at the nanoscale

Eric Mazur

Presented by Christopher C. Evans

22nd General Congress of the International Commission for Optics Puebla, Mexico, 17 August 2011 Geoff Svacha Rafael Gattass Tobias Voss Limin Tong and also.... Jonathan Aschom Mengyan Shen Iva Maxwell James Carey Brian Tull Dr. Yuan Lu Dr. Richard Schalek Prof. Federico Capasso Prof. Cynthia Friend Prof. Markus Pollnau (Twente) Xuewen Chen (Zhejiang) Zhanghua Han (Zhejiang) Dr. Sailing He (Zhejiang) Liu Liu (Zhejiang) Dr. Jingyi Lou (Zhejiang) Dr. Ray Mariella (LLNL) Prof. Frank Marlow (MPI Mühlheim) Prof. Sven Müller (Göttingen) Prof. Carsten Ronning (Göttingen)

Outline Outline

• manipulating light at the nanoscale

• supercontinuum generation

• optical logic gates Manipulating light at the nanoscale

Nature, 426, 816 (2003) Manipulating light at the nanoscale

100 µm Manipulating light at the nanoscale d = 260 nm L = 4 mm

50 µm Manipulating light at the nanoscale

2 µm Manipulating light at the nanoscale

20 µm Manipulating light at the nanoscale Manipulating light at the nanoscale

Poynting vector profile for 200-nm nanowire Manipulating light at the nanoscale

50 µm Manipulating light at the nanoscale

50 µm Manipulating light at the nanoscale Manipulating light at the nanoscale

100 µm Manipulating light at the nanoscale

100 µm Manipulating light at the nanoscale

minimum bending radius: 5.6 µm

100 µm Manipulating light at the nanoscale

aerogel

420 nm 420 nm

Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale in

out out

Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale

5 µm

Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale

use tapered fibers to couple light to nanoscale objects Manipulating light at the nanoscale

ZnO:non-toxic, wide bandgap Manipulating light at the nanoscale

vapor transport grown ZnO nanowires

20 µm

80–400 nm diameter, up to 80 µm long Manipulating light at the nanoscale

coupling to ZnO nanowires

mesoporous silica layer

glass slide Manipulating light at the nanoscale

coupling to ZnO nanowires

ZnO nanowire mesoporous silica layer

glass slide Manipulating light at the nanoscale

coupling to ZnO nanowires

ZnO nanowire fiber mesoporous taper silica layer silica nanowire in glass slide objective Manipulating light at the nanoscale

coupling to ZnO nanowires

ZnO nanowire fiber mesoporous taper silica layer laser silica nanowire in glass slide objective Manipulating light at the nanoscale

20 µm Manipulating light at the nanoscale

20 µm Manipulating light at the nanoscale

Points to keep in mind:

• low-loss guiding

• convenient evanescent coupling

• attached to ordinary fiber Outline

• manipulating light at the nanoscale

• supercontinuum generation

• optical logic gates Supercontinuum generation

self-phase modulation: n = no + n2I Supercontinuum generation

self-phase modulation: n = no + n2I

low intensity normal index high intensity higher index Supercontinuum generation

self-phase modulation: n = no + n2I

v v v

low intensity normal index high intensity higher index Supercontinuum generation

self-phase modulation: n = no + n2I

v v v

low intensity normal index high intensity higher index Supercontinuum generation

self-phase modulation: n = no + n2I

v “self-phase modulation” v v

low intensity normal index high intensity higher index Supercontinuum generation

strong confinement high intensity Supercontinuum generation Supercontinuum generation Supercontinuum generation

mode field diameter (λ = 800 nm)

3

μ m)

2

1

mode field diameter (

0 0 500 1000 1500 diameter (nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004) Supercontinuum generation

mode field diameter (λ = 800 nm)

3

μ m)

2

1

mode field diameter (

0 0 500 1000 1500 diameter (nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004) Supercontinuum generation

nonlinear parameter

1000 ) –1 km

–1 500 (W 

0 0 500 1000 1500 diameter (nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004) Supercontinuum generation

dispersion important! Supercontinuum generation

dispersion:

• modal dispersion

• material dispersion

• waveguide dispersion Supercontinuum generation

waveguide dispersion

1 ) –1 km –1 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1 )

–1 800 nm km –1 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1 )

–1 800 nm km –1 1200 nm 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1 )

–1 800 nm

km 800 nm –1 1200 nm 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1 )

–1 800 nm 600 nm

km 800 nm –1 1200 nm 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1 )

–1 400 nm 800 nm 600 nm

km 800 nm –1 1200 nm 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1 200 nm )

–1 400 nm 800 nm 600 nm

km 800 nm –1 1200 nm 0

–1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

2.5 ) –1 km –1 0

–2.5 total dispersion (ns nm –5.0 0 500 1000 1500 diameter (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1000 2.5 ) –1 km ) –1

–1 0 km

–1 500 (W  –2.5 dispersion (ns nm

0 –5.0 0 500 1000 1500 0 500 1000 1500 diameter (nm) diameter (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

waveguide dispersion

1000 2.5

normal anomalous ) dispersion dispersion –1 km ) –1

–1 0 km

–1 500 (W  –2.5 dispersion (ns nm

0 –5.0 0 500 1000 1500 0 500 1000 1500 diameter (nm) diameter (nm)

Optics Express, 12, 1025 (2004) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous d = 360 nm dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm)

Optics Express, 14, 9408 (2006) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous d = 445 nm dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm)

Optics Express, 14, 9408 (2006) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous d = 525 nm dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm)

Optics Express, 14, 9408 (2006) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous d = 700 nm dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm)

Optics Express, 14, 9408 (2006) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous d = 750 nm dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm)

Optics Express, 14, 9408 (2006) Supercontinuum generation

nanowire continuum generation

1000 10

normal anomalous d = 1200 nm dispersion dispersion

) 1 –1 km

–1 500 (W 

intensity (a.u.) 0.1

0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm)

Optics Express, 14, 9408 (2006) Supercontinuum generation

energy in nanowire ≈ 1 nJ! Supercontinuum generation

• nanojoule nonlinear optics

• optimum diameter for silica 500–600 nm

• low dispersion Outline

• manipulating light at the nanoscale

• supercontinuum generation

• optical logic gates Optical logic gates nanowire Sagnac interferometer

coupling region Optical logic gates nanowire Sagnac interferometer

coupling region

input Optical logic gates nanowire Sagnac interferometer

cw

coupling region

input Optical logic gates nanowire Sagnac interferometer

cw ccw

coupling region

input Optical logic gates nanowire Sagnac interferometer

cw ccw

coupling region

reflected transmitted Optical logic gates output = transmitted cw + ccw power

cw ccw

coupling region

transmitted Optical logic gates

input electric field amplitudeE in

in coupling region

input Optical logic gates

coupling parameter: ρ

1 in 2 in

input Optical logic gates phase accumulation over path length of loop

1 2 ei cw cw in

1 in 2 in

input Optical logic gates

coupling parameter: ρ

1 2 ei cw cw in

1 in 2 in i cw in e

input Optical logic gates output is sum of transmitted cw and ccw

cw ccw in

i cw in e

i ccw (1 ) in e input ManipulatingOptical light logic at gatesthe nanoscale

accumulated phase:phase:

� � k o n ManipulatingOptical light logic at gatesthe nanoscale

accumulated phase:phase:

� � k o n nonlinear index:

P i n � no � n2I � no � n2 A efefff ManipulatingOptical light logic at gatesthe nanoscale

accumulated phase:phase:

� � k o n nonlinear index:

P i n � no � n2I � no � n2 A efefff nonlinear parameter:

k o �g � n2 A efefff ManipulatingOptical light logic at gatesthe nanoscale

power-dependent output:output: 2 E out 2 � 1 � 2�r(1 � �r){1 � cos[(1 � 2�r) �gP oL ]} E in ManipulatingOptical light logic at gatesthe nanoscale

power-dependent output:output: 2 E out 2 � 1 � 2�r(1 � �r){1 � cos[(1 � 2�r) �gP oL ]} E in for 50-5050-50 coupler:coupler:

�r � 0.5 ManipulatingOptical light logic at gatesthe nanoscale

power-dependent output:output: 2 E out 2 � 1 � 2�r(1 � �r){1 � cos[(1 � 2�r) �gP oL ]} E in for 50-5050-50 coupler:coupler:

�r � 0.5 no transmission: 2 E out 2 � 0 E in Optical logic gates

when ρ ≠ 0.5:

40

30

20

output power (W) 10

0 0 20 40 60 80 input power (W) Optical logic gates

nonlinear nanogate Optical logic gates

nonlinear nanogate

0.45

50

40

30

20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

0.45

50

40

30

20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

0.45

logic “1” 50

40

30

20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0

20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 1

output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 1

output power (W) 0 1 1 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 1

output power (W) 0 1 1 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 1

output power (W) 0 1 1 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 1

output power (W) 0 1 1 10 1 1 0 0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate XOR A 0.45 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 1

output power (W) 0 1 1 10 1 1 0 0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.42 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.42 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 0

output power (W) 0 1 0 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate

A 0.42 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 0

output power (W) 0 1 0 10 1 1 1 0 0 20 40 60 80 100 input power (W) Optical logic gates

nonlinear nanogate AND A 0.42 B Q

logic “1” 50

40 A B Q

30 0 0 0 20 1 0 0

output power (W) 0 1 0 10 1 1 1 0 0 20 40 60 80 100 input power (W) Optical logic gates for NAND gate need ouput with no input

A

B Q

logic “1” 50

40 A B Q

30 0 0 1 20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates for NAND gate need ouput with no input

A

B Q

C

logic “1” 50

40 A B Q

30 0 0 1 20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates for NAND gate need ouput with no input

A 0.435 B Q

C

logic “1” 50

40 A B Q

30 0 0 1 20 output power (W) 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

universal NAND gate

A 0.435 B Q

C

logic “1” 50

40 A B Q

30 0 0 1 20 1 0 1

output power (W) 0 1 1 10

0 0 20 40 60 80 100 input power (W) Optical logic gates

universal NAND gate

A 0.435 B Q

C

logic “1” 50

40 A B Q

30 0 0 1 20 1 0 1

output power (W) 0 1 1 10 1 1 0 0 0 20 40 60 80 100 input power (W) Optical logic gates

universal NAND gate NAND A 0.435 B Q

C

logic “1” 50

40 A B Q

30 0 0 1 20 1 0 1

output power (W) 0 1 1 10 1 1 0 0 0 20 40 60 80 100 input power (W) Optical logic gates Optical logic gates

mesoporous silica

Sagnac loop Optical logic gates

input

output mesoporous silica

Sagnac loop Optical logic gates

very preliminary data

120

80

40 output power (µW) output power

0 0 0.1 0.2 0.3 0.4 0.5 input power (W) Optical logic gates

light-by-light modulation! Optical logic gates

very preliminary data

120

80

0.08

40 output power (µW) output power

0 0 0.1 0.2 0.3 0.4 0.5 input power (W) Optical logic gates Optical logic gates

“TiO2 as a platform for all-optical switching”

Evans C.C., Bradley J.D.B., Marti-Panameno E.A.

and Mazur, E.

Presented by: Jonathan Bradley

Thursday 11:30-11:45 Constancia Summary Summary

• several nanodevices demonstrated

• large  permits miniature Sagnac loops

• switching energy < 100 pJ Funding:

Harvard Center for Nanoscale Systems National Science Foundation National Natural Science Foundation of

for a copy of this presentation:

http://mazur.harvard.edu