Nicolaas Bloembergen (1920–2017)∗ Physicist, Father of Nonlinear Optics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fotonica Ed Elettronica Quantistica
Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A. -
Guest Speakers
2011 NES/APS-AAPT Joint Spring Meeting Invited Speakers Banquet Speaker The Make-believe World of Real-world Physics Eric Mazur Balkanski Professor of Physics and Applied Physics and Area Dean of Applied Physics. Harvard University Cambridge, MA That physics describes the real world is a given for physicists. In spite of tireless efforts by instructors to connect physics to the real world, students walk away from physics courses believing physicists live in a world of their own. Are students clueless about the real world? Or are we perhaps deluding ourselves and misleading our students about the real world? APS Talks -1- Taming Light and Electrons with Metamaterials Nader Engheta H. Nedwill Ramsey Professor University of Pennsylvania Department of Electrical and Systems Engineering Philadelphia, Pennsylvania In recent years, in my group we have been working on various aspects of metamaterials and plasmonic nano-optics. We have introduced and been developing the concept of “metatronics”, i.e. metamaterial-inspired optical nanocircuitry, in which the three fields of “electronics”, “photonics” and “magnetics” can be brought together seamlessly under one umbrella – a paradigm which I call the “Unified Paradigm of Metatronics”. In this novel optical circuitry, the nanostructures with specific values of permittivity and permeability may act as the lumped circuit elements such as nanocapacitors, nanoinductors and nanoresistors. Nonlinearity in metatronics can also provide us with novel nonlinear lumped elements. We have investigated the concept of metatronics through extensive analytical and numerical studies, computer simulations, and recently in a set of experiments at the IR wavelengths. We have shown that nanorods made of low- stressed Si3N4 with properly designed cross sectional dimensions indeed function as lumped circuit elements at the IR wavelengths between 8 to 14 microns. -
Physics & Practice Of
VOLUME 1 MAZUR PRINCIPLES PRINCIPLES & PRACTICE OF PHYSICS & PRACTICE OF Putting Principles First Based on his storied research and teaching, Eric Mazur’s Principles & Practice of Physics builds an understanding of physics that is both thorough and accessible. Unique organization and pedagogy allow students to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. • New learning architecture: The book is structured to help students learn physics in an organized way that encourages comprehension and reduces distraction. • Physics on a contemporary foundation: Traditional texts delay the introduction of ideas PHYSICS that we now see as unifying and foundational. This text builds physics on those unifying foundations, helping students to develop an understanding that is stronger, deeper, and fundamentally simpler. • Research-based instruction: This text uses a range of research-based instructional techniques to teach physics in the most effective possible manner. The result is a groundbreaking book that puts principles first, thereby making it more accessible to students and easier for instructors to teach. MasteringPhysics® works with the text to create a learning program that enables students to learn both in and out of the classroom. About the Cover Two jets of water collide and mix to form a single swirling wave. The image conveys the elegance and symmetry of physics and how the separate Principles and Practice volumes of this text meld together to teach students the beauty of physics. Please visit us at www.pearsonhighered.com for more information. ISBN-13: 978-0-321-95840-2 To order any of our products, contact our customer service department ISBN-10: 0-321-95840-3 90000 VOL. -
Michal Lipson Named 2021 John Tyndall Award Recipient
Michal Lipson Named 2021 John Tyndall Award Recipient WASHINGTON – The Optical Society (OSA) and the IEEE Photonics Society have named Michal Lipson, Eugene Higgins Professor of Electrical Engineering and Professor of Applied Physics at Columbia University, USA the 2021 John Tyndall Award recipient. Lipson, the first woman to receive the award since it was established in 1987, is recognized for “fundamental and technological advances in integrated photonic devices." “A trailblazer in the field, Michal Lipson’s groundbreaking research led to the development of the first gigahertz silicon modulators, demonstrating that silicon photonics could produce active devices,” said 2020 OSA President Stephen Fantone. “The Tyndall Award is a well- deserved testament to her visionary work in nanophotonics.” "Michal Lipson is a leader, a pioneer and a giant in the field of nanophotonics for her contributions to the physics and applications of light confining photonics structures”, added IEEE Photonics Society President Carmen Menoni. “The IEEE Photonics Society is delighted with her recognition by the Tyndall Award." The award, one of the top honors in the fiber optics community, is named for John Tyndall, a 19th century scientist who was the first to demonstrate the phenomenon of total internal reflection. It recognizes an individual who has made pioneering, highly significant, or continuing technical or leadership contributions to fiber optic technology. The Tyndall Award will be presented to Lipson at OFC 2021 (Optical Fiber Communication Conference and Exhibition), the world’s leading conference and exhibition for optical communications and networking professionals, 6 to 10 June 2021 in San Francisco, California, USA. Corning, Incorporated sponsors the award, which consists of a specially commissioned glass sculpture that represents the concept of total internal reflection, a scroll and an honorarium, and it is jointly presented by The Optical Society and the IEEE Photonics Society. -
Institute of Physics
Slectron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn nstitute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden UUIP-1052 December 1981 UPPSALA UNIVERSITY INSTITUTE OF PHYSICS Electron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn Institute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden UUIP-1052 December 1981 Electron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn Institute of Physics University of Uppsala, Sweden In my thesis /I/, which was presented in 1944, I described some work which I had done to study 3 decay and internal conversion in radioactive decay by means of two different principles. One of these was based on the semi-circular focusing of electrons in a homogeneous magnetic field, while the other used a big magnetic lens. The first principle could give good resolution but low intensity, and the other just the reverse. I was then looking for a possibility of combining the two good properties into one instrument. The idea was to shape the previously homogeneous magnetic field in such a way that focusir: should occur in two directions, instead of only one as in + ,• jemi-circular case. It was known that in beta- trons the ,-.•• trons performed oscillatory motions both in the radial anc j the axial directions. By putting the angles of period eq;. ;.. for the two oscillations Nils Svartholm and I /2,3/ four) a simple condition for the magnetic field form required ^ give a real electron optical image i.e. -
Laser Spectroscopy Experiments
Hyperfine Spectrum of Rubidium: laser spectroscopy experiments Physics 480W (Dated: Sp19 Paper #4) I. OBJECTIVES FOR THESE EXPERIMENTS We wish to use the technique of absorption spec- troscopy to probe and detect the energy level structure of atomic Rubidium, Rb I, whose ground state is split by a tiny amount on account of nuclear magnetism. In effect, the spectroscopy we do today tells us about nuclear prop- erties and so combines atomic and nuclear physics. The main result of this experiment, the 4th of the semester, is to 1. measure the hyperfine splitting for each isotope, and compare with accepted values, with the fol- lowing details in mind: (a) what is the hyperfine splitting of the ground 2 state, S1=2 term? Do we need saturation- absorption techniques for this? (b) what are the hyperfine splittings of the ex- 2 cited state, P3=2 term, that can be reached with a nominal wavelength of 780nm from the ground state? Here we need saturation- absorption techniques to perform sub-Doppler FIG. 1. Note the four 'blobs'. Why are there four? Which spectroscopy, certainly. Help the reader un- 85 are associated with Rb37, and so on. If all goes swimm- derstand what is entailed in the technique, ingly, we'll get an absorption spectrum that looks much line both experimentally and theoretically. You the figure below the setup. The etalon data will be needed to will need to explain what `saturation' means. make the abscissa something proportional to frequency. The The saturation intensity is an important fig- accepted value of the gap between the 2 outermost dips is ure of merit. -
Vitae of Jay X. Tang
Vitae of Jay X. Tang 1. Name, Position and Academic Department(s) Jay X. Tang, Professor of Physics and Engineering Brown University (he/his/him) Tel: 401 863 2292; Fax: 401 863 2024 E-mail address: [email protected] 2. Home Address (on file with Brown University) 3. Education B. S., July, 1987, Department of Physics, Peking University, Beijing, P. R. China. Ph.D., February 1995, Department of Physics, Brandeis University, Waltham, MA. Thesis topic: Isotropic and cholesteric liquid crystalline phase transitions of filamentous bacteriophage fd. Advisor: Seth Fraden. 4. Professional Appointments Postdoctoral Research Fellow supported by a National Institute of Health (NIH) training grant, Harvard Medical School, July, 1994-September, 1997 Instructor of Medicine, Harvard Medical School, October, 1997-August, 1999 Assistant Professor of Physics, Indiana University, August, 1999-December, 2002 Guest Faculty at the Institute of Theoretical Physics (ITP), University of California-Santa Barbara, Program Title: Complex Fluids, Feb-March, 2002 Assistant Professor of Physics and Engineering, Brown University, July, 2002- June, 2008 Guest Professor, Institute of Physics, Chinese Academy of Sciences, Beijing, PRC, 2005-2008 Associate Professor of Physics and Engineering, Brown University, July, 2008- 2015 Professor of Physics and Engineering, Brown University, July, 2015-present Member, Center for International Collaboration, Institute of Physics (IOP), Chinese Academy of Sciences, Beijing, PRC., 2019-present. Faculty Trainer, Biomedical Engineering (BME) and Molecular Pharmacology and Physiology (MPP) graduate programs, 2010-present. 5. Publication b. Book Chapters 1. Janmey, P. A., Shah, J. V., and Tang, J. X., Complex Network in Cell Biology. In Dynamic networks in physics and biology. G. -
Optical Properties of Solar Cells Based on Zinc(Hydr)Oxide and Its Composite with Graphite Oxide Sensitized by Quantum Dots
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Optical Properties of Solar Cells Based on Zinc(hydr)oxide and its Composite with Graphite oxide Sensitized by Quantum Dots S. M. Zakirul Islam Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/54 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Optical Properties of Solar Cells Based on Zinc(hydr)oxide and its Composite with Graphite oxide Sensitized by Quantum Dots by S.M. Zakirul Islam A dissertation submitted to the Graduate Faculty in Electrical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 © 2014 S.M. Zakirul Islam All Rights Reserved II This manuscript has been read and accepted for the Graduate Faculty of Electrical Engineering in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Robert R. Alfano Date Chair of Examining Committee Professor Ardie Walser Date Executive Officer Professor Joseph Birman Professor Ping Pei-Ho Professor Teresa J. Bandosz Professor Sang Woo Seo Dr. Wubao Wang Supervisory Committee The City University of New York III Abstract Optical Properties of Solar Cells Based on Zinc(hydr)oxide and its Composite with Graphite oxide Sensitized by Quantum Dots by S.M. -
Mrifrom Picture to Proton
MRI From Picture to Proton Donald W. McRobbie Elizabeth A. Moore Martin J. Graves and Martin R. Prince The Pitt Building, Trumpington Street, Cambridge, United Kingdom The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Donald W. McRobbie, Elizabeth A. Moore, Martin J. Graves and Martin R. Prince 2003 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2003 Printed in the United Kingdom at the University Press, Cambridge Typeface Utopia 8.5/12 System QuarkXPress® [] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data MRI from picture to proton / Donald W. McRobbie . [et al.]. p. cm. Includes bibliographical references and index. ISBN 0 521 52319 2 1. Magnetic resonance imaging. I. McRobbie, Donald W., 1958– RC78.7.N83 M756 2003 616.07Ј548–dc21 2002067238 ISBN 0 521 81859 1 hardback ISBN 0 521 52319 2 paperback Contents Acknowledgements xi 1 MR: What’s the attraction? 1 1.1 It’s not rocket science, but I like it 1 1.2 A brief history of medical imaging 2 1.3 How to use this book 4 Further reading 6 Part A The basic stuff 2 Early daze: your first -
Also Inside: • Why You Shouldn’T Shy Away from Diversity Efforts MEDICAL OCT LIDAR FIBER SENSING
June 2018 Vol. 32, No. 3 www.PhotonicsSociety.org Also Inside: • Why You Shouldn’t Shy Away From Diversity Efforts MEDICAL OCT LIDAR FIBER SENSING FIND THE RIGHT BALANCED DETECTOR FOR YOUR APPLICATION A variety of standard and custom options for low noise small-signal detection BPD-002 Laboratory Balanced Detector FEATURES • Low Noise • High CMRR BPD-002-OEM • High Conversion Gain High Speed, AC-Coupled • Wide Bandwidth (Up to 400 MHz) Balanced Detector • Customizable Bandwidth, Wavelength, Dimensions, and Integration BPD-003 APPLICATIONS Compact, OEM Balanced Detector • Optical Coherence Tomography • Fiber Sensing Interrogators • High Sensitivity Instrumentation • R&D PBPD-001 Polarization Diverse Balanced Detector 909.590.5473 [email protected] generalphotonics.com June 2018 Vol. 32, No. 3 www.PhotonicsSociety.org Also Inside: • Why You Shouldn’t Shy Away From Diversity Efforts June 2018 Volume 32, Number 3 FEATURE Research Highlights . 4 –G eneration and Detection of Ultra-High Speed Optical Signals 8 Get to Know Your Society Leadership. 8 • Tetsuya Kawanishi, Board of Governors Elected Member 2017–2019 Diversity & Inclusion Spotlight. 10 • Why You Shouldn’t Shy Away From Diversity Efforts News . 11 • Research & Product Spotlights from OFC 2018 • IEEE Standard to Rate the Trustworthiness of News Sites • U.S. National Photonics Initiative Updates • OFC 2018 Wraps in San Diego with Major Announcements in Data-center Connectivity, 5G and More • Professor Ben Eggleton Appointed Director of Sydney Nano Careers and Awards. 21 • IEEE Photonics Society—Call For Nominations • Distinguished Lecturer Selection for 2018–19 • The IEEE/OSA Journal of Lightwave Technology—Best Paper Award Membership . 24 • Member Spotlights 20 • Dr Simon Poole Recognized as Officer of the Order of Australia • Constance Jui-Hua Chang-Hasnain Elected to National Academy of Engineering • Photonics outreach at the University of Southampton • “Bringing STEM to Light” at OFC 2018 • Inaugural Suzanne R. -
The Swedish-Canadian Chamber of Commerce Golden Jubilee 1965
THE SWEDISH-CANADIAN CHAMBER OF COMMERCE GOLDEN50 JUBILEE 1965 - 2015 Table of Contents Greetings From Public Officials and Dignitaries 2 The Chamber 9 SCCC Board of Directors 2015 10 Meet Our Members 11 History of the Chamber 12 List of Chamber Chairs 1965 - 2015 13 Embassy Interviews 14 10 Swedish Innovations 18 The Nobel Prize - Awarding Great Minds 20 Economic Outlook: Sweden and Canada 22 Article: Alfa Laval 24 Interesting Facts About Sweden 28 Article: The Great Swedish Hockey Migration 30 SCCC Wide Range of Events and Activities 33 A View to the Future 34 Ottawa, 25 November 2015 Ottawa As the Ambassador of Sweden to Canada, I am pleased to extend my most sincere congratulations to the Swedish Canadian Chamber of Commerce on the celebration of its 50th year of excellent service to the Swedish-Canadian business community. Throughout the years the Embassy has enjoyed collaborating with the chamber and appreciated its dedication and enthusiasm for supporting Swedish-Canadian related business. I am pleased to extend sincere congratulations to the staff and members of the Ottawa, 25 November 2015 Swedish-Canadian Chamber of Commerce as you gather to celebrate its 50th anniversary. TheAs themembers Ambassador of the of Chamber Sweden representsto Canada, some I am ofpleased the most to extend my most sincere prosperouscongratulations and well managed to the Swedish Swedish Canadian and Canadian Chamber companies of Commerce which on the celebration The welfare of both our country and our world depends on the engagement, play a keyof roleits 50th in strengthening year of excellent the service long lasting to the Swedish-Canadiantrade relations as well business as community. -
2014 Technical Strategic Plan
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 2014 TECHNICAL STRATEGIC PLAN 1 Message from the Director Dr. Patrick Carrick Acting Director, Air Force Office of Scientific Research Our vision is bold: The U.S. Air Force dominates I am pleased to present the Air Force Office of Scientific Research (AFOSR) Technical Strategic Plan. AFOSR is air, space, and cyberspace the basic research component of the Air Force Research DISCOVER through revolutionary Laboratory. For over 60 years, AFOSR has directed the basic research. Air Force’s investments in basic research. AFOSR was an early investor in the scientific research that directly enabled capabilities critical to the technology superiority of today’s Our mission is challenging: U.S. Air Force, such as stealth, GPS, and laser-guided We discover, shape, and weapons. This plan describes our strategy for ensuring that champion basic science we continue to impact the Air Force of the future. that profoundly impacts the Our basic research investment attracts highly creative SHAPE future Air Force. scientists and engineers to work on Air Force challenges. AFOSR builds productive, enduring relationships with scientists and engineers who look beyond the limits of today’s technology to enable revolutionary Air Force capabilities. Over its history, AFOSR has supported more than 70 researchers who went on to become Nobel Laureates. Three enduring core strategic Furthermore, AFOSR’s basic research investment educates new scientists and engineers in goals ensure that AFOSR stays fields critical to the Air Force. These scientists and engineers contribute not only to our Nation’s committed to the long-term continued security, but also to its economic vitality and technological preeminence.