Nonlinear Optics at the Nanoscale Eric Mazur Presented by Christopher C
Total Page:16
File Type:pdf, Size:1020Kb
Nonlinear optics at the nanoscale Eric Mazur Presented by Christopher C. Evans 22nd General Congress of the International Commission for Optics Puebla, Mexico, 17 August 2011 Geoff Svacha Rafael Gattass Tobias Voss Limin Tong and also.... Jonathan Aschom Mengyan Shen Iva Maxwell James Carey Brian Tull Dr. Yuan Lu Dr. Richard Schalek Prof. Federico Capasso Prof. Cynthia Friend Prof. Markus Pollnau (Twente) Xuewen Chen (Zhejiang) Zhanghua Han (Zhejiang) Dr. Sailing He (Zhejiang) Liu Liu (Zhejiang) Dr. Jingyi Lou (Zhejiang) Dr. Ray Mariella (LLNL) Prof. Frank Marlow (MPI Mühlheim) Prof. Sven Müller (Göttingen) Prof. Carsten Ronning (Göttingen) Outline Outline • manipulating light at the nanoscale • supercontinuum generation • optical logic gates Manipulating light at the nanoscale Nature, 426, 816 (2003) Manipulating light at the nanoscale 100 µm Manipulating light at the nanoscale d = 260 nm L = 4 mm 50 µm Manipulating light at the nanoscale 2 µm Manipulating light at the nanoscale 20 µm Manipulating light at the nanoscale Manipulating light at the nanoscale Poynting vector profile for 200-nm nanowire Manipulating light at the nanoscale 50 µm Manipulating light at the nanoscale 50 µm Manipulating light at the nanoscale Manipulating light at the nanoscale 100 µm Manipulating light at the nanoscale 100 µm Manipulating light at the nanoscale minimum bending radius: 5.6 µm 100 µm Manipulating light at the nanoscale aerogel 420 nm 420 nm Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale in out out Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale 5 µm Nanoletters, 5, 259 (2005) Manipulating light at the nanoscale use tapered fibers to couple light to nanoscale objects Manipulating light at the nanoscale ZnO:non-toxic, wide bandgap semiconductor Manipulating light at the nanoscale vapor transport grown ZnO nanowires 20 µm 80–400 nm diameter, up to 80 µm long Manipulating light at the nanoscale coupling to ZnO nanowires mesoporous silica layer glass slide Manipulating light at the nanoscale coupling to ZnO nanowires ZnO nanowire mesoporous silica layer glass slide Manipulating light at the nanoscale coupling to ZnO nanowires ZnO nanowire fiber mesoporous taper silica layer laser silica nanowire in glass slide objective Manipulating light at the nanoscale coupling to ZnO nanowires ZnO nanowire fiber mesoporous taper silica layer laser silica nanowire in glass slide objective Manipulating light at the nanoscale 20 µm Manipulating light at the nanoscale 20 µm Manipulating light at the nanoscale Points to keep in mind: • low-loss guiding • convenient evanescent coupling • attached to ordinary fiber Outline • manipulating light at the nanoscale • supercontinuum generation • optical logic gates Supercontinuum generation self-phase modulation: n = no + n2I Supercontinuum generation self-phase modulation: n = no + n2I low intensity normal index high intensity higher index Supercontinuum generation self-phase modulation: n = no + n2I v v v low intensity normal index high intensity higher index Supercontinuum generation self-phase modulation: n = no + n2I v v v low intensity normal index high intensity higher index Supercontinuum generation self-phase modulation: n = no + n2I v “self-phase modulation” v v low intensity normal index high intensity higher index Supercontinuum generation strong confinement high intensity Supercontinuum generation Supercontinuum generation Supercontinuum generation mode field diameter (λ = 800 nm) 3 m) μ 2 1 mode field diameter ( 0 0 500 1000 1500 diameter (nm) M.A. Foster, et al., Optics Express, 12, 2880 (2004) Supercontinuum generation mode field diameter (λ = 800 nm) 3 m) μ 2 1 mode field diameter ( 0 0 500 1000 1500 diameter (nm) M.A. Foster, et al., Optics Express, 12, 2880 (2004) Supercontinuum generation nonlinear parameter 1000 ) –1 km –1 500 (W 0 0 500 1000 1500 diameter (nm) M.A. Foster, et al., Optics Express, 12, 2880 (2004) Supercontinuum generation dispersion important! Supercontinuum generation dispersion: • modal dispersion • material dispersion • waveguide dispersion Supercontinuum generation waveguide dispersion 1 ) –1 km –1 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1 ) –1 800 nm km –1 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1 ) –1 800 nm km –1 1200 nm 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1 ) –1 800 nm km 800 nm –1 1200 nm 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1 ) –1 800 nm 600 nm km 800 nm –1 1200 nm 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1 ) –1 400 nm 800 nm 600 nm km 800 nm –1 1200 nm 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1 200 nm ) –1 400 nm 800 nm 600 nm km 800 nm –1 1200 nm 0 –1 total dispersion (ns nm –2 0 500 1000 1500 wavelength (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 2.5 ) –1 km –1 0 –2.5 total dispersion (ns nm –5.0 0 500 1000 1500 diameter (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1000 2.5 ) –1 km ) –1 –1 0 km –1 500 (W –2.5 dispersion (ns nm 0 –5.0 0 500 1000 1500 0 500 1000 1500 diameter (nm) diameter (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation waveguide dispersion 1000 2.5 normal anomalous ) dispersion dispersion –1 km ) –1 –1 0 km –1 500 (W –2.5 dispersion (ns nm 0 –5.0 0 500 1000 1500 0 500 1000 1500 diameter (nm) diameter (nm) Optics Express, 12, 1025 (2004) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous d = 360 nm dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Optics Express, 14, 9408 (2006) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous d = 445 nm dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Optics Express, 14, 9408 (2006) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous d = 525 nm dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Optics Express, 14, 9408 (2006) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous d = 700 nm dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Optics Express, 14, 9408 (2006) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous d = 750 nm dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Optics Express, 14, 9408 (2006) Supercontinuum generation nanowire continuum generation 1000 10 normal anomalous d = 1200 nm dispersion dispersion ) 1 –1 km –1 500 (W intensity (a.u.) 0.1 0 0.01 0 500 1000 1500 400 600 800 1000 diameter (nm) wavelength (nm) Optics Express, 14, 9408 (2006) Supercontinuum generation energy in nanowire ≈ 1 nJ! Supercontinuum generation • nanojoule nonlinear optics • optimum diameter for silica 500–600 nm • low dispersion Outline • manipulating light at the nanoscale • supercontinuum generation • optical logic gates Optical logic gates nanowire Sagnac interferometer coupling region Optical logic gates nanowire Sagnac interferometer coupling region input Optical logic gates nanowire Sagnac interferometer cw coupling region input Optical logic gates nanowire Sagnac interferometer cw ccw coupling region input Optical logic gates nanowire Sagnac interferometer cw ccw coupling region reflected transmitted Optical logic gates output = transmitted cw + ccw power cw ccw coupling region transmitted Optical logic gates input electric field amplitudeE in in coupling region input Optical logic gates coupling parameter: ρ 1 in 2 in input Optical logic gates phase accumulation over path length of loop 1 2 ei cw cw in 1 in 2 in input Optical logic gates coupling parameter: ρ 1 2 ei cw cw in 1 in 2 in i cw in e input Optical logic gates output is sum of transmitted cw and ccw cw ccw in i cw in e i ccw (1 ) in e input ManipulatingOptical light logic at gatesthe nanoscale accumulated phase:phase: � � k o n ManipulatingOptical light logic at gatesthe nanoscale accumulated phase:phase: � � k o n nonlinear index: P i n � no � n2I � no � n2 A efefff ManipulatingOptical light logic at gatesthe nanoscale accumulated phase:phase: � � k o n nonlinear index: P i n � no � n2I � no � n2 A efefff nonlinear parameter: k o �g � n2 A efefff ManipulatingOptical light logic at gatesthe nanoscale power-dependent output:output: 2 E out 2 � 1 � 2�r(1 � �r){1 � cos[(1 � 2�r) �gP oL ]} E in ManipulatingOptical light logic at gatesthe nanoscale power-dependent output:output: 2 E out 2 � 1 � 2�r(1 � �r){1 � cos[(1 � 2�r) �gP oL ]} E in for