OHIO U Hsity II R~1A~ Y ACKNOWLEDGMENTS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modification in Forming Die to Overcome Manufacturing Process
International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020 ISSN 2229-5518 41 Modification in Forming Die to Overcome Manufacturing Process Limitation Prof.B.R.Chaudhari[1], PrathmeshKulkarni[2], Tejas Potdar[3], Omkar Pawar[4], Akhilesh Nikam[5] Abstract—Forming of sheet metal is common and vital process in manufacturing industry. Sheet metal forming is the plastic deformation of the work over an axis, creating a change in the parts geometry. Generally, there are two parts used in forming process; one of the part is punch which performs the stretching, bending and blanking operation and another is Die block which secularly clamps the workpiece and same operation as punch. Forming processes are particular manufacturing processes which make use of suitable stresses like compression, tension, shear, combined stresses which causes plastic deformation of the material to produce required shapes. During Forming process, no material is removed i.e. they are deformed and displaced. Some examples of forming processes are Forging, Sheet metal working, thread rolling, Electromagnetic forming, Explosive forming, rotary swaging, etc. Here the problem statement of the project is to combine these two parts design in one forming die which is now manufacturing separately on two different forming dies. Index Terms—Forming Die, Die Design, Blanking Process, Importance of Material Selection; ———————————————————— 1 INTRODUCTION heet metal is simply metal formed into thin and flat pieces. B. Plastic Deformation process: Bending, twisting, curling, S It is one of the fundamental forms used in metal forming deep drawing, necking, ribbing, seaming. can be cut and bent into variety of different shapes. -
Practical Rheology Section 2
Practical Rheology Section 2 Melt Processing of Thermoplastics 2 Flow Tests 4 Elastic Effects in Polymer Melts 7 Melt Flow Rate Testing 12 High Shear Rate Rheometry 16 Dynisco Polymer Test Rheometer Details 18 38 Forge Parkway | Franklin, MA 02038 USA | Tel: +1 (508) 541-9400 | Fax: +1 (508) 541-6206 www.dynisco.com - 1 - MELT PROCESSING OF THERMOPLASTICS The most important conversion methods used by the thermoplastics processing industry are extrusion and injection molding. Whether extrusion or injection molding is being used, there are certain factors that should be considered before a thermoplastics material is processed. These factors include the hygroscopic behavior of the material (whether it picks up water), the granule characteristics, the ther- mal properties (such as heat transfer and the thermal stability), the flow properties, crystallization behavior, shrinkage, and molecular orientation. Hygroscopic Behavior. If a polymer compound contains water, or another material with a low boiling point, then the heat needed for processing can raise its temperature above the boiling point. Visible bubbles will then form within the thermoplastic material when the pressure falls, such as when it emerges from the die of an extruder. Generally speaking, the higher the processing temperatures, the lower is the amount of water that can be tolerated. This is because the higher temperatures will generate a larger volume of steam from the same quantity of water. Usually commodity thermoplastics do not suffer from water-related problems to the same extent as the engineering thermoplastics. Some of these materials, for example PET and Nylon absorb water i.e. they are hygroscopic and must be carefully dried before processing. -
Magnesium Recycling in the United States in 1998
FLOW STUDIES FOR RECYCLING METAL COMMODITIES IN THE UNITED STATES Magnesium Recycling in the United States in 1998 By Deborah A. Kramer Abstract......................................................................................................................................................................................................3 Introduction................................................................................................................................................................................................3 Global geologic occurrence of magnesium.........................................................................................................................................3 Production technology ........................................................................................................................................................................3 Uses.....................................................................................................................................................................................................4 Prices...................................................................................................................................................................................................6 Sources of magnesium scrap......................................................................................................................................................................6 Disposition of magnesium scrap ................................................................................................................................................................7 -
Superplastic Forming, Electromagnetic Forming, Age Forming, Warm Forming, and Hydroforming
ANL-07/31 Innovative Forming and Fabrication Technologies: New Opportunities Final Report Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC. -
Magnesium: Where Have We Been, Where Are We Going?
0DJQHVLXP:KHUH+DYH:H%HHQ:KHUH$UH:H*RLQJ" $<HDU5HWURVSHFWLYHRQWKH8VHRI0DJQHVLXP %\-RVHSK&%HQHG\N(GLWRU/LJKW0HWDO$JH 6WhigVXi [dgbVi^dc VWdji i]Z VYkVciV\Zdjh egdeZgi^Zh d[ bV\" cZh^jbVcY^ihVaadnh# ^cXZ^ihÃghiejWa^XVi^dc^cBVn&.)(!A^\]iBZiVa >c hjbbVg^o^c\ YZXVYZh d[ bV\cZh^jb egd\gZhh! 6\ZbV\Vo^cZ]VhWZZcXdaaVi^c\i]Zegd\gZhhVcY ^cXajY^c\ i]Z ¸jeh VcY Ydlch!¹ i]Z fjZhi^dch id WZ i]Z ZXdcdb^X jeh"VcY"Ydlch d[ bV\cZh^jb! i]Z VchlZgZY·l]ZgZ]VkZlZWZZc!l]ZgZVgZlZ\d^c\4· a^\]iZhid[i]ZXdbbdY^ina^\]ibZiVah#HiVgi^c\l^i] VgZeZg]VehWZhiVchlZgZYWnhiVgi^c\l^i]i]ZegZhZci! Hi]ZÃghi^hhjZd[A^\]iBZiVa6\Z!^ih[djcYZg!Gdn;Zaadb?g# ^#Z#!l]ZgZVgZlZcdl4 lgdiZVWdjii]ZbV\cZh^jbegdYjXi^dcegdXZhhZhd[i]Z i^bZh bjX] i]Z hVbZ idYVn# I]^h Vgi^XaZ hjbbVg^oZh BV\cZh^jb/L]ZgZ6gZLZCdl4 i]Z egd\gZhh bVYZ ^c bV\cZh^jb iZX]cdad\n i]gdj\] i]Z YZXVYZh! l^i] Zbe]Vh^h dc i]Z jhZ d[ bV\cZh^jb# 9ZhXg^W^c\ i]Z egZhZci h^ijVi^dc ^c i]Z ldgaY d[ I]Z nZVg &.)( lVh V lViZgh]ZY nZVg [dg bV\cZh^jb bV\cZh^jb! ^i ^h Vei id eVgVe]gVhZ 8]VgaZh 9^X`Zch ^c egdYjXi^dc!l^i]ldgaYl^YZegdYjXi^dceZV`^c\i]VinZVg XVeijg^c\i]ZZhhZcXZd[VcZck^gdcbZci^ci]Zb^Yhid[ YjZidi]ZlVgZ[[dgiVcYi]Zc[Vaa^c\egZX^e^idjhanVii]Z ijgbd^aVcYX]Vc\Z/ ZcYd[LL>>WnV[VXidgd[*%i^bZh#>iidd`YZXVYZh[dg I]ZhZVgZi]ZWZhid[i^bZh0i]ZhZVgZi]Zldghid[i^bZh# i]Z bVg`Zi id gZXdkZg id l]ZgZ ^i ^h idYVn·hdbZ [djg I]Zedh^i^kZh^YZd[i]ZegZhZcibV\cZh^jbhXZcVg^d i^bZhi]ZldgaYl^YZegdYjXi^dcaZkZaYjg^c\^iheZV`^c ]VhbVcn[VXZih!bVcnd[l]^X]VgZbVYZVeeVgZciVii]Z LL>>·l^i]XgZY^iYjZ^caVg\ZeVgiidi]ZgZbVg`VWaZ +*i]6ccjVaLdgaYBV\cZh^jb8dc[ZgZcXZ0i]ZcZ\Vi^kZ egdeZgi^Zh -
Piercing Solutions General Capability Flyer: Piercing Applications
733831 Piercing Solutions General Capability Flyer: Piercing Applications BTM manufactures innovative and highly effective piercing solutions. From simple tooling to fully automated workstations, BTM can build a solution that will satisfy your production requirements and your budget. This brochure is merely a sampling of BTM’s capabilities. www.btmcomp.com +1.810.364.4567 WHAT MAKES A WORLD LEADER? Machine Building Capabilities of a World Class Status. For over 50 years, BTM has specialized in adhesive dispensing, dimpling, and more. We can offering innovative and highly effective industrial provide tooling, presses, fixtures, or even complete solutions at competitive prices. Our relentless automated systems that combine processes. pursuit of perfection has allowed us to grow into a world-class manufacturer with the ability BTM is committed to manufacturing the best to design and build machines to perform a products at competitive prices, and we stand by variety of operations, including piercing, riveting, our solutions. stamping, shearing, swaging, Tog-L-Loc® clinching, BTM strives to: - Take an innovative approach to problem solving with emphasis on cost reduction - Use our ability to combine processes such as clinching & clinch fasteners, riveting & feeding, piercing, forming, bending, adhesive dispensing, parts feeding & transfer - Give attention to detail during project management - Provide timely response to customer requests - Accommodate running product design changes - Make application of our time tested knowledge and experience - Apply our knowledge of customer specifications BTM stands by its products Should you ever need service for one of our machines, BTM will provide a timely response to your request and provides an afterhours emergency telephone system. -
New Method for Evaluating Strength and Ductility of Brazed Joints 1
New Method for Evaluating Strength and Ductility of Brazed Joints Advantages of a new universal type of braze specimen are simple design for easy production and good reproducibility. A brazing fixture is not required and the brazing gap is easy to maintain BY E. KLAUSN ITZER Introduction (c) hardness tests; (d) analyses of review is given in Reference 1. The High-temperature brazing has structure; (e) microanalyses; (f) cor shapes of specimens have the follow found special application in nuclear rosion tests; (g) irradiation tests and ing disadvantages from the point of reactors and best known is the fabri post-irradiation tests as per (a) to view of the present objective: (a) cation of brazed spacers for fuel ele (d). Brazed specimens are made individu ments. Web cross joints of about One and the same shape of speci ally. This involves dissimilar brazing 0.016 inch (0.4 mm) stainless steel or men were used in all tests to keep the conditions and high production costs; nickel alloy sheet are usually made. marginal conditions resulting from the (b) The gap is difficult to maintain. Figure 1 as an example shows a manufacture of the brazed specimens This drawback makes itself felt partic spacer of Inconel 718 material brazed constant. ularly in high-temperature brazing fol with AWS class BNi-7 brazing filler lowed by homogenizing; (c) Speci Universally Applied mens are very large as a rule and are metal for use with fuel elements in Brazed Specimen pressurized water reactors. therefore inappropriate for irradiation Initially the stress conditions to tests; (d) A brazing fixture is required The possibility of using stainless in some cases which presents addition steel spacers, as shown in Fig. -
Reducing Abrasive Particle Generation in Dry Rotary Swaging by Utilizing DLC Hard Coated Dies
MATEC Web of Conferences 190, 14011 (2018) https://doi.org/10.1051/matecconf/201819014011 ICNFT 2018 Reducing Abrasive Particle Generation in Dry Rotary Swaging by Utilizing DLC Hard Coated Dies Florian Böhmermann1,*, Marius Herrmann2, Oltmann Riemer1, and Bernd Kuhfuss2,3 1IWT Leibniz Institute for Materials Engineering, Laboratory for Precision Machining, Badgasteiner Straße 3, 28359 Bremen, Germany 2bime Bremen Institute for Mechanical Engineering, University of Bremen, Badgasteiner Straße 1, 28359 Bremen, Germany 3MAPEX Center for Materials and Processing, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany Abstract. The emphasis of this paper is the investigation of the impact of the diamond like carbon (DLC) hard coating system on the amount of abrasive particles being generated during dry rotary swaging. Rotary swaging experiments applying coated and uncoated macro structured forming dies were carried out against aluminum and steel work pieces varying the process parameter feed velocity. It was found that DLC coatings effectively reduce the generation of abrasive particles from the work piece. For dry machining of aluminum the amount was reduced to a tenth of the original quantity achieved with uncoated dies. The results are discussed with regard to the mechanics of interfacing surfaces. Additionally, forming dies exhibiting macro structures surfaces of improved design were introduced and applied in dry rotary swaging experiments, which allowed minimizing the abrasive particle generation. Keyword: Sustainable machining, Cold forming, Die 1 Introduction Furthermore, macro structured reduction zones of forming dies were used to control the axial reaction force Rotary swaging is an incremental bulk metal forming that counteracts the feed force. The features, here, were process for the manufacture of rotational symmetric sine wave structures with propagation parallel to the feed lightweight components, e.g. -
Updated 1/07/2015 the Premier Magazine of the Aluminum Industry
Automotive Engineered Sheet AMAG 2020 Increases Capacity & Capabilities Pushing the Limits of Design with Extrusions Aluminum Paves the Way for Electric Vehicles Light Metal Age - Updated 1/07/2015 The premier magazine of the aluminum industry Consistently delivering high quality content, Light Metal Age is the premier magazine of the aluminum industry. Recycling Throughout its 78 years, the magazine has followed the Homogenization Heat Treatment evolution of technology and advances in the aluminum Alloying industry. Today, aluminum is experiencing a surge in Aerospace growth. The automotive industry is the driving impetus Metallurgy for this growth, with OEMs seeking to reduce weight in B&C Lifecycle their vehicles in order to meet international standards and customer demand as awareness of sustainability Extrusion Automotive and the environment have become front and center concerns. These developments—along with significant advances in aerospace, building and construction, ma- AluminumRolling rine, solar, and other industries—point to a strong future for the aluminum industry. Casthouse Magnesium As the aluminum industry prospers and continues to Die Design evolve, Light Metal Age is a significant resource for exec- Smelting Remelt utives, general managers, plant managers, technicians, Billet Supply Anodizing metallurgists, and engineers for production and opera- tions in manufacturing facilities around the world. Sustainability Furnace Technology Available in both print and digital format, Light Metal Age is a bi-monthly magazine that covers the entire value chain of the aluminum industry—from primary production to extrusion, rolling, and associated downstream fabri- cation, such as finishing, machining, and joining. Other major topics include the integration and opti- mization of aluminum products in final applications, such as automotive, aerospace, and building and construction. -
Titanium Production for Aerospace Applications
DOI: 10.5028/jatm.2009.01010717 Vinicius A. R. Henriques* Institute of Aeronautics and Space Titanium production for São José dos Campos - Brazil [email protected] aerospace applications *author for correspondence Abstract: Titanium parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent general corrosion resistance. The objective of this work is to present a review of titanium metallurgy focused on aerospace applications, including developments in the Brazilian production of titanium aimed at aerospace applications. The article includes an account of the evolution of titanium research in the Brazilian Institute (IAE/CTA) and the current state-of-art of titanium production in Brazil. Key words: Titanium, Aerospace industry, Powder metallurgy. INTRODUCTION Over the last decade, the focus of titanium alloys Titanium could also replace aluminum when the operating development has shifted from aerospace to industrial temperature exceeds around 130C, which is the normal applications. However, the titanium industry continues to maximum operating temperature for conventional depend on the aerospace market and this sector will aluminum. These conditions exist, for example, in the constitute a significant percentage of total consumption for nacelle and auxiliary power unity (APU) areas and wing years to come. The metallurgy of titanium and Ti-base anti-icing system for airframe structures. Steel and nickel- alloys has been intensely researched over the last 50 years. based alloys are obvious alternatives, but they have a Titanium has unique properties such as its high strength-to- density about 1.7 times that of titanium (Andersen, 1980, weight ratio, good resistance to many corrosive Donachie, 1988). -
Experiments on Sheet Metal Shearing Emil Gustafsson Experiments
ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SIS Department of Engineering Sciences and Mathematics Division of Mechanics of Solid Materials Emil Gustafsson Experiments on Sheet Metal Shearing ISSN: 1402-1757 Experiments on Sheet Metal Shearing ISBN: 978-91-7439-622-5 (print) ISBN: 978-91-7439-623-2 (pdf) Luleå University of Technology 2013 Emil Gustafsson Experiments on sheet metal shearing Emil Gustafsson Division of Mechanics of Solid Materials Department of Engineering Sciences and Mathematics Luleå University of Technology SE-971 87 Luleå, Sweden Licentiate Thesis in Solid Mechanics c Emil Gustafsson c Emil Gustafsson ISSNISSN: 1402-1757 ISSNISBNISBN: 978-91-7439-622-5 (print) ISBNISBN: 978-91-7439-623-2 (pdf) Published: May 2013 PrintedPublished: by UniversitetstryckerietMay 2013 LuleåPrinted tekniska by Universitetstryckeriet universitet www.ltu.seLuleå tekniska universitet www.ltu.se ii ii Preface This work has been carried out at Dalarna University in close cooperation with SSAB EMEA and under supervision of the Solid Mechanics group at the division Mechanics of Solid Materials, Department of Engineering Sciences and Mathematics at Luleå University of Technology. Dalarna Uni- versity, Jernkontoret (Swedish Steel Producers’ Association), KK-stiftelsen (The Knowledge Foundation), Länsstyrelsen Dalarna (County Administra- tive Board of Dalarna), Region Dalarna (Regional Development Council of Dalarna), Region Gävleborg (Regional Development Council of Gävleborg) and SSAB EMEA are acknowledged for financial support. Completion of this work, was made possible through help and support from many people in a variety of subjects. First of all, I would like to thank Anders Jansson, Mats Oldenburg and Göran Engberg for the much needed supervising. -
Universal Shearing and Punching Machines with Two Cylinders
Universal shearing and punching machines with two cylinders Where production requires twin operator machines, higher speeds or greater capacity, GEKA provides the solution with the HYDRACROP range with five work stations: (i) punching (ii) flat bar shearing (iii) section shearing (iv) coupe de B and A shearing and (v) notching: 5 HYDRACROP MODELS 55/110 110/180 80/150 165/300 220/300 The first figure indicates metric tons on the punching end. The second figure, metric tons on F-shearing end. 4 VERSIONS ON EACH A, S, AD, SD MODEL VERSION A Machines driven by two cylinders. 5 work stations, fitted with tools for F , shearing, bars B , A, D shearing, rectangular notching and punching. Quick change punch. Flat bar shearing table with adjustable guides. 2 simultaneous work stations. Ready for “Productivity Package” comprising: (i) Precision punching table with x & y measuring stops. (ii) Precision notching table with x & y measuring stops. (iii) Automatic shearing gauge of 40” in length with fine adjusting. (iv) Magnetic lamp for enhanced vision of shearing z ones. (v) 10 sets of round punches and dies. VERSION S All features of version A, including the following standard fitted accessories: Greater speed backed by a powerful hydraulic unit. Special equipment for approaching at reduced pressure and slow speed. VERSION AD The same features as the A version, but with a deeper throat for larger plate and sheet metal applications. VERSION SD The same features as the S version, but with a deeper throat for larger plate and sheet metal applications.