CIRAD – Locust Ecology & Control Unit Bibliographical Query Results

Total Page:16

File Type:pdf, Size:1020Kb

CIRAD – Locust Ecology & Control Unit Bibliographical Query Results CIRAD – Locust ecology & control unit Bibliographical query results, issued April 2007. 1. ABBASSI K., ATAY K.Z. & GHAOUT S., 2003. – Biological effects of alkaloids extracted from three plants of Moroccan arid areas on the Desert locust. – Physiological Entomology, (3), 232-236. 2. ABD ELRAHIM M.A., ELHASSAN S.M. & BASHIR M.O., 2006. – Comparative efficacy of blastospores and conidia of Metarhizium anisopliae var. acridum IMI 330189 in the control of the Desert locust. – University of Khartoum, Journal of Agricultural Sciences, 1414(1), 88-103. 3. ABDULGADER A. & MOHAMMAD K.U., 1990. – Taxonomic significance of epiphallus in some Libyan grasshoppers (Orthoptera: Acridoidea). – Annals of Agricultural Science (Cairo), 3535(special issue), 511-519, illustr. 4. ABRAMS P.A. & SCHMITZ O.J., 1999.1999. – The effect of risk of mortality on the foraging behaviour of animals faced with time and digestive capacity constraints. – Evolutionary Ecology Research, 11(3), 285-301. 5. ABU Z.N., 1998. – A nematode parasite from the lung of Mynah birds at Jeddah, Saudi Arabia. – Journal of the Egyptian Society of Parasitology, 2828(3), 659-663. 6. ACHTEMEIER G.L., 1992. – Grasshopper response to rapid vertical displacements within a “clear air” boundary layer as observed by doppler radar. – Environmental Entomology, 2121(5), 921-938, includes references. 7. ACKONOR J.B. & VAJIME C.K., 1995. – Factors affecting Locusta migratoria migratorioides egg development and survival in the Lake Chad basin outbreak area. – International Journal of Pest Management, 4141(2), 87-96. 8. ADEYEYE E.I., 2005. – Amino acid composition of variegated grasshopper, Zonocerus variegatus. – Tropical Science, 4545(4), 141- 143, 7 ref. 9. ADIS J. & JUNK W.J., 2003. – Feeding impact and bionomics of the grasshopper Cornops aquaticum on the water hyacinth Eichhornia crassipes in Central Amazonian floodplains. – Studies on Neotropical Fauna and Environment, 3838(3), 245- 249. 10. ADIS J., LHANO M.G., HILL M., JUNK W.J., MARMARQUESQUES MARINEZ I. & OBERHOLZER H., 2004. – What determines the number of juvenile instars in the tropical grasshopper Cornops aquaticum (Leptysminae : Acrididae : Orthoptera) ? – Studies on Neotropical Fauna and Environment, 3939(2), 127-132. 11. ADIS J., BUSTORF E., LHANO M.G., AMEDEGNATO C. & NUNES A.L., 2007. – Distribution of Cornops grasshoppers (Leptysminae : Acrididae : Orthoptera) in Latin America and the Caribbean Islands. – Studies on Neotropical Fauna and Environment, 4242(1), 11-24, Zoology. 12. AGRO D., 1994. – Grasshoppers as food source for black-billed cuckoo. – Ontario Birds, 1212(1), 28-29. 13. AHAD M.A., SHAHJAHAN M. & TALUKDER F.A., 1995. – The relative importance of predators for the control of Nephotettix spp. on rice. – Pakistan Journal of Scientific and Industrial Research, 3838(5-6), 230-232. 14. AHI J., 1997. – Aldrin (an Organochlorine Pesticide) Induced Histopathological Changes In The Midgut Of Adult Poekilocerus pictus (Fabr.) Orthoptera: Acrididae. – Himalayan Journal Of Environment And Zoology, 1111(2), 71-76, illustr. 1 15. AHMED K., EL ALFY N., RAMADAN H. & EL GOHARY H., 2005. – Histopathological effects of anti-juvenile hormone precocene I and II on ovaries of grasshopper Eyprepocnemis plorans (Charp.) (Orthoptera: Acrididae) using light and electron microscope. – Journal of the Egyptian German Society of Zoology, 4747(E), 107-134. 16. AHNESJO J. & FORSMAN A., 2006. – Differential habitat selection by pygmy grasshopper color morphs, interactive effects of temperature and predator avoidance. – Evolutionary Ecology, 2020(3), 235-257. 17. AKIMOTO S.I., SAKURAI Y. & TATSUTA H., 1993. – Geographic variation in the shape and allometry of the brachypterous grasshopper Podisma sapporensis. – Japanese Journal of Entomology, 6161(3), 625-640. 18. AKMAN G.N.E. & GULEL A., 2002. – Effect of temperature on development, sexual maturation time, food consumption and body weight of Schistocerca gregaria Forsk. (Orthoptera: Acrididae). – Turkish Journal of Zoology, 2626(2), 223-227. 19. ALAOUI A., MOREAU R. & GOURDOUX L., 1997. – Effect of deltamethrin on glucose catabolic pathways in the isolated fat body of adult male Locusta migratoria. – Comparative Biochemistry and Physiology, C, 116116(1), 17-21. 20. ALI D.W. & ORCHARD I., 1994. – Characterization of dopamine and serotonin receptors on the salivary glands of the locust Locusta migratoria. – Biogenic Amines, 1010(3), 195-212. 21. ALI D.W., 1997. – The aminergic and peptidergic innervation of insect salivary glands. – Journal of Experimental Biology, 2020(14), 1941-1949. 22. ALLAN E.J., EEESWARAESWARA J.P., JARVIS A.P., MORDUELUNTZ A.J., MORGAN E.D. & STUCHBURY T., 2002. – Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. – 2121(4), includes references. 23. ALSOP G.B. & ZHANG D.C., 1999. – Spindle structure is not required for initiation of cytokinesis but is required for cleavage furrow positioning. – Molecular Biology of the Cell, 1010(SUPPL.), p. 239a. 24. ALWARD R., 1994. – Bouteloua gracilis growth rates and herbivory damage rates similarly influenced by edaphic and competitive environments. – Bulletin of the Ecological Society of America, 7575(2), p. 4. 25. AMARASEKARE K.K.G.G. & EDELSON J.V., 2004. – Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae). – Journal of Economic Entomology, 9797(5), 1595-1602. 26. AMATOBI C.I., 1996. – Egg development and nymphal emergence of Kraussaria angulifera Krauss (Orthoptera : Acrididae) in relation to rainfall in the sudan savannah of Nigeria. – Journal of African Zoology, 110110(6), 375-379. 27. AMEDEGNATO C. & POULAIN S., 1994. – New data on North-andean and Northwestern-amazonian acridid communities : the Romaleidae (Orthoptera : Acridoidea). – Annales de la Société Entomologique de France, 3030(1), 1-24. 28. AMEDEGNATO C., RUIZ BALIU A. & CARBONELL C.S., 1995. – Acridid fauna of Cuba (Orthoptera) a synopsis of its taxonomy and origin. – Revista Brasileira de Entomologia, 3939(3), 683-708. 29. AMEDEGNATO C. & POULAIN S., 1998. – New acridoid taxa from northwestern South America : their significance for the phylogeny and biogeography of the family Acrididae (Orthoptera). – Annals of the Entomological Society of America, 9191(5), 532-548. 30. AMEDEGNATO C. & POULAIN S., 2000. – The Mexican Endemic Genus Teinophaus (Orthoptera, Acrididae, Ommatolampinae). – Revue Française d’Entomologie (nouvelle série), 2222(4), 154-158. 31. AMMAR M., BARBOUCHE N. & HAMOUDA M.H.B., 1995. – Leaves extracts from Cestrum parquii and Olea europaea on longevity and growth of locust : Schistocerca gregaria. – Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent, 6060(3A), 831-833. 2 32. AMORIM MM.A..A. & ADIS J., 1994. – Food consumption of a neotropical grasshoppe, Stenacris fissicauda fissicauda (Brunner, 1908) (Orthoptera : Acrididae) from the amazonian “varzea”. – Acta Amazonica, 2424(3-4), 289-301, illustr. 33. AMORIM M.A. & ADADISIS J., 1995. – Development of nymphs in the neotropical, semi-aquatic grasshopper Stenacris fissicauda fissicauda (Brunner, 1908) (Orthoptera : Acrididae) under controlled conditions. – Acta Amazonica, 2525(1-2), 73-91, illustr. 34. AMUAMUTHATHA S., AMSATH A., MUTHUKUMARAVEL K. & SAVARIMUTHU A., 2005. – Histopathological changes in the alimentary canal of the small rice grasshopper, Oxya nitidula (Walker) exposed to monocrotophos. – Journal of Experimental Zoology, 88(1), 125-128. 35. ANDERSEN A.N., LUDWIG J.A., LOWE L.M. & RENTZ D.C.F., 2001. – Grasshopper Biodiversity And Bioindicators In Australian Tropical Savannas: Responses To Disturbance In Kakadu National Park. – Austral Ecology, 2626(3), 213-222. 36. ANDERSEN S.O., 2001. – Matrix proteins from insect pliable cuticles: are they flexible and easily deformed. – Insect Biochemistry and Molecular Biology, 3131(4/5), 445-452, includes references. 37. ANDERSON R.C., BARNES E.T. & BARLETT C.M., 1993. – Restudy of Spirura infundibuliformis McLeod, 1933 (Nematoda : Spiruroidea) from Spermophilus richardsonii, with observation on its development in insects. – Canadian Journal of Zoology, 7171(9), 1869-1873, includes references. 38. ANONYME, 1987. – Agricultural research in Malawi miscellaneous papers. – illustr., maps, 30 cm. 39. ANONYME, 1993. – Time for a new approach to locust control. – South African Journal of Science, 8989(9), 412-413. 40. ANONYME, 2004. – Micron application equipment is made to measure for locust control. – International Pest Control, 4646(5), 278-280. 41. ANONYME, 2004. – Gryllus brachypterus Ocskay, 1826 (currently Euthystira brachyptera) and Gryllus brachypterus Haan, 1842 (currently Duolandrevus brachypterus) (Insecta, Orthoptera) : specific names conserved. – Bulletin of Zoological Nomenclature, 6161(Part 2), 126-127. 42. ANONYME, 2005. – From the archive. – Journal of Cell Biology, 169169(5), p. 704. 43. ANONYME, [s. d.]. – Catastrophes naturelles et péril acridien, Rabat, 28-29-30 novembre 1988 – Péril acridien Kawarith al- tabi’iyah, afat al-jarad Afat al-jarad. – 122 p., ill. (some col.), maps, 24 cm, includes bibliographical references. 44. ANONYMEANONYME,, [s. d.]. – Database on food and agriculture for Eastern Africa FAO Global Information and Early Warning System on Food and Agriculture. 45. ANONYME (COPR), (Sd.). – Map of incubation and hopper development periods of the Desert locust : Northern Africa and southwestern Asia (156156156). Dressée
Recommended publications
  • Nouvelles Données Taxonomiques Et Chorologiques Sur Aiolopus Puissanti Defaut Et A
    Matériaux Orthoptériques et Entomocénotiques, 13, 2008 : 5-23 Nouvelles données taxonomiques et chorologiques sur Aiolopus puissanti Defaut et A. thalassinus (F.) (Orthoptera, Acrididae). 1 2 Bernard DEFAUT & Stéphane JAULIN 1 ASCETE, Aynat, 09400 Bédeilhac-et-Aynat <[email protected]> 2 OPIE-LR, Digue d’Orry, avenue Torcatis, 66000 Perpignan <[email protected]> Résumé. Les auteurs ont mesuré ou calculé 33 paramètres biométriques chez 133 mâles, et 28 paramètres chez 136 femelles d’Aiolopus groupe thalassinus provenant du domaine paléarctique occidental. Des analyses en composantes principales et des dia- grammes de dispersion ont été établis, qui permettent de préciser les caractères distinctif d’A. puissanti Defaut par rapport à A. tha- lassinus (F.), et de proposer une nouvelle sous-espèce d’A. thalassinus en Corse. Des cartes de répartition géographique des deux es- pèces sont présentées. Mots clés. Acrididae, Aiolopus puissanti Defaut ; Aiolopus thalassinus (F.) ; domaine paléarctique occidental ; Abstract. The authors measured or calculated 33 biometric parameters in 133 males, and 28 parameters in 136 females of Aiolopus group thalassinus coming from the Western palearctic region. Principal component analyses and scatter diagrams were established, which make it possible to specify the characters distinctive of A. puissanti Defaut compared to A. thalassinus (F.), and to propose a new subspecies of A. thalassinus for Corsica. Geographical distribution maps of the two species are presented. Key Words. Acrididae, Aiolopus puissanti Defaut ; Aiolopus thalassinus (F.) ; Western palearctic region. –oOo– INTRODUCTION Longueur du sillon sous-oculaire (Sso). Largeur minimale du vertex, entre le bord externe des ca- Les quatre espèces d’Aiolopus présentes dans le rènes latérales (ou entre leur prolongement immédiat) domaine paléarctique occidental se répartissent en deux (v).
    [Show full text]
  • Articulata 2012 27 (1/2): 17௅28 Zoogeographie
    © Deutsche Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/; www.zobodat.at ARTICULATA 2012 27 (1/2): 17௅28 ZOOGEOGRAPHIE Small scale ecological zoogeographic methods in explanation of the distribution patterns of grasshoppers Kenyeres, Z., & Rácz, I.A. Abstract We examined in this study, in a Central-European low mountain range, whether methods of ecological zoogeography can explain better the distribution patterns of grasshopper species and species-groups, than the methods of the historical zoogeography. Our results showed that zoogeographically defined microregions could be specified more precisely by the distribution of species groups of differ- ent eco-types than the distribution of species groups of the different faunal-types. We found that the macroclimate elements and landscape features determine the regional distribution patterns of the orthopteran species and species-groups with similar thermal and humidity requirements. Our case study revealed the impor- tant role of the ecological zoogeography in zoogeographical analyses of Orthop- tera fauna at small geographical scale. Zusammenfassung Wir haben untersucht, ob man mit ökologisch-tiergeographischen Methoden die Verteilungsmuster von Heuschrecken in einem mitteleuropäischen Mittelgebirge analysieren kann. Unsere Ergebnisse zeigen, dass die Unterschiede auf dem Niveau der Mikroregion bei den Heuschrecken nicht in den Fauna-Typen, son- dern in der Verteilung von Tierarten bzw. Tiergruppen mit unterschiedlichen öko- logischen Ansprüchen zu finden sind. Wir können somit die Elemente des Makro- klimas und die Merkmale der Landschaft identifizieren, die das lokale Vertei- lungsmuster von Artengruppen mit ähnlichen ökologischen Ansprüchen, bezie- hungsweise von bestimmten Tierarten bestimmen. Introduction Questions and methodology in the biogeographical searching have been domi- nated by the conceptions of the historical biogeography for a long time.
    [Show full text]
  • Locusts in Queensland
    LOCUSTS Locusts in Queensland PEST STATUS REVIEW SERIES – LAND PROTECTION by C.S. Walton L. Hardwick J. Hanson Acknowledgements The authors wish to thank the many people who provided information for this assessment. Clyde McGaw, Kevin Strong and David Hunter, from the Australian Plague Locust Commission, are also thanked for the editorial review of drafts of the document. Cover design: Sonia Jordan Photographic credits: Natural Resources and Mines staff ISBN 0 7345 2453 6 QNRM03033 Published by the Department of Natural Resources and Mines, Qld. February 2003 Information in this document may be copied for personal use or published for educational purposes, provided that any extracts are fully acknowledged. Land Protection Department of Natural Resources and Mines GPO Box 2454, Brisbane Q 4000 #16401 02/03 Contents 1.0 Summary ................................................................................................................... 1 2.0 Taxonomy.................................................................................................................. 2 3.0 History ....................................................................................................................... 3 3.1 Outbreaks across Australia ........................................................................................ 3 3.2 Outbreaks in Queensland........................................................................................... 3 4.0 Current and predicted distribution ........................................................................
    [Show full text]
  • Biochemical Features of Some Insects Species Potential Preys of Predators 3
    International Journal of Bio-Technology and Research (IJBTR) ISSN(P): 2249-6858; ISSN(E): 2249-796X Vol. 4, Issue 4, Aug 2014, 1-8 © TJPRC Pvt. Ltd. BIOCHEMICAL FEATURES OF SOME INSECTS SPECIES POTENTIAL PREYS OF PREDATORS NADIA YAHIA1 & BELKACEM BAZIZ, SALAHEDDINE DOUMANDJI2 1Agronomic National Upper School El-Harrach, Algiers, Algeria 2Ornithology Laboratory, Agronomic National Upper School EL-Harrach, Algeria ABSTRACT Mower- net is the technical sampling used on the ground relating to study arthropoda in experimental plots, and in gardens of Agronomic National School El Harrach. Insects category dominates with 1.120 individuals (97.1%) and 55% species (94.7%).Orthoptera are highly mentioned with a number of 856 individuals (74.2%). Gastropoda, Crustacea and Myriapoda, together correspond hardly to 2.9% according to total of captured individuals. Three techniques of biochemical analyses are used in laboratory with the aim to determine nutritive values and so energetic contribution of some insects species considered as potential preys of different predators. Used methods in the present work are the Kjeldhal method for dose ot total nitrogen, Soxhlet method for total lipids and Bertrand method relating to sugars. This analysis shows that proteins rates found in different species vary between 3.5 and 28.4%. For sugars rates found, the weaker is 3.4% while the stronger is 25.5%. For lipids, the recorded contents are about 9.8 and 33.3%. The total energetic contribution brought by the three biochemical components which are, proteins,lipids,and total sugars is estimated at 4.56 Kcal by female of Aiolopus thalassinus until 13.77 Kcal by male of Aiolopus strepens.
    [Show full text]
  • Recognition of a Two-Element Song in the Grasshopper <Emphasis Type="Italic">Chorthippus Dorsatus</Emphasis&G
    J Comp Physiol A (1992) 171:405-412 Joul~l of Comparative .....,, Physiology A ~%", Springer-Verlag 1992 Recognition of a two-element song in the grasshopper Chorthippus dorsatus (Orthoptera: Gomphocerinae) Andreas Stumpner 1 and Otto von Helversen Institut fiir Zoologie II, Friedrich-Alexander Universit~it Erlangen-Nfirnberg, Staudtstr. 5, W 8520 Erlangen, FRG Accepted June 6, 1992 Summary. Males of the grasshopper Chorthippus dor- by the second note "qui" (Narins and Capranica 1976, satus produce songphrases which contain two differently 1978). Calling songs of the cricket Teleogryllus oceanicus structured elements - pulsed syllables in the first part (A) also consist of two distinctly different elements, "chirp" and ongoing noise in the second part (B). Females of Ch. and "trill". T. oceanicus females prefer song models com- dorsatus answer to artificial song models only if both prising chirps but no trills over 100% trill models, while elements A and B are present. Females strongly prefer males show the reversed preference (Pollack and Hoy song models in which the order of elements is A preced- 1979, 1981; Pollack 1982). Also, in the seventeen-year ing B. Females discriminate between the two elements cicada Magicicada cassini the first calling song element mainly by the existence of gaps within A-syllables. Pulses "tick" obviously is used for synchronizing male chorus- of 5-8 ms separated by gaps of 8-15 ms make most ing, while the second element "buzz" effectively elicits effective A-syllables, while syllable duration and syllable phonotaxis in females (Huber et al. 1990). intervals are less critical parameters. Females respond to In addition to frogs, crickets and cicadas, many spe- models which contain more than 3 A-syllables with high cies of grasshoppers have evolved complex acoustic com- probability.
    [Show full text]
  • An Inventory of Short Horn Grasshoppers in the Menoua Division, West Region of Cameroon
    AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.3.291.299 © 2013, ScienceHuβ, http://www.scihub.org/ABJNA An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon Seino RA1, Dongmo TI1, Ghogomu RT2, Kekeunou S3, Chifon RN1, Manjeli Y4 1Laboratory of Applied Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 353 Dschang, Cameroon, 2Department of Plant Protection, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. 3 Département de Biologie et Physiologie Animale, Faculté des Sciences, Université de Yaoundé 1, Cameroun 4 Department of Biotechnology and Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. ABSTRACT The present study was carried out as a first documentation of short horn grasshoppers in the Menoua Division of Cameroon. A total of 1587 specimens were collected from six sites i.e. Dschang (265), Fokoue (253), Fongo – Tongo (267), Nkong – Ni (271), Penka Michel (268) and Santchou (263). Identification of these grasshoppers showed 28 species that included 22 Acrididae and 6 Pyrgomorphidae. The Acrididae belonged to 8 subfamilies (Acridinae, Catantopinae, Cyrtacanthacridinae, Eyprepocnemidinae, Oedipodinae, Oxyinae, Spathosterninae and Tropidopolinae) while the Pyrgomorphidae belonged to only one subfamily (Pyrgomorphinae). The Catantopinae (Acrididae) showed the highest number of species while Oxyinae, Spathosterninae and Tropidopolinae showed only one species each. Ten Acrididae species (Acanthacris ruficornis, Anacatantops sp, Catantops melanostictus, Coryphosima stenoptera, Cyrtacanthacris aeruginosa, Eyprepocnemis noxia, Gastrimargus africanus, Heteropternis sp, Ornithacris turbida, and Trilophidia conturbata ) and one Pyrgomorphidae (Zonocerus variegatus) were collected in all the six sites.
    [Show full text]
  • Chapter 13 SOUTHERN AFRICA
    Chapter 13 Zimbabwe Chapter 13 SOUTHERN AFRICA: ZIMBABWE Taxonomic Inventory Taxa and life stages consumed Coleoptera Buprestidae (metallic woodborers) Sternocera funebris (author?), adult Sternocera orissa Buquet, adult Scarabaeidae (scarab beetles) Lepidiota (= Eulepida) anatine (author?), adult Lepidiota (= Eulepida) masnona (author?), adult Lepidiota (= Eulepida)nitidicollis (author?), adult Miscellaneous Coleoptera Scientific name(s) unreported Hemiptera Pentatomidae (stink bugs) Euchosternum (= Haplosterna; = Encosternum) delegorguei (Spinola) (= delagorguei), adult Pentascelis remipes (author?), adult Pentascelis wahlbergi (author?), adult Miscellaneous Hemiptera Scientific name(s) unreported Homoptera Cicadidae (cicadas) Loba leopardina (author?) Hymenoptera Apidae (honey bees) Trigona spp., larvae Formicidae (ants) Carebara vidua Sm., winged adult Isoptera Termitidae Macrotermes falciger Gerstacker (= goliath), winged adult, soldier, queen Macrotermes natalensis Haviland Lepidoptera Lasiocampidae (eggar moths, lappets) Lasiocampid sp., larva Limacodidae (slug caterpillars) Limacodid sp. Notodontidae (prominents) Anaphe panda (Boisdv.), larva Saturniidae (giant silkworm moths) Bunaea (= Bunea) alcinoe (Stoll), larva Bunaea sp., larva Cirina forda (Westwood), larva 1 of 12 9/20/2012 2:02 PM Chapter 13 Zimbabwe Gonimbrasia belina Westwood, larva Goodia kuntzei Dewitz (?), larva Gynanisa sp. (?), larva Imbrasia epimethea Drury, larva Imbrasia ertli Rebel, larva Lobobunaea sp., larva Microgone sp., (?), larva Pseudobunaea sp. (?),
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • In Field Margins? a Case Study Combining Laboratory Acute Toxicity Testing with Field Monitoring Data
    Environmental Toxicology and Chemistry, Vol. 31, No. 8, pp. 1874–1879, 2012 # 2012 SETAC Printed in the USA DOI: 10.1002/etc.1895 DOES INSECTICIDE DRIFT ADVERSELY AFFECT GRASSHOPPERS (ORTHOPTERA: SALTATORIA) IN FIELD MARGINS? A CASE STUDY COMBINING LABORATORY ACUTE TOXICITY TESTING WITH FIELD MONITORING DATA REBECCA BUNDSCHUH,* JULIANE SCHMITZ,MIRCO BUNDSCHUH, and CARSTEN ALBRECHT BRU¨ HL Institute for Environmental Sciences, University of Koblenz-Landau, Koblenz-Landau, Germany (Submitted 7 December 2011; Returned for Revision 11 January 2012; Accepted 17 April 2012) Abstract—The current terrestrial risk assessment of insecticides regarding nontarget arthropods considers exclusively beneficial organisms, whereas herbivorous insects, such as grasshoppers, are ignored. However, grasshoppers living in field margins or meadows adjacent to crops may potentially be exposed to insecticides due to contact with or ingestion of contaminated food. Therefore, the present study assessed effects of five active ingredients of insecticides (dimethoate, pirimicarb, imidacloprid, lambda-cyhalothrin, and deltamethrin) on the survival of Chorthippus sp. grasshopper nymphs by considering two routes of exposure (contact and oral). The experiments were accompanied by monitoring field margins that neighbored cereals, vineyards, and orchards. Grasslands were used as reference sites. The laboratory toxicity tests revealed a sensitivity of grasshoppers with regard to the insecticides tested in the present study similar to that of the standard test species used in arthropod risk assessments. In the field monitoring program, increasing grasshopper densities were detected with increasing field margin width next to cereals and vineyards, but densities remained low over the whole range of field margins from 0.5 to 20 m next to orchards. Grasshopper densities equivalent to those of grassland sites were only observed in field margins exceeding 9 m in width, except for field margins next to orchards.
    [Show full text]
  • Response of Orthoptera Assemblages to Management of Montane Grasslands in the Western Carpathians
    Biologia 66/6: 1127—1133, 2011 Section Zoology DOI: 10.2478/s11756-011-0115-1 Response of Orthoptera assemblages to management of montane grasslands in the Western Carpathians Vladimíra Fabriciusová, Peter Kaňuch &AntonKrištín* Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2,SK-96053 Zvolen, Slovakia; e-mail: [email protected] Abstract: Montane grassy habitats in the Western Carpathians are relatively well preserved, maintain high species richness and are often important in accordance to the nature conservation policy in Europe. However, knowledge about the impact of farming on the habitat quality there is rather poor. The influence of various management types (permanent sheep pen, irregular grazing, mowing) on Orthoptera diversity and species determining assemblages of these habitats were analysed on 72 plots in Poľana Mts Biosphere Reserve. Altogether, 36 Orthoptera species (15 Ensifera, 21 Caelifera) were found, whereas the highest number of species was found on plots with irregular grazing (28 species), followed by plots with mown grass (17) and permanent sheep pens (14). All four measures of the assemblages’ diversity confirmed significant differences. Using Discriminant Function Analysis, correct classification rate of Orthoptera assemblages was unambiguous according to the type of management. Each form of the management harboured several characteristic species. Thus implications regarding the biodiversity conservation and grassland management were given. Key words: bush-crickets; grasshoppers; pasture; ecology; nature conservation Introduction or the influence of plant succession in meadows without any management (Marini et al. 2009). Higher species Various systems used to manage grasslands have a diversity was found in grazed compared to mowed significant influence on plant and animal communi- meadows in alpine habitats (Wettstein & Schmid 1999; ties, their species richness and abundance (Kampmann Kampmann et al.
    [Show full text]
  • Morphology and Development of Oocyte and Follicle Resorption Bodies in the Lubber Grasshopper, Romalea Microptera (Beauvois)
    S.V. SUNDBERG, M.H. LUONG-SKOVMANDJournal of Orthoptera AND D.W. Research, WHITMAN June 2001, 10 (1): 39-5139 Morphology and development of oocyte and follicle resorption bodies in the Lubber grasshopper, Romalea microptera (Beauvois) STEVEN V. SUNDBERG, MY HANH LUONG-SKOVMAND AND DOUGLAS W. WHITMAN [SVS, DWW] Behavior, Ecology, Evolution, & Systematic Section, 4120 Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA e-mail: [email protected] [MHLS] CIRAD, Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (Prifas) BP 5035 - 34032 Montpellier cedex 1 - France e-mail: [email protected] Abstract We describe the development and appearance of Follicle Resorption ovocyte, produisent un corps de régression de couleur jaune orangé. Bodies (FRBs) and Oocyte Resorption Bodies (ORBs) in the Le nombre de traces de ponte est égal au nombre d’oeufs pondus et grasshopper Romalea microptera (= guttata), and demonstrate that le nombre de corps de régression au nombre d’ovocytes ayant these structures can be used to determine the past ovipositional and régressé. Les R. microptera en bonne santé et nourris en abondance environmental history of females. In R. microptera, one resorption résorbent environ le quart de leur ovocytes en croissance. La privation body is deposited at the base of each ovariole following each de nourriture ou le stress physiologique entrainent une gonotropic cycle. These structures are semi-permanent, and remain augmentation du taux de régression ovocytaire et par conséquent distinct for at least 8 wks and two additional ovipositions. Ovarioles du nombre de corps de régression (ORB). Si l’on compte les traces that ovulate a mature, healthy oocyte, produce a cream-colored de ponte et les corps de régression dans chaque ovariole, on obtient FRB.
    [Show full text]