012 / Accepted: 7 June 2012 / Published: 13 June 2012 Abstract: Potential antioxidant properties of an aqueous extract of the edible red seaweed Gracilaria tenuistipitata (AEGT) against oxidative DNA damage were evaluated. The AEGT revealed several antioxidant molecules, including phenolics, flavonoids and ascorbic acid. In a cell-free assay, the extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity that significantly reduced H2O2-induced plasmid DNA breaks in a dose-response manner (P < 0.001). -
On the Mucilaginous Substance of Florideae
Title ON THE MUCILAGINOUS SUBSTANCE OF FLORIDEAE Author(s) TAKAHASHI, Eiji Citation Journal of the College of Agriculture, Hokkaido Imperial University, Sapporo, Japan, 8(6), 183-232 Issue Date 1920-05-30 Doc URL http://hdl.handle.net/2115/12549 Type bulletin (article) File Information 8(6)_p183-232.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ON THE MUCILAGINOUS SUBSTANCE OF FLORIDEAE Eiji Takahashi, Ni5gakuhal,:uski The mucilaginous substance of Florideae is much used by Japanese as food stuff or for technical purposes. Agar-agar, manufactured from Gelidium is very familiar to us as food, as paste or as nutrient media in bacteriology. The mucilaginous substance of Chondrus, Gloiopeltis, Iridaea and others has also been applied in various industries as a valuable paste from an early time. Notwithstanding the large consumption of tht:st: products, both at home and abroad their chemical nature has not yet been fully investigated. Payen!) isolated a mucilaginous substance from Gelidi1t1lZ comeum and 2 called it gelose and this substance was studied afterward by Morin ) and 3 4 Porumbau. ! ·Euler ). studied the constituents of carragheen moss (Clzondrus crispus) and proved the presence of galactose, fructose and a methyl pentose 5 among its hydrolysis products. From Gloiopeltis· sp. -Kawakami ) lately identified galactose. In the present paper are described the results of the investigation on some of the important species of Floride<l;e, undertaken by the author to deter mine the chemical nature of their mucilaginous substance. The following species have been subjected to the research and the results will here be reported on: Chondrus clatus Holm. -
Audouinella Violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta)
Proceedings of the Iowa Academy of Science Volume 84 Number Article 5 1977 A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta) Donald R. Roeder Iowa State University Let us know how access to this document benefits ouy Copyright ©1977 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Roeder, Donald R. (1977) "A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta)," Proceedings of the Iowa Academy of Science, 84(4), 139-143. Available at: https://scholarworks.uni.edu/pias/vol84/iss4/5 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Roeder: A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Ha A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta) DONALD R. ROEDER 1 D ONALD R. R OEDER (Department of Botany and Plant Pathology, Iowa dominant wi th Cladophora glomerata (L.) Kutz. The alga was morphologicall y State University, Ames, Iowa 50011 ). A floridean red alga new to Iowa: similar to the Chantransia -stage of Batrachospermum fo und elsewhere in Iowa. Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta), Proc. However, because mature Batrachospermum pl ants were never encountered in IowaAcad. Sci. 84(4): 139- 143, 1977. the Skunk River over a five year period, the aJga was assumed to be an Audouinella violacea (Kutz.) Hamel, previously unreported from Iowa, was an independent entity. -
Hart Georgia R.Pdf
GATHERING, CONSUMPTION AND ANTIOXIDANT POTENTIAL OF CULTURALLY SIGNIFICANT SEAWEEDS ON O‘AHU ISLAND, HAWAI‘I A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANY AUGUST 2012 by Georgia M. Hart Thesis Committee Tamara TicktiN, Chairperson Heather McMillen Celia Smith Keywords: limu, macroalgae, traditional knowledge, Native Hawaiian, antioxidant, eutrophication To the beauty and diversity of our shared human heritage ii ACKNOWLEDGEMENTS I would first like to express my gratitude for the support aNd guidaNce of my thesis committee, the DepartmeNt of Botany, fellow graduate students and members of the Ticktin Laboratory. Tom RaNker aNd AlisoN Sherwood for their leadership withiN the departmeNt duriNg my degree program. My chairperson, Dr. Tamara TicktiN, for providiNg me holistic support aNd for having a positive and enthusiastic attitude that kept me moviNg forward. Also to Dr. Ticktin for creatiNg a welcomiNg aNd rigorous atmosphere for interdisciplinary research. Dr. Heather McMillen for teachiNg me ethNographic approaches to research and for consistently having high staNdards for my work, including the detailed feedback oN this maNuscript. Dr. Celia Smith for instruction in algal ecology, for sharing her own expertise as well as the kNowledge passed to her through Dr. Isabel AioNa Abbott, aNd for consistently upholding the importaNce of my work. TicktiN lab members Anita Varghese, Isabel Schmidt, Lisa MaNdle, Tamara WoNg, Katie Kamelamela, DaNiela Dutra, ShimoNa Quazi, Dr. Ivone Manzali and Clay Trauernicht for sharing knowledge and resources as well as providing feedback oN my work at each stage iN its developmeNt. -
The Classification of Plants, V. 489
April, 1909.] The Classification of Plants, V. 489 THE CLASSIFICATION OF PLANTS, V. JOHN H. SCHAFFNER. In a previous paper the entire plant kingdom was classified into seven fundamental divisions or sub kingdoms, representing the great successive stages in the evolution of plants as a whole. These groups do not show genetic relationships but simply steps in the upward evolutionary motion. But there is a principle of segregation operative in the organic kingdom as well as one of progression. The whole plant kingdom thus comes to be a series of greater and smaller divergent lines or branches. In a group of nonsexual organisms every line of descent is a single line which diverges from another line at a definite point, but in a sexual group, where interbreeding goes on freely, there is an interaction throughout the whole mass and the scheme of descent resembles an elongated net with greater and smaller meshes. The whole progressive network of descent of a group may, however, also be represented by a line. When individuals or groups of individ- uals arise which become sterile to other members of the general group a new line is segregated, so that for the larger groups the diagram of descent must be quite similar whether of sexual or nonsexual forms, even though the diagram for individuals is fundamentally different in the two cases. As a convenient guide to memory, the scheme of relationships may be represented graphically by a tree with greater and smaller branches. Every branch thus recognized, whether large or small, is characterized by some peculiarity which remains dominant in all of the individuals and groups of the branch. -
"Phycology". In: Encyclopedia of Life Science
Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition. -
New England Seaweed Culture Handbook Sarah Redmond University of Connecticut - Stamford, [email protected]
University of Connecticut OpenCommons@UConn Seaweed Cultivation University of Connecticut Sea Grant 2-10-2014 New England Seaweed Culture Handbook Sarah Redmond University of Connecticut - Stamford, [email protected] Lindsay Green University of New Hampshire - Main Campus, [email protected] Charles Yarish University of Connecticut - Stamford, [email protected] Jang Kim University of Connecticut, [email protected] Christopher Neefus University of New Hampshire, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/seagrant_weedcult Part of the Agribusiness Commons, and the Life Sciences Commons Recommended Citation Redmond, Sarah; Green, Lindsay; Yarish, Charles; Kim, Jang; and Neefus, Christopher, "New England Seaweed Culture Handbook" (2014). Seaweed Cultivation. 1. https://opencommons.uconn.edu/seagrant_weedcult/1 New England Seaweed Culture Handbook Nursery Systems Sarah Redmond, Lindsay Green Charles Yarish, Jang Kim, Christopher Neefus University of Connecticut & University of New Hampshire New England Seaweed Culture Handbook To cite this publication: Redmond, S., L. Green, C. Yarish, , J. Kim, and C. Neefus. 2014. New England Seaweed Culture Handbook-Nursery Systems. Connecticut Sea Grant CTSG‐14‐01. 92 pp. PDF file. URL: http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf. 92 pp. Contacts: Dr. Charles Yarish, University of Connecticut. [email protected] Dr. Christopher D. Neefus, University of New Hampshire. [email protected] For companion video series on YouTube, -
Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution. -
The Potential of Seaweeds As a Source of Functional Ingredients of Prebiotic and Antioxidant Value
antioxidants Review The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value Andrea Gomez-Zavaglia 1 , Miguel A. Prieto Lage 2 , Cecilia Jimenez-Lopez 2 , Juan C. Mejuto 3 and Jesus Simal-Gandara 2,* 1 Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, Calle 47 y 116, La Plata, Buenos Aires 1900, Argentina 2 Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo – Ourense Campus, E32004 Ourense, Spain 3 Department of Physical Chemistry, Faculty of Science, University of Vigo – Ourense Campus, E32004 Ourense, Spain * Correspondence: [email protected] Received: 30 June 2019; Accepted: 8 September 2019; Published: 17 September 2019 Abstract: Two thirds of the world is covered by oceans, whose upper layer is inhabited by algae. This means that there is a large extension to obtain these photoautotrophic organisms. Algae have undergone a boom in recent years, with consequent discoveries and advances in this field. Algae are not only of high ecological value but also of great economic importance. Possible applications of algae are very diverse and include anti-biofilm activity, production of biofuels, bioremediation, as fertilizer, as fish feed, as food or food ingredients, in pharmacology (since they show antioxidant or contraceptive activities), in cosmeceutical formulation, and in such other applications as filters or for obtaining minerals. In this context, algae as food can be of help to maintain or even improve human health, and there is a growing interest in new products called functional foods, which can promote such a healthy state. -
Seaweeds of California Green Algae
PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.