Sheet Metal Working
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modification in Forming Die to Overcome Manufacturing Process
International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020 ISSN 2229-5518 41 Modification in Forming Die to Overcome Manufacturing Process Limitation Prof.B.R.Chaudhari[1], PrathmeshKulkarni[2], Tejas Potdar[3], Omkar Pawar[4], Akhilesh Nikam[5] Abstract—Forming of sheet metal is common and vital process in manufacturing industry. Sheet metal forming is the plastic deformation of the work over an axis, creating a change in the parts geometry. Generally, there are two parts used in forming process; one of the part is punch which performs the stretching, bending and blanking operation and another is Die block which secularly clamps the workpiece and same operation as punch. Forming processes are particular manufacturing processes which make use of suitable stresses like compression, tension, shear, combined stresses which causes plastic deformation of the material to produce required shapes. During Forming process, no material is removed i.e. they are deformed and displaced. Some examples of forming processes are Forging, Sheet metal working, thread rolling, Electromagnetic forming, Explosive forming, rotary swaging, etc. Here the problem statement of the project is to combine these two parts design in one forming die which is now manufacturing separately on two different forming dies. Index Terms—Forming Die, Die Design, Blanking Process, Importance of Material Selection; ———————————————————— 1 INTRODUCTION heet metal is simply metal formed into thin and flat pieces. B. Plastic Deformation process: Bending, twisting, curling, S It is one of the fundamental forms used in metal forming deep drawing, necking, ribbing, seaming. can be cut and bent into variety of different shapes. -
Magazine Lip Forming Tools
MAGAZINE LIP FORMING TOOLS Brownells Lip Forming Anvil and Yoke help the gunsmith alter original equipment-style, .45 caliber, 1911 Auto magazines to properly feed ammuni- tion with semi-wadcutter bullets. Issue-style feed lips are designed for round nose, 230 grain, jacketed bul- lets which have a long ogive and ride up the barrel’s feed ramp easily. Rounds loaded with shorter, lighter, blunt nosed or semi-wadcutter bullets can ei- ther run into the feed ramp as the slide carries them forward or “stand up” too soon and cause a smokestack jam. Changing the lip contour with these tools causes the magazine to release the rear of the cartridge sooner so the extractor can pick it up and help direct it up the ramp and into the chamber. Most aftermarket magazines like those made by Metalform, Wilson, Mc- Cormick, Pachmayr and others, already have a similar feed lip shape. The Lip Forming Anvil and Yoke can often be used to restore the lips on these magazines if they get damaged. READ & FOLLOW THESE m WARNING m Never attempt to disassemble or reassemble a firearm unless you are INSTRUCTIONS absolutely certain that it is empty and unloaded. Visually inspect the chamber, the magazine and firing mechanism to be absolutely certain that no ammunition remains in the firearm. Disassembly and reas- BROWNELLS GUNSMITHS DATA RING BINDER GUNSMITHS BROWNELLS DATA sembly should follow the manufacturer’s instructions. If such instruc- tions are not immediately available, contact the manufacturer to see if they are available. If they are not available at all, then you should 200 S. -
Sheet Metal Operations - Bending and Related Processes
Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key ........................................ Error! Bookmark not defined. 1.Bending and related processes: 1.1 Sheet metal bending Bending of sheets and plates is widely used in forming parts such as corrugations, flanges, etc. Bending is a forming operation in which a sheet metal is subjected to bending stress thereby a flat straight sheet is made into a curved sheet. The sheet gets plastically deformed without change in thickness. Die and punch are used for bending. If a v shaped die and punch are used, the bending is called v-bending. If the sheet is bent on the edge using a wiping die it is called edge bending. In this process, one end of the sheet is held like a cantilever using a pressure pad and the other end is deformed by a punch which moves vertically down, bending the sheet. Usually, edge bending is done in order to obtain an angle of 90o. During bending of a strip, the material outward of the neutral axis is subjected to tensile stress. Material inside is subjected to compressive stress. Bend radius R is the radius of curvature of the bent sheet inside the bending. The neutral axis remains at the center of the thickness of the sheet for elastic bending. For plastic bending, however, the neutral axis shifts towards the inside of the bend. The rate of elongation of outer fibers is greater than the rate of contraction of inner fibers. Therefore, there is a thickness reduction at the bend section. -
Design of an Electrically Powered Bending Machine
Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11-13, 2017 Design of an electrically powered bending machine: Case of Zimbabwe Tawanda Mushiri Department of Mechanical Engineering University of Johannesburg P.O Box APK 524 Johannesburg South Africa [email protected], [email protected] Definite Shumba Department of Mechanical Engineering University of Zimbabwe P.O Box MP167 Mt Pleasant Harare Zimbabwe [email protected] Charles Mbohwa Faculty of Engineering and the Built Environment University of Johannesburg P.O Box APK 524 Johannesburg South Africa [email protected] Abstract This paper seeks to carry out design of a small scale electrically powered bending machine for a developing nation, case for Zimbabwe. The bending of metal is of great importance in the manufacture of products such as nut shelling machines and maize shelling machines. Currently being used at Company X engineering is a manual bending machine with a single operation hence this design will help to increase the number of metals being bent, an increase in the efficiency and production. The paper deals with manufacturing or bending of sheet metal by using power operated sheet bending machine. Especially discussion made the productivity analysis of manually or power operated sheet bending machine. Considering manual operation is replaced by power operated devices. It also gives information about limitation of manually operated sheet bending machine and power operated sheet bending machine. The existing machines are limited to a single operation. The aim of the research is to increase the number of bent parts and to place an adjustable table to suit the height of the user thereby reducing back pain internal injuries in the long run. -
Ats 34 and 154 Cm Stainless Heat Treat Procedure
ATS 34 AND 154 CM STAINLESS HEAT TREAT PROCEDURE This is an oil hardening grade of steel which will require oil quenching. The oil should be a warm, thin quenching oil that contains a safe flash point. Olive oil has been used as a sub stitute. As a rule of thumb, there should be a gallon of oil for each pound of steel. For , warming the oil before quenching, you may heat a piece of steel and drop it in the oil. 1.) Wrap blades in stainless tool wrap and leave an extra two inches on each end of the package. (This will be for handling purposes going into the quench as described below.) We suggest a double wrap for this grade. The edges of the foil should be double crimped, being careful to avoid hav ing even a pin hole in the wrap. 2 . ) Place in the furnace and heat to 1900"F. After reaching this temperature, immediately start timing the soak time of 25-30 minutes. 3.) After the soak time has elapsed, very quickly and carefully pull the package out with tongs~ place over the quench tank and snip the end of the package allowing the blades to drop into the oil. You should have a wire basket in the quench tank for raising and lowering the blades rather than have them lie s till. Gases are released in the quench and would form a "trap" around the steel unless you keep them movi~g for a minute or so. *IMPORTANT--It is very important that the blades enter the oil quench as quickly as possible after leaving the furnace ! Full hardness would not be reached if this step is not followed. -
Improved Coining Force Calculations Through Incorporation of Key Process Parameters Dominique Cotton, André Maillard, Joël Kaufmann
Improved coining force calculations through incorporation of key process parameters Dominique Cotton, André Maillard, Joël Kaufmann To cite this version: Dominique Cotton, André Maillard, Joël Kaufmann. Improved coining force calculations through incorporation of key process parameters. IDDRG, Oct 2020, BUSAN, South Korea. pp.012003, 10.1088/1757-899X/967/1/012003/meta. hal-03117270 HAL Id: hal-03117270 https://hal.archives-ouvertes.fr/hal-03117270 Submitted on 21 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Improved coining force calculations through incorporation of key process parameters To cite this article: D Cotton et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 967 012003 View the article online for updates and enhancements. This content was downloaded from IP address 195.221.202.65 on 15/01/2021 at 13:35 International Deep-Drawing Research Group (IDDRG 2020) IOP Publishing IOP Conf. Series: Materials Science and Engineering 967 (2020) 012003 doi:10.1088/1757-899X/967/1/012003 Improved coining force calculations through incorporation of key process parameters D Cotton1,3, A Maillard2, and J Kaufmann2 1 Arts et Métiers Institute of Technology, LABOMAP, HESAM University, 71250 Cluny, France 2 CETIM – Technical Centre for Mechanical Industries – France 3 Author to whom any correspondence should be addressed E-mail address: [email protected] Abstract. -
Noga Head Office
Noga Head Office NOGA ENGINEERING & TECHNOLOGY (2008) LTD Noga Engineering and Technology was established in 1980. Over the years the company has grown to become the world leader in the manufacturing of three main lines: simply sophisticated Deburring Systems Holding Systems Cutting Fluid Applicators Noga’s strongest points are product design and development, quality and service. Our products are sold in more than 60 countries either through our own companies or a network of exclusive agents. All NOGA products meet the strict requirements of ISO 9001 and ISO 14001. We invite you to visit our web site: www.noga.com for further information. NOGA reserves the right to make changes in any of its products without prior notice. © Copyright NOGA Engineering & Technology (2008) Ltd. WARNINGS Blades are sharp and can cut. Blades can break causing flying shards. Sharp edges and flying shards can cause injury. Wear safety googles (both user and bystanders). Do not pry or bend blades. Keep away from children. Do not regrind blades. All rights reserved. No part of this publication may be reproduced, transcribed, stored in an electronic retrieval system, translated into any language or computer language, or be transmitted in any form whatsoever without the prior written consent of the publisher. simply sophisticated Deburring Systems HEAVY DUTY 3-8 CERAMIC 39-44 LIGHT DUTY 9-14 SETS & KITS 45-50 COUNTERSINKS 15-26 SPECIALTY TOOLS 51-54 SCRAPERS 27-30 SPECIALTY BLADES 55-56 DIAMOND FILES 31-32 CHIP HOOKS 57-59 DOUBLE-EDGE 33-36 PLUMBING 60-65 SINGLE EDGE 37-38 INDEX 66 simply sophisticated Deburring Tools simply sophisticated 1 Contents H.D. -
Fire Protection of Steel Structures: Examples of Applications
Fire protection of steel structures: examples of applications Autor(en): Brozzetti, Jacques / Pettersson, Ove / Law, Margaret Objekttyp: Article Zeitschrift: IABSE proceedings = Mémoires AIPC = IVBH Abhandlungen Band (Jahr): 7 (1983) Heft P-61: Fire protection of steel structures: examples of applications PDF erstellt am: 06.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37489 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch J% IABSE periodica 2/1983 IABSE PROCEEDINGS P-61/83 69 Fire Protection of Steel Structures — Examples of Applications Protection contre le feu des structures acier — Quelques exemples d'applications Brandschutz der Stahlkonstruktionen — Einige Anwendungsbeispiele Jacques BROZZETTI Margaret LAW Dir., Dep. -
A Comparison of Thixocasting and Rheocasting
A Comparison of Thixocasting and Rheocasting Stephen P. Midson The Midson Group, Inc. Denver, Colorado USA Andrew Jackson Arthur Jackson & Co., Ltd. Brighouse UK Abstract The first semi-solid casting process to be commercialized was thixocasting, where a pre-cast billet is re-heated to the semi-solid solid casting temperature. Advantages of thixocasting include the production of high quality components, while the main disadvantage is the higher cost associated with the production of the pre-cast billets. Commercial pressures have driven casters to examine a different approach to semi-solid casting, where the semi-solid slurry is generated directly from the liquid adjacent to a die casting machine. These processes are collectively referred to as rheocasting, and there are currently at least 15 rheocasting processes either in commercial production or under development around the world. This paper will describe technical aspects of both thixocasting and rheocasting, comparing the procedures used to generate the globular, semi-solid slurry. Two rheocasting processes will be examined in detail, one involved in the production of high integrity properties, while the other is focusing on reducing the porosity content of conventional die castings. Key Words Semi-solid casting, thixocasting, rheocasting, aluminum alloys 22 / 1 Introduction Semi-solid casting is a modified die casting process that reduces or eliminates the porosity present in most die castings [1] . Rather than using liquid metal as the feed material, semi-solid processing uses a higher viscosity feed material that is partially solid and partially liquid. The high viscosity of the semi-solid metal, along with the use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a non-turbulent manner so that harmful gas porosity can be essentially eliminated. -
PRESS BRAKE CAPACITIES SPRINGBACK a True 90° Air Bend, the Tooling Must Formed Flanges and Causing Distortion
www.e-ci.com 1 CONTENTS 2 Safety 2 Bending on a CI Press Brake 8 Press Brake Bending Capacity 9 Mild Steel Air Bend Capacity Chart 13 Bending Factors Chart 17 Punching on a Press Brake SAFETY Good safety practices and proper training of each press brake operator is mandatory. Comprehensive operator, maintenance and safety manuals provide instruction on proper procedures and safety methods and BENDING ON A CINCINNATI should be with the press brake at all times. Warning signs and a checklist PRESS BRAKE of operator safety guidelines should be placed at strategic locations on PRESS BRAKE RATING For thicker than 1/2” mild steel, it may the press brake. be necessary to increase the vee die All CINCINNATI press brakes are opening up to ten times the material Users are responsible for proper rated for maximum bending pressure, thickness to minimize cracking of the installation and continued use of or tonnage. Tonnage can then be material. To determine the vee opening point-of-operation safeguarding converted into bending capacities for a simple 90° bend, multiply the and other machine guards. This through an understanding of basic metal thickness by eight. The answer helps assure operator safety factors affecting the formability of is then rounded to the next higher 1/8” and compliance with OSHA metal. Bending factors, or “rules of figure. For example: 14ga. (.075”) x 8 requirements. thumb,” for press brake forming are = .600”. This is rounded to a 5/8” vee based on using mild steel (60,000 Each new CINCINNATI press opening. psi maximum tensile strength). -
ROLLING of METAL (Auxiliary Operations Used in Connection With
CPC - B21B - 2017.08 B21B ROLLING OF METAL (auxiliary operations used in connection with metal- working operations covered in B21, see B21C; bending by rolling B21D; manufacture of particular objects, e.g. screws, wheels, rings, barrels, balls, by rolling B21H; pressure welding by means of a rolling mill B23K 20/04) Definition statement This place covers: Methods and devices for rolling of metal. Rolling is a metal forming process in which metal is passed through a pair of rotating rolls for plastic deformation of the metall. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. A rolling mill is a machine for plastic deformation of metal between rotating rolls. In a broader sense, a rolling mill is an automatic system or line of machines that performs both rolling and auxiliary operations: transport of the original billet from the stock to the heating furnaces and the mill rolls, transfer of the rolled material from one groove to another, turning, transport of the metal after rolling, cutting into sections, marking or stamping, trimming, packing, and conveyance to the stock of finished product. This subclass includes the following main groups: Rolling of metal in general: • Methods or devices in general B21B 1/00, B21B 11/00 - B21B 13/00 • Control B21B 37/00 • Measuring B21B 38/00 • Operation B21B 35/00, B21B 39/00, B21B 41/00 • Details of rolling mills B21B 27/00, B21B 29/00, B21B 31/00 • Maintenance of rolling rolls B21B 28/00 • Safety devices B21B 33/00 • Cooling beds and accessories B21B 43/00 Rolling of special formats: • tube rolling B21B 17/00, B21B 19/00, B21B 23/00 1 B21B (continued) CPC - B21B - 2017.08 • accessories for tube rolling B21B 25/00 • Extending closed shapes of metal bands B21B 5/00 Rolling of special alloys: B21B 3/00 Rolling of metal under special conditions (e.g. -
Hand-Forging and Wrought-Iron Ornamental Work
This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online. It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover. Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you. Usage guidelines Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying. We also ask that you: + Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes. + Refrain from automated querying Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us.