PHARMACOLOGY REVIEW(S) Reviewer: L

Total Page:16

File Type:pdf, Size:1020Kb

PHARMACOLOGY REVIEW(S) Reviewer: L CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-395 PHARMACOLOGY REVIEW(S) Reviewer: L. S. Leshin NDA 22-395 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION ADDENDUM NDA NUMBER: 22-395 SERIAL NUMBER: 000 DATE RECEIVED BY CENTER: Oct 13, 2008 PRODUCT: Qutenza™ (Capsaicin Dermal Patch 8%) INTENDED CLINICAL POPULATION: Patients with neuropathic pain associated with postherpetic neuralgia (PHN) SPONSOR: NeurogesX Inc. DOCUMENTS REVIEWED: SD-22, received July 31, 2009 REVIEW DIVISION: Division of Anesthesia, Analgesia, and Rheumatology Drug Products (HFD-170) PHARM/TOX REVIEWER: L.S. Leshin, DVM, PhD PHARM/TOX SUPERVISOR: A. Wasserman, PhD DIVISION DIRECTOR: B. Rappaport, MD PROJECT MANAGER: T. Clayton 1 Reviewer: L. S. Leshin NDA 22-395 EXECUTIVE SUMMARY I. Recommendations A. Recommendation on approvability Approve (no change from the original review) B. Recommendation for nonclinical studies None (no change from the original review) C. Recommendations on labeling Refer to the original review. There are no new changes in labelling. II. Regulatory background During the initial review of the 6-month transgenic mouse carcinogenicity study a request (IND 63354, May 13, 2009) for a DSI inspection was submitted to examine the extensive discrepancies in the study methodology and results. The inspection group was aware that this study was not essential for approval since the proposed drug would be administered once with possible retreatment at 3 month intervals. Nevertheless, they were able to (b) (4) inspect the contract lab, that conducted the study (Report 7215-150, Oct 6 2006) titled "26-Week Dermal Oncogenicity Study with trans Capsaicin in TgAC Hemizygous Mice." The study was amended and resubmitted (submission July 30, 2009 SD-22 received July 31, 2009) to address the items raised as FDA-483 observations from the FDA surveillance audit of (b) (4) (b) (4) between July 20 and July 22, 2009. The audit is not filed with this application in DARRTS at this time. III. Summary of nonclinical findings While a number of critical items were corrected (see Appendix), the underlying problems of the study are still present, making the interpretation of the data problematic. These include a high level of papillomas in the untreated control group (negative controls), upon necropsy not all masses were histologically examined, and there is a trend of increasing papilloma with dose when pooled across sex (there is no obvious mechanistic reason why dose groups should not be pooled). For these reasons, the study is still unacceptable. The carcinogenicity section of the label will indicate that adequate carcinogenic studies have not been conducted. Recall that for the proposed administration frequency, a carcinogenicity study is not essential for approval. 2 Reviewer: L. S. Leshin NDA 22-395 Appendix: Revised Information Provided to Study 7215-150, 26-Week Dermal Oncogenicity Study with trans Capsaicin in TgAC Hemizygous Mice The major findings of the audit were: • The conclusions in the final report regarding carcinogenicity of the test article are based on a tabulation of masses (Appendix 6-“Weekly Incidence of Dermal Masses”), which includes masses at sites remote from the treatment sites. Specifically, each page of Appendix 6 states “Note: Numbers indicate the total number of skin masses on the treated site each week”. The “treated site” for the animals in this study is defined in the study protocol as an “area approximately 2 cm x 2 cm of dorsal skin at the intrascapular region”. However, as identified in the final report Appendix 11, “Individual Anatomic Pathology Data”, the number of dermal masses often include masses found at sites other than at the treatment site. • There was no formal statistical analysis of the tumor data in the final report. • The final report did not include a description of all circumstances that may have affected the quality or integrity of the data. Specifically, the final report includes data to indicate that 77 of the 350 animals in the study (22%) died prior to completing the 26-week dosing period. There is no discussion in the final report regarding the impact on the study outcomes to having so many study animals die during the study, and no discussion as to the possible cause or relationship of the deaths to the study treatment. • The final study report did not include the signed and dated reports of each of the individual scientists or other professionals involved in the study. The Applicant provided the following revisions in the amended final report of July 29, 2009: • There were numerous administrative changes, including signatures, quality assurance inspections, amendments, etc. • A statistical report was included, with more detailed statistical methods and analyses. • Clarification of data entries for statistical analysis was provided. • A pathology report was included. • Survival figures were included and a discussion of animal mortality was included. • The abstract was revised. • The title and footnote of Appendix 6 was corrected and clarified. The number of papillomas by study week were subdivided into locations in which they were observed. • A table relating weeks of study to times for various events in the study was included. 3 Reviewer: L. S. Leshin NDA 22-395 Signatures: Reviewer Signature ___________________________________ L. S. Leshin, D.V.M., Ph.D. Supervisor Signature_____________________________ Concurrence Yes ___ No A. Wasserman, Ph.D. 4 Application Submission Type/Number Type/Number Submitter Name Product Name -------------------- -------------------- -------------------- ------------------------------------------ NDA-22395 ORIG-1 NEUROGESX INC NGX-4010 (CAPSAICIN PATCH 8%) --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- LAWRENCE S LESHIN 10/27/2009 ADAM M WASSERMAN 10/27/2009 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH Supervisory Pharmacologist Memorandum NDA NUMBER: 22-395 SERIAL NUMBER: 000 DATE RECEIVED BY CENTER: 13-OCT-2008 PRODUCT: Qutenza (Capsaicin) patch INTENDED CLINICAL POPULATION: Neuropathic pain associated with Postherpetic Neuralgia SPONSOR: NeurogesX REVIEW DIVISION: Division of Anesthesia, Analgesia and Rheumatology Products (HFD-170) PHARM/TOX REVIEWER: L. Steven Leshin, DVM, Ph.D. PHARM/TOX SUPERVISOR: Adam Wasserman, Ph.D. DIVISION DIRECTOR: Bob Rappaport, M.D. PROJECT MANAGER: Tanya Clayton EXECUTIVE SUMMARY I. BACKGROUND A. Regulatory Summary (Pharmacology/Toxicology) The present NDA submission submitted by NeurogesX pertains to Qutenza®, a topical patch containing 8% capsaicin (179 mg) in adhesive which is to be used for managing the neuropathic pain of postherpetic neuralgia. The present application proposes up to 4 (20 x 14 cm; 280 cm2) patches may be applied by a practitioner over painful intact skin areas once every 3 months or greater depending on the return of pain to the site. Capsaicin, existing as the natural trans format, is a significant component of various hot pepper plants and is the main active ingredient in chili peppers used in foods as well as in the defensive weapon “pepper spray” where deployment into mucous membranes of eyes, nose and mouth is profoundly irritating. It is not an approved drug product but is marketed in various forms under a tentative final monograph for external analgesic drug products (proposed for 21 CFR 348.12) published in the Federal Register (February 8, 1983; Volume 48 No. 27). This tentative monograph section (Irritants that do not produce redness) applies to topical counterirritants which allow concentrations of capsaicin in capsaicin-related products are acceptable of 0.025 to 0.25%. This in practice has “supported” unapproved topical creams such as Zostrix (0.025%) and Zostrix HP (0.075%) marketed for mild to moderate pain of rheumatoid arthritis or osteoarthritis and myalgia while a recent addition (Zostrix Neuropathy Cream) contains 0.25% capsaicin in an unknown concentration of lidocaine as part of a “Lidocare” vehicle which is marketed for the treatment of postherpetic neuropathic pain. The current product proposed for marketing approval represents a markedly higher concentration than all currently marketed and unapproved products. II. S UMMARY OF NONCLINICAL FINDINGS A. Brief overview of nonclinical findings General pharmacology Capsaicin at high concentrations as used in Qutenza is designed to act as an agonist at epidermal nerve fiber TRPV1 (transient receptor potential vanilloid, type 1) receptors at levels sufficient to cause “defunctionalization” (i.e. calcium-overload-induced local degeneration) of the peripheral ends of these nerve fibers. Capsaicin activates TRPV1 receptors which are non-selective cation channels (though preferring calcium) located on sensory neurons that serve as molecular polymodal integrators of a number of environmental stimuli including heat and protons. Importantly, TRPV1 receptor channels are capable of being functional upregulated or sensitized by protein kinases activated by a number of receptors
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0315843 A1 HAUGHT Et Al
    US 2013 0315843A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0315843 A1 HAUGHT et al. (43) Pub. Date: Nov. 28, 2013 (54) COMPOSITION FOR REDUCTION OF TRPA1 Related U.S. Application Data AND TRPV1 SENSATIONS (60) Provisional application No. 61/652,035, filed on May (71) Applicant: The Procter & Gamble Company, 25, 2012, provisional application No. 61/682,887, (US) filed on Aug. 14, 2012. Publication Classification (72) Inventors: John Christian HAUGHT, West Chester, OH (US); Koti (51) Int. Cl. SREEKRISHNA, Mason, OH (US); A618/42 (2006.01) Sourav DAS, Kolkata (IN); Steve A618/35 (2006.01) Hamilton HOKE, II, West Chester, OH A61O 11/00 (2006.01) (US); Timothy Woodrow A618/37 (2006.01) COFFINDAFFER, Maineville, OH A61O5/10 (2006.01) (US); Katharine Anne BAKES, A618/30 (2006.01) Cincinnati, OH (US); William Michael (52) U.S. Cl. GLANDORF, Mason, OH (US) CPC. A61K 8/42 (2013.01); A61O 5/10 (2013.01); A61K 8/30 (2013.01); A61O II/00 (2013.01); (73) Assignee: The Procter & Gamble Company, A61K 8/37 (2013.01); A61K 8/35 (2013.01) Cincinnati, OH (US) USPC ...................... 424/48; 435/29: 8/406; 424/53 (57) ABSTRACT (21) Appl. No.: 13/873,749 A personal care composition and method of using a personal care composition having menthol and/or hydrogen peroxide (22) Filed: Apr. 30, 2013 and a TRPA1 and/or TRPV1 receptor antagonists. US 2013/03 15843 A1 Nov. 28, 2013 COMPOSITION FOR REDUCTION OF TRPA1 able as a positive signal of efficacy. Further, Some of these AND TRPV1 SENSATIONS molecules may exhibit the ability to reduce sulfur and amine species present in the body in the form of Michael Acceptors FIELD OF THE INVENTION (Yoshida et al., Tetrahedron Letters, 51:5134-5136 (2010)).
    [Show full text]
  • Capsicum Oleoresin and Homocapsaicin
    Printed on: Wed Jan 06 2021, 02:44:36 AM Official Status: Currently Official on 06-Jan-2021 DocId: 1_GUID-1560FD9B-BE0F-495E-9994-C5718733DB4C_2_en-US (EST) Printed by: Jinjiang Yang Official Date: Official as of 01-May-2019 Document Type: USP @2021 USPC 1 nordihydrocapsaicin, nonivamide, decanylvanillinamide, Capsicum Oleoresin and homocapsaicin. DEFINITION ASSAY Capsicum Oleoresin is an alcoholic extract of the dried ripe · CONTENT OF TOTAL CAPSAICINOIDS fruits of Capsicum. It contains NLT 6.5% of total Mobile phase: A mixture of acetonitrile and diluted capsaicinoids, calculated as the sum of capsaicin, phosphoric acid (1 in 1000) (2:3) dihydrocapsaicin, nordihydrocapsaicin, nonivamide, Standard solution A: 0.2 mg/mL of USP Capsaicin RS in decanylvanillinamide, and homocapsaicin, all calculated on methanol the anhydrous basis. The nonivamide content is NMT 5% of Standard solution B: 0.1 mg/mL of USP the total capsaicinoids, calculated on the anhydrous basis. Dihydrocapsaicin RS in methanol [CAUTIONÐCapsicum Oleoresin is a powerful irritant, and Sample solution: 5 mg/mL of Capsicum Oleoresin in even in minute quantities produces an intense burning methanol. Pass a portion of this solution through a filter of sensation when it comes in contact with the eyes and 0.2-µm pore size, and use the filtrate as the Sample solution. tender parts of the skin. Care should be taken to protect Chromatographic system the eyes and to prevent contact of the skin with (See Chromatography á621ñ, System Suitability.) Capsicum Oleoresin.] Mode: LC IDENTIFICATION
    [Show full text]
  • Lack of Influence of Substrate on Ligand Interaction with the Human Multidrug
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 23, 2021 page 1 nd Interaction with the Human Multidrug Multidrug Human the with nd Interaction This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version.
    [Show full text]
  • TRP Mediation
    molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
    [Show full text]
  • Pharmacokinetics of Daikenchuto, a Traditional Japanese Medicine (Kampo) After Single Oral Administration to Healthy Japanese Volunteers
    DMD Fast Forward. Published on July 1, 2011 as DOI: 10.1124/dmd.111.040097 DMDThis Fast article Forward. has not been Published copyedited and on formatted. July 1, The2011 final as version doi:10.1124/dmd.111.040097 may differ from this version. DMD #040097 Pharmacokinetics of daikenchuto, a traditional Japanese medicine (Kampo) after single oral administration to healthy Japanese volunteers Masaya Munekage, Hiroyuki Kitagawa, Kengo Ichikawa, Junko Watanabe, Katsuyuki Aoki, Toru Kono, Kazuhiro Hanazaki Department of Surgery, Kochi Medical School, Nankoku, Kochi, Japan (M.M., H.K., K.I., K.H); Downloaded from Tsumura Laboratories, TSUMURA & CO., Ami, Ibaraki, Japan (J.W.); Pharmaceutical & Quality Research Department, TSUMURA & CO., Ami, Ibaraki , Japan (K.A.); Division of dmd.aspetjournals.org Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Hokkaido, Japan (T.K.). at ASPET Journals on September 26, 2021 1 Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. DMD Fast Forward. Published on July 1, 2011 as DOI: 10.1124/dmd.111.040097 This article has not been copyedited and formatted. The final version may differ from this version. DMD #040097 Running title: Pharmacokinetics study of daikenchuto Address correspondence to: Kazuhiro Hanazaki, M.D., Ph.D. Department of Surgery, Kochi Medical School, Oko-cho kohasu, Nankoku-shi, Kochi 783-8505, Japan. E-mail: [email protected] , Phone: 81-88-880-2370, Fax: 81-88-880-2371 Number of text pages: 17 Downloaded from Number of Tables: 1 Number of Figures: 2 dmd.aspetjournals.org Number of References: 17 Number of Words: Abstract: 199 at ASPET Journals on September 26, 2021 Introduction: 377 Results and Discussion: 855 ABBREVIATIONS: TJ-100, daikenchuto; HAS, hydroxy-α-sanshool; HBS, hydroxy-β-sanshool; 6S, [6]-shogaol; 10S, [10]-shogaol; GRB1, ginsenoside Rb1; GRG1, ginsenoside Rg1; HPLC, high-performance liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry 2 DMD Fast Forward.
    [Show full text]
  • Less Than Lethal Weapons
    PUBLIC ORDER MANAGEMENT Less Than Lethal Weapons UN Peacekeeping PDT Standards for Formed Police Units 1st edition 2015 Public Order Management 1 Less Than Lethal Weapons Background Before the inception of UN Peacekeeping mission, the Department of Peacekeeping Operations requests TCC/PCC to contribute with their forces to the strength of the mission. The UN Police component is composed by Individual Police Officers (IPO) and Formed Police Units (FPU). The deployment of FPU is subject to a Memorandum of Understanding between the UN and the contributing country and the compliance with the force requirements of the mission. The force requirement lists the equipment and the weapons that the FPU has to deploy with. Despite the fact ‘Guidelines on the Use of Force by Law Enforcement Agencies’ recommends the development and the deployment of less than lethal weapons and ammunitions, FPUs usually do not possess this type of equipment. Until the development of less-lethal weapons, police officers around the world had few if any less-lethal options for riot control. Common tactics used by police that were intended to be non-lethal or less than lethal included a slowly advancing wall of men with batons. Considering the tasks the FPUs are demanded to carry out, those weapons should be mandatory as part of their equipment. The more equipped with these weapons FPUs are, the more they will be able to efficiently respond to the different type of threats and situation. Non-lethal weapons, also called less-lethal weapons, less-than-lethal weapons, non- deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be used in the scale of Use of Force before using any lethal weapon.
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • Cyclic Voltammetric Determination of Capsaicin by Using Electrochemically Deposited Tin and Reduced Graphene Oxide on Screen-Printed Carbon Electrodes
    R ESEARCH ARTICLE doi: 10.2306/scienceasia1513-1874.2020.076 Cyclic voltammetric determination of capsaicin by using electrochemically deposited tin and reduced graphene oxide on screen-printed carbon electrodes Wasukamol Numphud, Orapin Chienthavorn, Wilai Siriwatcharapiboon∗ Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903 Thailand ∗Corresponding author, e-mail: [email protected] Received 28 May 2020 Accepted 19 Aug 2020 ABSTRACT: Tin and reduced graphene oxide (Sn/rGO) was prepared by an electrochemical deposition and modified on a screen-printed carbon electrode (SPCE) in order to improve the electrode selectivity and sensitivity for determination of capsaicin in real samples. The modified electrode was characterized for its surface morphology by scanning electron microscopy (SEM). An elemental analysis of prepared catalysts was confirmed by energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). The experimental conditions influencing determination of capsaicin were optimized. The experiment was carried out in a sodium acetate buffer solution pH 3.0 at a scan rate of 50 mV/s. The Sn/rGO/SPCE showed a linear working range of 0.2–22 µM of capsaicin concentrations. The limit of detection and limit of quantification were 0.005 µM (S/N=3) and 0.02 µM (S/N=10), respectively. The prepared electrode was successfully applied to determine capsaicin in real chili samples and chili sauces. KEYWORDS: capsaicin detection, modified electrode, electrocatalyst, electrochemical sensor INTRODUCTION chromatography (HPLC) [6], gas chromatography- mass spectrometry (GC-MS) 15 , and liquid Chili is one of the most popular ingredients in food [ ] chromatography-mass spectrometry (LC-MS) 16 , owing to its unique characteristics for desirable [ ] have been reported.
    [Show full text]
  • Utilizing LC/UV and LC/MS for the Characterization, Isolation, And
    Utilizing LC/UV and LC/MS for the Characterization, Isolation, and Quantitation of Capsaicinoids in Chili Peppers and Hot Sauces J Preston, Seyed Sadjadi, Zeshan Aqeel, and Sky Countryman Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO19040114_W_2 PO14400613_W_2 Abstract Hot and spicy food has dramatically increased in popu- al different chili peppers and commercially available hot larity over the past 10-20 years. Capsaicin is the most sauces. Prep HPLC is then used to isolate individual cap- abundant compound found in chili peppers giving them saicinoids from the pepper extracts. Finally, a triple qua- their fiery flavor. Capsaicin is formed when vanillylamine druple MS system is employed to identify and quantitate is coupled to a 10 carbon fatty acid through an amide link- the observed capsaicinoids. age. However, there are other related compounds often called capsaicinoids. These compounds have the same Capsaicin was found to be the most prevalent capsaicinoid vanillylamine group but differ by the associated fatty acid species in all of the studied matrices. Significant amounts chain and are responsible for the perception of different of Nordihydrocapsaicin were found in a cayenne hot sauce heat profiles for different chili peppers. Some peppers are and in Thai chili pepper extract. Dihydrocapsaicin and Ho- described as having a high initial flash of heat while other modihydrocapsaicin were also identified in many of the in- peppers are described by a long and late burning profile. vestigated chili extracts and hot sauces but at lower levels. The typical concentration of these compounds were found The work presented here, initially uses HPLC with UV to be in the µg/g range but varied widely among the differ- detection to profile capsaicinoids extracted from sever- ent chili peppers and hot sauces.
    [Show full text]
  • TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS from Basic Science to Clinical Use
    TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS From Basic Science to Clinical Use Edited by ARPAD SZALLASI MD, PHD Department of Pathology, Monmouth Medical Center, Long Branch, NJ, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London, EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First published 2015 Copyright © 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Put Microrna Drug Discovery
    Research Collection Doctoral Thesis Gene circuit based screening assays for mirna drug discovery Author(s): Häfliger, Benjamin Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010651992 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23325 GENE CIRCUIT BASED SCREENING ASSAYS FOR MIRNA DRUG DISCOVERY A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by BENJAMIN HÄFLIGER MSc ETH Biotech, ETH Zurich born on 25.02.1988 citizen of Fischbach, LU accepted on the recommendation of Prof. Dr. Yaakov Benenson Prof. Dr. Sven Panke Dr. Helge Grosshans 2016 ii Abstract Drug discovery is the process of identifying potential new medicines. A key step in this process is high throughput screening (HTS), whereby active compounds are identified from a large library of up to one million candidate molecules. Through minia- turization and automation, such libraries can nowadays be tested in a single week. Despite this impressive performance, about 50% of the screening campaigns fail to provide the desired hits, or the emerging lead compounds do not perform as expected in clinical settings, mostly due to toxicity from off-target interactions. To overcome this issue, novel HTS assays should provide more detailed information on the underlying biology and the relevant off-targets. Multiplexed assays based on liquid chromatog- raphy-mass spectroscopy or deep sequencing could deliver this information; yet, their throughput is comparably low.
    [Show full text]
  • Neuropathic Pain: Delving Into the Oxidative Origin and the Possible Implication of Transient Receptor Potential Channels
    REVIEW published: 14 February 2018 doi: 10.3389/fphys.2018.00095 Neuropathic Pain: Delving into the Oxidative Origin and the Possible Implication of Transient Receptor Potential Channels Cristina Carrasco 1*, Mustafa Nazirogluˇ 2, Ana B. Rodríguez 1 and José A. Pariente 1 1 Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain, 2 Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey Currently, neuropathic pain is an underestimated socioeconomic health problem affecting millions of people worldwide, which incidence may increase in the next years due to chronification of several diseases, such as cancer and diabetes. Growing evidence links neuropathic pain present in several disorders [i.e., spinal cord injury (SCI), cancer, diabetes and alcoholism] to central sensitization, as a global result of mitochondrial dysfunction induced by oxidative and nitrosative stress. Additionally, inflammatory signals Edited by: and the overload in intracellular calcium ion could be also implicated in this complex Ali Mobasheri, network that has not yet been elucidated. Recently, calcium channels namely transient University of Surrey, United Kingdom receptor potential (TRP) superfamily, including members of the subfamilies A (TRAP1), M Reviewed by: Felipe Simon, (TRPM2 and 7), and V (TRPV1 and 4), have demonstrated to play a role in the nociception Universidad Andrés Bello, Chile mediated by sensory neurons. Therefore, as neuropathic pain could be a consequence of Enrique Soto, the imbalance between reactive oxygen species and endogen antioxidants, antioxidant Benemérita Universidad Autónoma de Puebla, Mexico supplementation may be a treatment option. This kind of therapy would exert its beneficial *Correspondence: action through antioxidant and immunoregulatory functions, optimizing mitochondrial Cristina Carrasco function and even increasing the biogenesis of this vital organelle; on balance, antioxidant [email protected] supplementation would improve the patient’s quality of life.
    [Show full text]