Quantique 2013 Chimie Atkins 17/07/13 16:28 Page1

Total Page:16

File Type:pdf, Size:1020Kb

Quantique 2013 Chimie Atkins 17/07/13 16:28 Page1 PHYquanPER_quantique 2013_chimie_atkins 17/07/13 16:28 Page1 Pérez Carles Pujol I I Pérez Carles Pujol Pujol I I Quantique I fondements et applications Carles I Quantique Cet ouvrage, découpé en 20 leçons quasi En outre, sont examinés les progrès considérables autonomes, rassemble les fondements et apparus au cours des dernières décennies, tant sur le plan les applications de la quantique. fondamental, avec la levée des divers paradoxes, que sur le développement de l’optique quantique et des multi- ples applications en métrologie. L’ouvrage se termine Pérez fondements et applications Qu’est-ce que la quantique ? par une ouverture relativiste rendue nécessaire par les Dans la première leçon, on présente la quantique, en progrès qu’ont permis, sur le plan de la pensée et des soulignant les aspects historiques et épistémologiques applications, la théorie de Dirac et l’électrodynamique de cette discipline, et en rappelant ses nombreuses quantique. avec 250 exercices et problèmes résolus implications, non seulement en physique atomique et moléculaire, mais aussi en physique nucléaire, en chimie, De nombreux exemples, plus de 250 exercices en physique de la matière condensée et dans le domaine et problèmes résolus émergent des nanosciences. L’ouvrage s’adresse d’abord aux étudiants de licence (L2, L3) et de la première année du master (M1), mais sa Aspects fondamentaux et applications présentation didactique, avec ses nombreux exemples et Le fil conducteur de l’ouvrage peut être résumé par ses 250 exercices et problèmes résolus, ainsi que l’accent le slogan « un maximum de physique avec un minimum mis sur le développement historique et épistémologique, de formalisme ». Ainsi, en appliquant l’équation de devraient aussi intéresser les candidats aux concours Schrödinger à des systèmes unidimensionnels, sont rapide- de l’enseignement (CAPES, agrégations, etc.), et plus ment abordés les effets de confinement, de quantification, largement toutes les personnes concernées par la de tunnel et de diffusion. Dans ce contexte, l’évolution, le physique et son impact dans toutes les autres disciplines déterminisme, l’indiscernabilité, la superposition d’états et scientifiques, voire même en philosophie. l’intrication, qui sont analysés en détail dans la seconde moitié de l’ouvrage, sont très tôt considérés. Les auteurs José-Philippe Pérez, Professeur émérite de a Ouvrage construit en 20 leçons, progressives et quasi l’Université de Toulouse, UPS-IRAP. autonomes Robert Carles, Professeur à l'Université de Toulouse, a Fondements, ordres de grandeurs et applications concrètes UPS-CEMES. fondements et applications a Développement historique et épistémologique Olivier Pujol, Maître de conférences à l’Université a Aspect plus actuel : introduction à la théorie quantique de Lille, LOA. des champs a De nombreux exemples, 250 exercices et problèmes résolus a Annexes mathématiques et simulations numériques ISBN : 978-2-8041-0778-9 Quantique www.deboeck.com 9 782804 107789 PHYQUANPER Conception graphique : Primo&Primo® Primo&Primo® : graphique Conception D.R. © illu : Quantique fondements et applications PHYQUANPER-pgeTitre.indd 1 19/08/13 11:16 Des mêmes auteurs PÉREZ J.-Ph., PUJOL O., LAGOUTE Ch., PUECH P., ANTERRIEU É., Physique une introduction PÉREZ J.-Ph., LAGOUTE Ch., PUJOL O., DESMEULES É., Leçons de physique. Une approche moderne Chez le même éditeur ASLANGUL C., Mécanique quantique 1. Fondements et applications ASLANGUL C., Mécanique quantique 2. Développement et applications à basse énergie, 2e éd. ASLANGUL C., Mécanique quantique 3. Corrigés détaillés et commentés des exercices et problèmes FOX M., Optique quantique HECHT E., Physique HOBSON M., EFSTATHIOU G., LASENBy A., Relativité générale PHYQUANPER-pgeTitre.indd 2 19/08/13 11:16 Pérez | Carles | Pujol Quantique fondements et applications avec 250 exercices et problèmes résolus PHYQUANPER-pgeTitre.indd 3 19/08/13 11:16 Illustration de couverture L’image utilisée pour illustrer la couverture de l’ouvrage est celle d’un nanoSQUID donnée par un microscope à force atomique. Dans un tel dispositif en forme d’anneau, constitué d’un supraconducteur, d’un nanotube de carbone et d’un plot, on réalise des interférences quantiques avec des paires d’électrons ; plusieurs effets quantiques interviennent alors : l’effet tunnel, l’indiscernabilité des objets, la quantification du flux magnétique, la conductance d’un fil quantique et la discrétisation des niveaux d’énergie dans une boîte quantique. En raison de sa grande sensibilité, le nanoSQUID permet de détecter des moments magnétiques élémentaires. Cette image est issue de travaux menés, dans le cadre du laboratoire CEMES (Centre d’Élaboration de matériaux et d’Études Structurales) de Toulouse et des laboratoires CRTBT (Centre de Recherche sur les Très Basses Températures) et LLN (Laboratoire Louis Néel) de Grenoble, par J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu et M. Monthioux (Nature Nanotechnology, vol. 1, 53-59, 2006). Pour toute information sur notre fonds et les nouveautés dans votre domaine de spécialisation, consultez notre site web: www.deboeck.com © De Boeck Supérieur s.a., 2013 Rue des Minimes, 39 B-1000 Bruxelles Pour la traduction et l’adaptation française Tous droits réservés pour tous pays. Il est interdit, sauf accord préalable et écrit de l’éditeur, de reproduire (notamment par photocopie) partiellement ou totalement le présent ouvrage, de le stocker dans une banque de données ou de le communiquer au public, sous quelque forme et de quelque manière que ce soit. Imprimé en Belgique Dépôt légal: Bibliothèque nationale, Paris: septembre 2013 Bibliothèque royale de Belgique, Bruxelles: 2013/0074/215 ISBN 978-2-8041-0778-9 PHYQUANPER-pgeTitre.indd 4 19/08/13 11:16 i i / / i “PHYQUANPER” — 2013 8 27 — 9:04 — page 5 — #1 i Table des matières Table des matières v Avant-Propos xi Notations et symboles xiv Constantes fondamentales . xiv Notations . xv Alphabet grec . xvii Multiples en notation scientifique . xvii Les grands noms de la physique xviii La quantique en vingt questions xl Leçons 1 1 Qu’est-ce que la quantique? 3 Les fondements de la physique classique . 4 La constante de Planck . 8 Les quatre interactions fondamentales . 16 Les concepts de la quantique . 19 Les fondements de la quantique . 22 Les applications de la quantique . 26 Les différentes synthèses en physique . 30 2 Le photon : première approche 37 Rappel sur les ondes électromagnétiques . 38 Rayonnement du corps noir . 44 Effet photoélectrique . 46 Effet Compton . 50 Autres interactions lumière-matière . 55 Détection et atténuation d’un rayonnement . 58 3 Quantification de l’énergie des atomes 69 Spectre de raies de l’atome d’hydrogène . 70 Interprétation historique de Bohr . 71 Atomes hydrogénoïdes et muoniques . 74 i i i i i i / / i “PHYQUANPER” — 2013 8 27 — 9:04 — page 6 — #2 i vi Table des matières Excitation des atomes . 77 Limites du modèle de Bohr . 83 4 Relation de de Broglie. Inégalités d’Heisenberg 91 Hypothèse fondamentale de Louis de Broglie . 91 Confirmations expérimentales . 96 Interprétation probabiliste . 103 Groupe d’ondes de probabilité . 107 Inégalités spatiales d’Heisenberg . 110 Effets de phase . 115 5 Équation de Schrödinger. États libres 127 Équation de Schrödinger non relativiste . 128 Courant de probabilité . 133 États stationnaires d’un objet physique . 135 États libres à une dimension . 137 Flux d’objets physiques libres . 140 Réflexion et transmission sur une marche . 143 Applications . 155 6 Effet tunnel et diffusion à une dimension 165 Mise en évidence expérimentale . 166 Transmission par effet tunnel . 168 Facteur de transmission en intensité . 171 Interprétation de divers phénomènes . 174 Applications de l’effet tunnel . 178 Diffusion à une dimension . 183 Analyse matricielle . 187 7 Confinement quantique à une dimension 195 Approches classique et quantique . 195 Puits rectangulaire infiniment profond . 197 Approximation classique . 202 Puits quantique de profondeur finie . 204 Exemples physiques de puits . 209 Mesures des grandeurs dans un état confiné . 212 Représentation en quantité de mouvement . 214 8 Oscillateur harmonique et excitations élémentaires 225 Oscillateur harmonique en physique classique . 225 Oscillateur harmonique en quantique . 227 Exemples et ordres de grandeur . 232 Spectrométries de vibration . 237 i i i i i i / / i “PHYQUANPER” — 2013 8 27 — 9:04 — page 7 — #3 i Table des matières vii 9 Systèmes à plusieurs dimensions 249 Systèmes à variables séparables . 250 Prise en compte des symétries . 251 Système 0 D et boîte quantique . 255 Système 1D et fil quantique . 258 Système 2 D et puits quantique . 265 Systèmes 3 D . 271 Réflexion et transmission . 277 10 Couplage de puits quantiques : de l’atome au solide 291 Couplage de deux oscillateurs mécaniques . 291 Couplage par effet tunnel de deux puits quantiques . 301 Comparaison des cas classique et quantique . 312 Autres exemples de couplage . 313 Chaîne périodique d’oscillateurs classiques . 316 Couplage tunnel d’une chaîne périodique de puits . ..
Recommended publications
  • Institute of Physics
    Slectron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn nstitute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden UUIP-1052 December 1981 UPPSALA UNIVERSITY INSTITUTE OF PHYSICS Electron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn Institute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden UUIP-1052 December 1981 Electron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn Institute of Physics University of Uppsala, Sweden In my thesis /I/, which was presented in 1944, I described some work which I had done to study 3 decay and internal conversion in radioactive decay by means of two different principles. One of these was based on the semi-circular focusing of electrons in a homogeneous magnetic field, while the other used a big magnetic lens. The first principle could give good resolution but low intensity, and the other just the reverse. I was then looking for a possibility of combining the two good properties into one instrument. The idea was to shape the previously homogeneous magnetic field in such a way that focusir: should occur in two directions, instead of only one as in + ,• jemi-circular case. It was known that in beta- trons the ,-.•• trons performed oscillatory motions both in the radial anc j the axial directions. By putting the angles of period eq;. ;.. for the two oscillations Nils Svartholm and I /2,3/ four) a simple condition for the magnetic field form required ^ give a real electron optical image i.e.
    [Show full text]
  • The Swedish-Canadian Chamber of Commerce Golden Jubilee 1965
    THE SWEDISH-CANADIAN CHAMBER OF COMMERCE GOLDEN50 JUBILEE 1965 - 2015 Table of Contents Greetings From Public Officials and Dignitaries 2 The Chamber 9 SCCC Board of Directors 2015 10 Meet Our Members 11 History of the Chamber 12 List of Chamber Chairs 1965 - 2015 13 Embassy Interviews 14 10 Swedish Innovations 18 The Nobel Prize - Awarding Great Minds 20 Economic Outlook: Sweden and Canada 22 Article: Alfa Laval 24 Interesting Facts About Sweden 28 Article: The Great Swedish Hockey Migration 30 SCCC Wide Range of Events and Activities 33 A View to the Future 34 Ottawa, 25 November 2015 Ottawa As the Ambassador of Sweden to Canada, I am pleased to extend my most sincere congratulations to the Swedish Canadian Chamber of Commerce on the celebration of its 50th year of excellent service to the Swedish-Canadian business community. Throughout the years the Embassy has enjoyed collaborating with the chamber and appreciated its dedication and enthusiasm for supporting Swedish-Canadian related business. I am pleased to extend sincere congratulations to the staff and members of the Ottawa, 25 November 2015 Swedish-Canadian Chamber of Commerce as you gather to celebrate its 50th anniversary. TheAs themembers Ambassador of the of Chamber Sweden representsto Canada, some I am ofpleased the most to extend my most sincere prosperouscongratulations and well managed to the Swedish Swedish Canadian and Canadian Chamber companies of Commerce which on the celebration The welfare of both our country and our world depends on the engagement, play a keyof roleits 50th in strengthening year of excellent the service long lasting to the Swedish-Canadiantrade relations as well business as community.
    [Show full text]
  • 2014 Technical Strategic Plan
    AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 2014 TECHNICAL STRATEGIC PLAN 1 Message from the Director Dr. Patrick Carrick Acting Director, Air Force Office of Scientific Research Our vision is bold: The U.S. Air Force dominates I am pleased to present the Air Force Office of Scientific Research (AFOSR) Technical Strategic Plan. AFOSR is air, space, and cyberspace the basic research component of the Air Force Research DISCOVER through revolutionary Laboratory. For over 60 years, AFOSR has directed the basic research. Air Force’s investments in basic research. AFOSR was an early investor in the scientific research that directly enabled capabilities critical to the technology superiority of today’s Our mission is challenging: U.S. Air Force, such as stealth, GPS, and laser-guided We discover, shape, and weapons. This plan describes our strategy for ensuring that champion basic science we continue to impact the Air Force of the future. that profoundly impacts the Our basic research investment attracts highly creative SHAPE future Air Force. scientists and engineers to work on Air Force challenges. AFOSR builds productive, enduring relationships with scientists and engineers who look beyond the limits of today’s technology to enable revolutionary Air Force capabilities. Over its history, AFOSR has supported more than 70 researchers who went on to become Nobel Laureates. Three enduring core strategic Furthermore, AFOSR’s basic research investment educates new scientists and engineers in goals ensure that AFOSR stays fields critical to the Air Force. These scientists and engineers contribute not only to our Nation’s committed to the long-term continued security, but also to its economic vitality and technological preeminence.
    [Show full text]
  • Thin Film Depth Profiling by Ion Beam Analysis
    Volume 141 Number 21 7 November 2016 Pages 5903–6162 Analyst www.rsc.org/analyst ISSN 0003-2654 TUTORIAL REVIEW Chris Jeynes and Julien L. Colaux Thin fi lm depth profi ling by ion beam analysis Analyst View Article Online TUTORIAL REVIEW View Journal | View Issue Thin film depth profiling by ion beam analysis Cite this: Analyst, 2016, 141, 5944 Chris Jeynes* and Julien L. Colaux† The analysis of thin films is of central importance for functional materials, including the very large and active field of nanomaterials. Quantitative elemental depth profiling is basic to analysis, and many tech- niques exist, but all have limitations and quantitation is always an issue. We here review recent significant advances in ion beam analysis (IBA) which now merit it a standard place in the analyst’s toolbox. Rutherford backscattering spectrometry (RBS) has been in use for half a century to obtain elemental depth profiles non-destructively from the first fraction of a micron from the surface of materials: more generally, “IBA” refers to the cluster of methods including elastic scattering (RBS; elastic recoil detection, ERD; and non-Rutherford elastic backscattering, EBS), nuclear reaction analysis (NRA: including particle- induced gamma-ray emission, PIGE), and also particle-induced X-ray emission (PIXE). We have at last demonstrated what was long promised, that RBS can be used as a primary reference technique for the best traceable accuracy available for non-destructive model-free methods in thin films. Also, it has Creative Commons Attribution 3.0 Unported Licence. become clear over the last decade that we can effectively combine synergistically the quite different information available from the atomic (PIXE) and nuclear (RBS, EBS, ERD, NRA) methods.
    [Show full text]
  • Nobel Laureates
    Nobel Laureates Over the centuries, the Academy has had a number of Nobel Prize winners amongst its members, many of whom were appointed Academicians before they received this prestigious international award. Pieter Zeeman (Physics, 1902) Lord Ernest Rutherford of Nelson (Chemistry, 1908) Guglielmo Marconi (Physics, 1909) Alexis Carrel (Physiology, 1912) Max von Laue (Physics, 1914) Max Planck (Physics, 1918) Niels Bohr (Physics, 1922) Sir Chandrasekhara Venkata Raman (Physics, 1930) Werner Heisenberg (Physics, 1932) Charles Scott Sherrington (Physiology or Medicine, 1932) Paul Dirac and Erwin Schrödinger (Physics, 1933) Thomas Hunt Morgan (Physiology or Medicine, 1933) Sir James Chadwick (Physics, 1935) Peter J.W. Debye (Chemistry, 1936) Victor Francis Hess (Physics, 1936) Corneille Jean François Heymans (Physiology or Medicine, 1938) Leopold Ruzicka (Chemistry, 1939) Edward Adelbert Doisy (Physiology or Medicine, 1943) George Charles de Hevesy (Chemistry, 1943) Otto Hahn (Chemistry, 1944) Sir Alexander Fleming (Physiology, 1945) Artturi Ilmari Virtanen (Chemistry, 1945) Sir Edward Victor Appleton (Physics, 1947) Bernardo Alberto Houssay (Physiology or Medicine, 1947) Arne Wilhelm Kaurin Tiselius (Chemistry, 1948) - 1 - Walter Rudolf Hess (Physiology or Medicine, 1949) Hideki Yukawa (Physics, 1949) Sir Cyril Norman Hinshelwood (Chemistry, 1956) Chen Ning Yang and Tsung-Dao Lee (Physics, 1957) Joshua Lederberg (Physiology, 1958) Severo Ochoa (Physiology or Medicine, 1959) Rudolf Mössbauer (Physics, 1961) Max F. Perutz (Chemistry, 1962)
    [Show full text]
  • Contributions of Civilizations to International Prizes
    CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen
    [Show full text]
  • CHANDRASEKHARA VENKATA RAMAN — a MEMOIR a Line Sketch of Raman by Homi Bhabha, 1949
    A MEMOIR / About the Author' Dr A. Jayaraman was closely associated with Prof. C. V. Raman at the Raman Research Institute, Bangalore, for about 11 years since its inception, and was a collaborator of Raman in his research on the Physics of Gems and Minerals and Diamond. He left RRI on a post-doctoral fellowship to the Institute of Geophysics in UCLA in 1960 to work with Prof. George Kennedy, who initiated him into High-Pressure Research. In 1963 Dr Jayaraman joined the Bell Telephone Laboratories in the Physics Research Division, and retired in 1990. He spent a sabbatical year (1970) in Bangalore to set up facilities for High-Pressure Research in India for the first time, and then a 15-month term (1991-92) in the Physics Department at the Indian Institute of Science, to set up facilities to do High-Pressure Raman Spectroscopy work, using the Diamond Anvil Cell. In June 1992, he joined the Hawaii Institute of Geophysics and Planetology of the University of Hawaii at Manoa, Honolulu, and held a Research Professorship for 5 years. Upon return from Hawaii he was associated with the Geophysical Lab of the Carnegie Institution of Washington in Washington, DC, for two years (1997 to 2000), before taking complete retirement from active scientific research. He now lives in Phoenix, Arizona, USA. Continued on back cover flap Digitized by the Internet Archive in 2018 with funding from Public.Resource.Org https://archive.org/details/chandrasekharaveOOjaya CHANDRASEKHARA VENKATA RAMAN — A MEMOIR A line sketch of Raman by Homi Bhabha, 1949. Chandrasekhara Venkata RAMAN A.
    [Show full text]
  • William Aaron Nierenberg Feb. 13,1919
    William Aaron Nierenberg Feb. 13,1919- William Aaron Nierenberg was born on February 13, 1919 at 228 E. 13th St. in New York City on what was then the Lower East Side -- it is now the "East Village". While it is true that his father and his father's family had lived on the Lower East Side (Houston Street) when they had emigrated to America (his father in 1906), it was an accident that his birthplace was there. His parents, Joseph and Minnie (Drucker) had moved to Manhattan from the Bronx to be near the Sloan Lying in Hospital for his birth. His parents had lost their first infant child to tuberculosis of the brain from tainted milk and his mother was naturally very nervous about the new child's safety. He only lived in Manhattan for the next four months and the rest of his years in New York City, both before and after his marriage, were spent in the Bronx except for time in Paris as a physics student. There is essentially no specific knowledge of his antecedents. His paternal grandfather's given name was Hirsch and his paternal grandmother's name was Bertha. He had no knowledge whatsoever of his maternal forebears. His parent's gravestone showed his grandfather (therefore his father and he himself) to be a Levi, of the tribe blessed by the Lord. His mother's gravestone describes her as a "daughter of Abraham" since her antecedents were unknown to the burial society. (Many years later. most surprisingly, her birth certificate showed up! This is the one that Aba's daughter gave me a copy of.
    [Show full text]
  • Nico Bloembergen Master of Light
    springer.com Popular Science : Popular Science in Physics Herber, Rob Nico Bloembergen Master of Light Describes the life and work of one of the founders of NMR, laser spectroscopy and non-linear optics Presents a detailed and panoramic view of the developments in science in the second half of the twentieth century Describes Bloembergen's pioneering work in quantum electronics including the invention of the three-level maser This biography is a personal portrait of one of the best-known Dutch physicists, Nicolaas Bloembergen. Born in 1920 in Dordrecht, Bloembergen studied physics in Utrecht, leaving after World War II for the United States, where he became an American citizen in 1958. At Harvard University, he pioneered nuclear magnetic resonance (NMR, used in chemistry and biology for structure identification; moreover leading to MRI), laser theory and nonlinear optics. In 1978 Springer he was awarded the Lorentz Medal for his contribution to the theory of nonlinear optics (used 1st ed. 2019, XX, 381 p. in fiber optics), and in 1981 he received the Nobel Prize for physics, along with Arthur 1st Schawlow and Kai Siegbahn. The book is based on numerous conversations with Nicolaas edition Bloembergen himself, his wife Deli Brink, his family, and colleagues in science. It describes his childhood and study in Bilthoven and Utrecht, the first postwar years at Harvard, the discoveries of masers and lasers, and the award of the Nobel Prize. It also delves into Printed book Bloembergen's involvement in American politics, particularly his role
    [Show full text]
  • Kai M.B Siegbahn Lund, Sweden, 20 Apr
    Kai M.B Siegbahn Lund, Sweden, 20 Apr. 1918 - Ängelholm, Sweden, 20 July 2007 Nomination 14 Dec. 1985 Field Physics Title Professor at the University of Uppsala Commemoration – We remember with deepest respect the memory of a very distinguished scientist, who was our colleague, Prof. Kai M. Siegbahn. He was born on 20th April 1918 in Lund, Sweden. He passed away on 20th July, 2007 at the age of 89 at his summer home in Angelholm, in southern Sweden. He became a Member of our Academy on 14th December 1985. Kai Siegbahn was the son of another great Swedish physicist, Manne Siegbahn, who won the Nobel Prize in 1924. Kai Siegbahn himself won the Nobel Prize in 1981; he received half the prize for the new approach to chemical analysis based on photoelectron spectroscopy; the other half was shared by Arther Schalow and Nicolaas Bloembergen for their contributions to laser spectroscopy. Both these areas owe their origin to the conceptual discoveries of Einstein, earlier in the century, of the photoelectric effect and of coherence. Kai Siegbahn always acknowledged his father’s influence on him; he remarked to the New York Times: ‘Conversations in early life with the Nobelist at the breakfast table gave him an advantage unanticipated at that time’. By winning a Nobel Prize that his father had also won earlier, Kai M. Siegbahn joined several other families in this respect: the Thompsons (J.J. and G.P.); the Braggs (William and Lawrence); the Curie family (Marie and Pierre Curie, Irene and Fredrick Joliot Curie); the Bohrs (Neils and Aage); and most recently the Kornbergs (Arthur & Roger).
    [Show full text]
  • Physics81-90-1.Pdf
    NOBEL LECTURES IN PHYSICS 1981-1990 NOBEL LECTURES I NCLUDING P RESENTATION S PEECHES AND LAUREATES' BIOGRAPHIES PHYSICS CHEMISTRY PHYSIOLOGY OR MEDICINE LITERATURE PEACE ECONOMIC SCIENCES NOBEL LECTURES I NCLUDING P RESENTATION S PEECHES AND LAUREATES' BIOGRAPHIES PHYSICS 1981-1990 EDITOR-IN-CHARGE T ORE F RÄNGSMYR EDITOR G ÖSTA E KSPONG Published for the Nobel Foundation in 1993 by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 9128 USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661 UK office: 73 Lynton Mead, Totteridge, London N20 8DH NOBEL LECTURES IN PHYSICS (1981-1990) All rights reserved. ISBN 981-02-0728-X ISBN 981-02-0729-E (pbk) Printed in Singapore by Continental Press Pte Ltd Foreword Since 1901 the Nobel Foundation has published annually “Les Prix Nobel” with reports from the Nobel Award Ceremonies in Stockholm and Oslo as well as the biographies and Nobel lectures of the laureates. In order to make the lectures available to people with special interests in the different prize fields the Foundation gave Elsevier Publishing Company the right to publish in English the lectures for 1901-1970, which were published in 1964-1972 through the following volumes: Physics 1901-1970 4 volumes Chemistry 1901-1970 4 volumes Physiology or Medicine 1901-1970 4 volumes Literature 1901-1967 1 volume Peace 1901-1970 3 volumes Elsevier decided later not to continue the Nobel project. It is therefore with great satisfaction that the Nobel Foundation has given World Scientific Publishing Company the right to bring the series up to date.
    [Show full text]
  • 24 August 2013 Seminar Held
    PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening.
    [Show full text]