Optical Properties of Solar Cells Based on Zinc(Hydr)Oxide and Its Composite with Graphite Oxide Sensitized by Quantum Dots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genesis of Chah-Talkh Nonsulfide Zn-Pb Deposit (South of Iran): Evidence from Geology, Mineralogy, Geochemistry and Stable Isotope (C, O) Data --Manuscript Draft
Arabian Journal of Geosciences Genesis of Chah-Talkh nonsulfide Zn-Pb deposit (south of Iran): Evidence from Geology, Mineralogy, Geochemistry and Stable Isotope (C, O) data --Manuscript Draft-- Manuscript Number: AJGS-D-12-00257 Full Title: Genesis of Chah-Talkh nonsulfide Zn-Pb deposit (south of Iran): Evidence from Geology, Mineralogy, Geochemistry and Stable Isotope (C, O) data Article Type: Original Paper Abstract: Abstract Chah-Talkh nonsulfide Zn-Pb deposit with about more than 720000 t at 15% Zn in the form of Zn carbonates and silicates is a target resource in the south of Iran. In this preliminary study, some cases likes geology, mineralogy and geochemistry (major and trace element data and stable Isotope) of this deposit in surface and depth are investigated for determine of genesis. The analyses carried out on samples from 14 drill cores and 15 surface profiles (vertical to veins strike). Mineralization occurs in 3 main veins with thickness about 0.5 to 3 meters in the length about 900 m that in (resent) exploration this length increases. Main ore minerals are hydrozincite, hemimorphite and smithsonite. The mineralogical and geochemical evidences indicate that Chah-Talkh deposit is a typical supergene nonsulfide Zn-Pb deposit in carbonate rocks that primary sulfide ores almost has been affected by deeply weathered. Mineralization in Chah-Talkh is generally associated with fracture zones and dolomitization. It seems that distribution of hemimorphite, smithsonite and hydrozincite is reflection of existing of clay minerals in host rocks. In presence of clay minerals (in marly limestone) main ore mineral is hemimorphite and in absence of clay minerals (micritic limestone) main ore mineral is hydrozincite and smithsonite. -
Guest Speakers
2011 NES/APS-AAPT Joint Spring Meeting Invited Speakers Banquet Speaker The Make-believe World of Real-world Physics Eric Mazur Balkanski Professor of Physics and Applied Physics and Area Dean of Applied Physics. Harvard University Cambridge, MA That physics describes the real world is a given for physicists. In spite of tireless efforts by instructors to connect physics to the real world, students walk away from physics courses believing physicists live in a world of their own. Are students clueless about the real world? Or are we perhaps deluding ourselves and misleading our students about the real world? APS Talks -1- Taming Light and Electrons with Metamaterials Nader Engheta H. Nedwill Ramsey Professor University of Pennsylvania Department of Electrical and Systems Engineering Philadelphia, Pennsylvania In recent years, in my group we have been working on various aspects of metamaterials and plasmonic nano-optics. We have introduced and been developing the concept of “metatronics”, i.e. metamaterial-inspired optical nanocircuitry, in which the three fields of “electronics”, “photonics” and “magnetics” can be brought together seamlessly under one umbrella – a paradigm which I call the “Unified Paradigm of Metatronics”. In this novel optical circuitry, the nanostructures with specific values of permittivity and permeability may act as the lumped circuit elements such as nanocapacitors, nanoinductors and nanoresistors. Nonlinearity in metatronics can also provide us with novel nonlinear lumped elements. We have investigated the concept of metatronics through extensive analytical and numerical studies, computer simulations, and recently in a set of experiments at the IR wavelengths. We have shown that nanorods made of low- stressed Si3N4 with properly designed cross sectional dimensions indeed function as lumped circuit elements at the IR wavelengths between 8 to 14 microns. -
Physics & Practice Of
VOLUME 1 MAZUR PRINCIPLES PRINCIPLES & PRACTICE OF PHYSICS & PRACTICE OF Putting Principles First Based on his storied research and teaching, Eric Mazur’s Principles & Practice of Physics builds an understanding of physics that is both thorough and accessible. Unique organization and pedagogy allow students to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. • New learning architecture: The book is structured to help students learn physics in an organized way that encourages comprehension and reduces distraction. • Physics on a contemporary foundation: Traditional texts delay the introduction of ideas PHYSICS that we now see as unifying and foundational. This text builds physics on those unifying foundations, helping students to develop an understanding that is stronger, deeper, and fundamentally simpler. • Research-based instruction: This text uses a range of research-based instructional techniques to teach physics in the most effective possible manner. The result is a groundbreaking book that puts principles first, thereby making it more accessible to students and easier for instructors to teach. MasteringPhysics® works with the text to create a learning program that enables students to learn both in and out of the classroom. About the Cover Two jets of water collide and mix to form a single swirling wave. The image conveys the elegance and symmetry of physics and how the separate Principles and Practice volumes of this text meld together to teach students the beauty of physics. Please visit us at www.pearsonhighered.com for more information. ISBN-13: 978-0-321-95840-2 To order any of our products, contact our customer service department ISBN-10: 0-321-95840-3 90000 VOL. -
Vitae of Jay X. Tang
Vitae of Jay X. Tang 1. Name, Position and Academic Department(s) Jay X. Tang, Professor of Physics and Engineering Brown University (he/his/him) Tel: 401 863 2292; Fax: 401 863 2024 E-mail address: [email protected] 2. Home Address (on file with Brown University) 3. Education B. S., July, 1987, Department of Physics, Peking University, Beijing, P. R. China. Ph.D., February 1995, Department of Physics, Brandeis University, Waltham, MA. Thesis topic: Isotropic and cholesteric liquid crystalline phase transitions of filamentous bacteriophage fd. Advisor: Seth Fraden. 4. Professional Appointments Postdoctoral Research Fellow supported by a National Institute of Health (NIH) training grant, Harvard Medical School, July, 1994-September, 1997 Instructor of Medicine, Harvard Medical School, October, 1997-August, 1999 Assistant Professor of Physics, Indiana University, August, 1999-December, 2002 Guest Faculty at the Institute of Theoretical Physics (ITP), University of California-Santa Barbara, Program Title: Complex Fluids, Feb-March, 2002 Assistant Professor of Physics and Engineering, Brown University, July, 2002- June, 2008 Guest Professor, Institute of Physics, Chinese Academy of Sciences, Beijing, PRC, 2005-2008 Associate Professor of Physics and Engineering, Brown University, July, 2008- 2015 Professor of Physics and Engineering, Brown University, July, 2015-present Member, Center for International Collaboration, Institute of Physics (IOP), Chinese Academy of Sciences, Beijing, PRC., 2019-present. Faculty Trainer, Biomedical Engineering (BME) and Molecular Pharmacology and Physiology (MPP) graduate programs, 2010-present. 5. Publication b. Book Chapters 1. Janmey, P. A., Shah, J. V., and Tang, J. X., Complex Network in Cell Biology. In Dynamic networks in physics and biology. G. -
Modelling Leaching of Inorganic Contaminants from Cementitious Waste Matrices
KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT INGENIEURSWETENSCHAPPEN DEPARTEMENT CHEMISCHE INGENIEURSTECHNIEKEN W. DE CROYLAAN 46 B-3001 HEVERLEE BELGIË MODELLING LEACHING OF INORGANIC CONTAMINANTS FROM CEMENTITIOUS WASTE MATRICES Promotor: Prof. dr. R. Swennen Eindwerk ingediend tot het behalen van de graad van Co-promotor: Dr. ir. T. Van Gerven burgerlijk scheikundig ingenieur door Evelien Martens Juni 2007 KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT INGENIEURSWETENSCHAPPEN DEPARTEMENT CHEMISCHE INGENIEURSTECHNIEKEN W. DE CROYLAAN 46 B-3001 HEVERLEE BELGIË MODELLING LEACHING OF INORGANIC CONTAMINANTS FROM CEMENTITIOUS WASTE MATRICES Promotor: Prof. dr. R. Swennen Eindwerk ingediend tot het behalen van de graad van Co-promotor: Dr. ir. T. Van Gerven burgerlijk scheikundig ingenieur door Assessoren: ir. G. Cornelis Prof. dr. ir. E. Smolders Evelien Martens Juni 2007 © Copyright by K.U.Leuven – Deze tekst is een examendocument dat na verdediging niet werd gecorrigeerd voor eventueel vastgestelde fouten. Zonder voorafgaande schriftelijke toestemming van de promotoren en de auteurs is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeelten ervan verboden. Voor aanvragen tot of informatie in verband met het overnemen en/of gebruik en/of realisatie van gedeelten uit deze publicatie, wendt u zich tot de K.U.Leuven, Dept.Chemische Ingenieurstechnieken, de Croylaan 46 B-3001 Heverlee (België), tel. 016/322676. Voorafgaande schriftelijke toestemming van de promotor is vereist voor het aanwenden van de in dit afstudeerwerk beschreven (originele) methoden, producten, toestellen, programma’s voor industrieel nut en voor inzending van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden. iii Dankwoord Het is zover, na lang zwoegen met verschillende tegenslagen – wanneer PHREEQC niet convergeerde, de modellering niet overeenkwam met de resultaten of mijn pc crashte – maar ook veel leuke momenten – wanneer alles eindelijk bleek te werken – is mijn thesis af. -
Frontiers in Optics 2010/Laser Science XXVI
Frontiers in Optics 2010/Laser Science XXVI FiO/LS 2010 wrapped up in Rochester after a week of cutting- edge optics and photonics research presentations, powerful networking opportunities, quality educational programming and an exhibit hall featuring leading companies in the field. Headlining the popular Plenary Session and Awards Ceremony were Alain Aspect, speaking on quantum optics; Steven Block, who discussed single molecule biophysics; and award winners Joseph Eberly, Henry Kapteyn and Margaret Murnane. Led by general co-chairs Karl Koch of Corning Inc. and Lukas Novotny of the University of Rochester, FiO/LS 2010 showcased the highest quality optics and photonics research—in many cases merging multiple disciplines, including chemistry, biology, quantum mechanics and materials science, to name a few. This year, highlighted research included using LEDs to treat skin cancer, examining energy trends of communications equipment, quantum encryption over longer distances, and improvements to biological and chemical sensors. Select recorded sessions are now available to all OSA members. Members should log in and go to “Recorded Programs” to view available presentations. FiO 2010 also drew together leading laser scientists for one final celebration of LaserFest – the 50th anniversary of the first laser. In honor of the anniversary, the conference’s Industrial Physics Forum brought together speakers to discuss Applications in Laser Technology in areas like biomedicine, environmental technology and metrology. Other special events included the Arthur Ashkin Symposium, commemorating Ashkin's contributions to the understanding and use of light pressure forces on the 40th anniversary of his seminal paper “Acceleration and trapping of particles by radiation pressure,” and the Symposium on Optical Communications, where speakers reviewed the history and physics of optical fiber communication systems, in honor of 2009 Nobel Prize Winner and “Father of Fiber Optics” Charles Kao. -
Nonlinear Optics at the Nanoscale Eric Mazur Presented by Christopher C
Nonlinear optics at the nanoscale Eric Mazur Presented by Christopher C. Evans 22nd General Congress of the International Commission for Optics Puebla, Mexico, 17 August 2011 Geoff Svacha Rafael Gattass Tobias Voss Limin Tong and also.... Jonathan Aschom Mengyan Shen Iva Maxwell James Carey Brian Tull Dr. Yuan Lu Dr. Richard Schalek Prof. Federico Capasso Prof. Cynthia Friend Prof. Markus Pollnau (Twente) Xuewen Chen (Zhejiang) Zhanghua Han (Zhejiang) Dr. Sailing He (Zhejiang) Liu Liu (Zhejiang) Dr. Jingyi Lou (Zhejiang) Dr. Ray Mariella (LLNL) Prof. Frank Marlow (MPI Mühlheim) Prof. Sven Müller (Göttingen) Prof. Carsten Ronning (Göttingen) Outline Outline • manipulating light at the nanoscale • supercontinuum generation • optical logic gates Manipulating light at the nanoscale Nature, 426, 816 (2003) Manipulating light at the nanoscale 100 µm Manipulating light at the nanoscale d = 260 nm L = 4 mm 50 µm Manipulating light at the nanoscale 2 µm Manipulating light at the nanoscale 20 µm Manipulating light at the nanoscale Manipulating light at the nanoscale Poynting vector profile for 200-nm nanowire Manipulating light at the nanoscale 50 µm Manipulating light at the nanoscale 50 µm Manipulating light at the nanoscale Manipulating light at the nanoscale 100 µm Manipulating light at the nanoscale 100 µm Manipulating light at the nanoscale minimum bending radius: 5.6 µm 100 µm Manipulating light at the nanoscale aerogel 420 nm 420 nm Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale in out out Nanoletters, 5, 259 (2005) Manipulating -
SPRC 2013 Agenda SPRC 2013 Annual Symposium September 16-18, 2013 Li Ka Shing Conference Center, Stanford University
SPRC 2013 Annual Symposium September 16-18, 2013 Li Ka Shing Conference Center, Stanford University MONDAY, SEPTEMBER 16 8:00 – 8:15 Welcome Remarks Anton Muscatelli, Univ of Glasgow 8:15 – 9:00 Plenary: Black Silicon: From Serendipitous Discovery to Devices Eric Mazur, Harvard University Session 1: Ultrafast Materials Science Faculty Coordinator: Aaron Lindenberg 9 :00 – 9 :30 Turntable Ultrafast Responses in Graphene Feng Wang, UC Berkeley 9:30 – 10:00 Separating Electronic and Structural Phase Transitions in Alex Gray, Stanford University VO2 with THz-Pump X-Ray Probe Spectroscopy Coffee Break 10:00 – 10:30 Session 2: Laser Particle Accelerators Faculty Coordinator: Bob Byer 10:30 – 11:00 Recent Advances in Laser Acceleration of Particles Chan Joshi, UCLA 11:00 – 11:15 Electron Acceleration in a Laser-Driven Dielectric Micro- Edgar Peralta, Stanford Structure 11:15 – 11:45 All Laser-Driven Compton X-ray Light Source Donald Umstadter, Univ of Nebraska 11:45 – 12:00 Beam Control in Microaccelerators Ken Soong, Stanford 12:00 – 12:30 Poster Introductions Lunch & Poster Session 12:30 – 2:00 Session 3: X-Ray Imaging Faculty Coordinator: Bert Hesselink 2:00 – 2:30 Recent Results in Differential Phase Contrast Imaging Rebecca Fahrig, Stanford 2:30 – 2:45 Differential Phase Contrast Imaging for Aviation Security Max Yuen, Stanford Applications 2:45 – 3:15 Structured Illumination and Compressive X-ray David Brady, Duke University Tomography 3:15 – 3:30 Photo Electron X-ray Source Array Yao-Te Cheng, Stanford Coffee Break 3:30 – 4:00 Session -
New Mineral Names*
American Mineralogist, Volume 70, pages 436441, 1985 NEW MINERAL NAMES* Pnre J. DUNN, Volxrn Gosrl, Jonr, D. Gnrce, hcnr Puzrw,ncz Jauns E. Smcrnv, Devro A. VlNro, ANDJANET Zttcznx Bergslagite* (OH)n.oo.10.66HrO. Determination of the exact water content the discoveryof better S. Hansen.L. Felth, and O. Johnsen(1984) Bergslagite, a mineral and its structural role in eggletoniteawaits with tetrahedral berylloarsenatesheet anions. Zeitschrift liir material. Kristallographie,166, 73-80. Precessionand WeissenbergX-ray study showsthe mineral to : S. Hansen,L. Felth, O. V. Petersen,and O. Johnsen(1984) Berg- be monoclinic, space grotp l2la or Ia; unit c.ell a 5.554 : : : : slagite,a new mineral speciesfrom Liingban, Sweden.Neues b 13.72,c 25.00A,f 93.95',Z 2; this is equivalentto the Jahrb.Mineral., Monatsh.,257-262. substructureof ganophyllite.The strongestlines (20 given) in the partially indexed powder pattern are 12.(100X002), Descriptive analyses(Hansen, Fiilth, Petersen,and Johnsen, 3.13(30X116,134,m9),2.691(25Xnot indexed), 2.600(20{not in- 1984)defined bergslagite as a new mineral specieswith the follow- dexed),and 2.462(20\notindexed). ing composition:CaO 28.57,BeO 13.0,AsrO, 51.58,SiO2 2.48, The mineral occursas a rare constituentin small pegmatiteor HrO 6.0, sum 101.63wt.%o, corresponding to empirical formula miarolytic cavities in nephelinesyenite at the Big Rock Quarry, Cao.nnBer.or(Asos?Sioo8)o.esOr.ro(OH)r..o,and ideal formula Little Rock, Arkansas.Associated minerals include albite, biotite, CaBeAsOoOH. acmite,titanite, magnetite,natrolite, and apophyllite.Eggletonite Least squaresrefinement of powder XRD data, indexed on a is found as acicular radiating groups of prismatic crystals up to monoclinic cell, resulted in the following cell dimensions: 1.5mm in length that are elongatedalong [100] and twinned on a : a.8818(9),b : 7.309(1),c : r0.r27(\4, : 90.16(r)",Z : 4. -
Femtosecond-Laser Microstructuring of Silicon for Novel Optoelectronic Devices
Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices A thesis presented by James Edward Carey III to The Division of Engineering and Applied Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Applied Physics Harvard University Cambridge, Massachusetts July 2004 c 2004 by James Edward Carey III All rights reserved. iii Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices Eric Mazur James E. Carey III Abstract This dissertation comprehensively reviews the properties of femtosecond-laser mi- crostructured silicon and reports on its first application in optoelectronic devices. Irradia- tion of a silicon surface with intense, short laser pulses in an atmosphere of sulfur hexafluo- ride leads to a dramatic change in the surface morphology and optical properties. Following irradiation, the silicon surface is covered with a quasi-ordered array of micrometer-sized, conical structures. In addition, the microstructured surface has near-unity absorptance from the near-ultraviolet (250 nm) to the near-infrared (2500 nm). This spectral range includes below-band gap wavelengths that normally pass through silicon unabsorbed. We thoroughly investigate the effect of experimental parameters on the morphology and chemical composition of microstructured silicon and propose a formation mechanism for the conical microstructures. We also investigate the effect of experimental parameters on the optical and electronic properties of microstructured silicon and speculate on the cause of below-band gap absorption. We find that sulfur incorporation into the silicon surface plays an important role in both the formation of sharp, conical microstructures and the near-unity absorptance at below-band gap wavelengths. -
Motion Matter
University of Missouri-Rolla Matter Physics Department January 2005 'n Motion A publication for alumni, friends, faculty, and staff of the MSM-UMR Physics Department Schulz Named Fellow of American Physical Society rofessor Michael Schulz was elected in 2004 to Fellowship in the American Physical Society for his “fundamental P experiments on atomic break-up processes.” Each year, no more than 0.5% of the members of the APS are elected to fellowship. Michael joins UMR Physics professors Ron Olson, Don Madison, and Bob DuBois in this honor. Michael was hired as an assistant professor in the fall of 1990 to assume the leadership responsibility for John Park’s accelerator laboratory and the laboratory has flourished under his guidance. During the time he has been here, Michael has averaged five publications a year and he has been responsible for grants totaling $2.2 million. He has given over 123 contributed conference papers, has been invited to present 29 seminars at institutions in 4 countries, and he has given 23 invited talks at national and international meetings. In recent years, he has been invited to speak at every major international meeting for his area of work. This research has led to the training of 8 Ph.D. students and two postdoctoral associates. In the fall of 2003, he was elected by the members of UMR’s Laboratory for Atomic, Optical, and Molecular Research (LAMOR) to serve as the new director of that Laboratory. In addition to his impressive research record, Dr. Schulz is an excellent educator and is able to communicate the exciting developments of his research to undergraduate students in the courses that he teaches. -
Shin-Skinner January 2018 Edition
Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.