Journal of Virology

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Virology JOURNAL OF VIROLOGY Volume 68 November 1994 No. 11 MINIREVIEW Molecular Biology of the Human Immunodeficiency Virus Ramu A. Subbramanian and Eric 6831-6835 Accessory Proteins A. Cohen ANIMAL VIRUSES Monoclonal Antibodies against Influenza Virus PB2 and NP J. Baircena, M. Ochoa, S. de la 6900-6909 Polypeptides Interfere with the Initiation Step of Viral Luna, J. A. Melero, A. Nieto, J. mRNA Synthesis In Vitro Ortin, and A. Portela Low-Affinity E2-Binding Site Mediates Downmodulation of Frank Stubenrauch and Herbert 6959-6966 E2 Transactivation of the Human Papillomavirus Type 8 Pfister Late Promoter Template-Dependent, In Vitro Replication of Rotavirus RNA Dayue Chen, Carl Q.-Y. Zeng, 7030-7039 Melissa J. Wentz, Mario Gorziglia, Mary K. Estes, and Robert F. Ramig Improved Self-Inactivating Retroviral Vectors Derived from Paul Olson, Susan Nelson, and 7060-7066 Spleen Necrosis Virus Ralph Dornburg Isolation of a New Foamy Retrovirus from Orangutans Myra 0. McClure, Paul D. 7124-7130 Bieniasz, Thomas F. Schulz, Ian L. Chrystie, Guy Simpson, Adriano Aguzzi, Julian G. Hoad, Andrew Cunningham, James Kirkwood, and Robin A. Weiss Cell Lines Inducibly Expressing the Adeno-Associated Virus Christina Holscher, Markus Horer, 7169-7177 (AAV) rep Gene: Requirements for Productive Replication Jurgen A. Kleinschmidt, of rep-Negative AAV Mutants Hanswalter Zentgraf, Alexander Burkle, and Regine Heilbronn Role of Flanking E Box Motifs in Human Immunodeficiency S.-H. Ignatius Ou, Leon F. 7188-7199 Virus Type 1 TATA Element Function Garcia-Martinez, Eyvind J. Paulssen, and Richard B. Gaynor Characterization and Molecular Basis of Heterogeneity of Fernando Rodriguez, Carlos 7244-7252 the African Swine Fever Virus Envelope Protein p54 Alcaraz, Adolfo Eiras, Rafael J. Yafiez, Javier M. Rodriguez, Covadonga Alonso, Jose F. Rodriguez, and Jose M. Escribano Activation of Adenovirus-Coded Protease and Processing of Ailsa Webster, Ian R. Leith, and 7292-7300 Preterminal Protein Ronald T. Hay A Conserved Helical Element Is Essential for Internal Changyu Wang, Peter Sarnow, and 7301-7307 Initiation of Translation of Hepatitis C Virus RNA Aleem Siddiqui Scanning Mutagenesis of the Arginine-Rich Region of the Michael Hammerschmid, Diana 7329-7335 Human Immunodeficiency Virus Type 1 Rev trans Activator Palmeri, Michael Ruhl, Herbert Jaksche, Irene Weichselbraun, Ernst Bohnlein, Michael H. Malim, and Joachim Hauber The Large Surface Protein of Duck Hepatitis B Virus Is Elizabeth V. L. Grgacic and David 7344-7350 Phosphorylated in the Pre-S Domain A. Anderson Substrate Requirements of Hepatitis C Virus Serine Yasumasa Komoda, Makoto 7351-7357 Proteinase for Intermolecular Polypeptide Cleavage in Hijikata, Shinya Sato, Shin-ichi Escherichia coli Asabe, Koichi Kimura, and Kunitada Shimotohno Continued on following page Continued from preceding page Expression of Semliki Forest Virus nsPl-Specific Pirjo Laakkonen, Marko Hyvonen, 7418-7425 Methyltransferase in Insect Cells and in Escherichia coli Johan Peranen, and Leevi Kaariainen Specific Inhibition of Aphthovirus Infection by RNAs Alfonso Gutierrez, Encarnaci6n 7426-7432 Transcribed from both the 5' and the 3' Noncoding Regions Martinez-Salas, Belen Pintado, and Francisco Sobrino Sequence Requirements for Stable Binding and Function of John A. Chiorini, Stephen M. 7448-7457 Rep68 on the Adeno-Associated Virus Type 2 Inverted Wiener, Roland A. Owens, Sirkka Terminal Repeats. R. M. Kyostio, Robert M. Kotin, and Brian Safer Map Locations of Mouse Hepatitis Virus Kaisong Fu and Ralph S. Baric 7458-7466 Temperature-Sensitive Mutants: Confirmation of Variable Rates of Recombination Specificity of the Hepatitis C Virus NS3 Serine Protease: Alexander A. Kolykhalov, Eugene 7525-7533 Effects of Substitutions at the 3/4A, 4A/4B, 4B/5A, and V. Agapov, and Charles M. Rice 5A/SB Cleavage Sites on Polyprotein Processing Protein-Protein Interactions between Human David J. Spector and Mary J. 7549-7553 Cytomegalovirus IE2-580aa and pUL84 in Lytically Infected Tevethia Cells Intravirion Reverse Transcripts in the Peripheral Blood Hui Zhang, Omar Bagasra, 7591-7597 Plasma of Human Immunodeficiency Virus Type 1-Infected Masahiro Niikura, Bernard J. Individuals Poiesz, and Roger J. Pomerantz A Transcriptionally Controlled trans-Processing Assay: Stephen S. Whitehead and Dennis 7603-7608 Putative Identification of a Vaccinia Virus-Encoded E. Hruby Proteinase Which Cleaves Precursor Protein P25K Expression and Purification of Recombinant Polyomavirus Xiaoyin Cai, Deching Chang, Scott 7609-7613 VP2 Protein and Its Interactions with Polyomavirus Proteins Rottinghaus, and Richard A. Consigli Amino Acid Sequence Analysis of the Proteolytic Cleavage Gregory J. Tobin, Raymond C. 7620-7627 Products of the Bovine Immunodeficiency Virus Gag Sowder II, Daniele Fabris, Marie Precursor Polypeptide Y. Hu, Jane K. Battles, Catherine Fenselau, Louis E. Henderson, and Matthew A. Gonda Sequence Heterogeneity in the Termini of Lymphocytic Barbara J. Meyer and Peter J. 7659-7664 Choriomeningitis Virus Genomic and Antigenomic RNAs Southern Transcription of a Human Neurotropic Virus Promoter in Douglas Kerr, Chun-Fan Chang, 7637-7643 Glial Cells: Effect of YB-1 on Expression of the JC Virus Nancie Chen, Gary Gallia, Ganesh Late Gene Raj, Benjamin Schwartz, and Kamel Khalili VIRUS-CELL INTERACTIONS Mutually Exclusive Interaction of the Adenovirus E4-6/7 Robert J. O'Connor and Patrick 6848-6862 Protein and the Retinoblastoma Gene Product with Internal Hearing Domains of E2F-1 and DP-1 Induction of Herpes Simplex Virus Type 1 Immediate-Early Walter M. Ralph, Jr., Mark S. 6871-6882 Gene Expression by a Cellular Activity Expressed in Vero Cabatingan, and Priscilla A. and NB41A3 Cells after Growth Arrest-Release Schaffer Selective Inhibition of Virus Protein Synthesis by C. Amici, C. Giorgi, A. Rossi, and 6890-6899 Prostaglandin Al: a Translational Block Associated with M. G. Santoro HSP70 Synthesis An Internal Deletion Enhances the Transcriptional Activity Karen L. MacKenzie, Lynn 6924-6932 of a Recombinant Retrovirus in Hematopoietic Cells In Vivo Bonham, and Geoff Symonds Regulation of Susceptibility and Cell Surface Receptor for Oliver T. Keppler, Markus 6933-6939 the B-Lymphotropic Papovavirus by N Glycosylation Herrmann, Monika Oppenlander, Wolfgang Meschede, and Michael Pawlita Continued on following page Continued from preceding page Membrane and Protein Interactions of a Soluble Form of Matthew R. Klimjack, Susan 6940-6946 the Semliki Forest Virus Fusion Protein Jeffrey, and Margaret Kielian Identification and Characterization of an Epstein-Barr Virus Gerhard Laux, Frank Dugrillon, 6947-6958 Nuclear Antigen 2-Responsive cis Element in the Christine Eckert, Brigitte Adam, Bidirectional Promoter Region of Latent Membrane Protein Ursula Zimber-Strobl, and Georg and Terminal Protein 2 Genes W. Bornkamm Interference of Interleukin-10 with Human Neeltje A. Kootstra, Angelique B. 6967-6975 Immunodeficiency Virus Type 1 Replication in Primary van't Wout, Han G. Huisman, Monocyte-Derived Macrophages Frank Miedema, and Hanneke Schuitemaker Mutations in the Cytoplasmic Tail of Herpes Simplex Virus Duncan W. Wilson, Nick 6985-6993 Glycoprotein H Suppress Cell Fusion by a Syncytial Strain Davis-Poynter, and Anthony C. Minson La Autoantigen Alleviates Translational Repression by the 5' Yuri V. Svitkin, Arnim Pause, and 7001-7007 Leader Sequence of the Human Immunodeficiency Virus Nahum Sonenberg Type 1 mRNA Direct Interactions between Autoantigen La and Human Yung-Nien Chang, Daniel J. 7008-7020 Immunodeficiency Virus Leader RNA Kenan, Jack D. Keene, Anne Gatignol, and Kuan-Teh Jeang A Late Adenovirus Factor Induces eIF-4E Yan Zhang, David Feigenblum, 7040-7050 Dephosphorylation and Inhibition of Cell Protein Synthesis and Robert J. Schneider The E2 Transcriptional Repressor Can Compensate for SP1 Caroline Demeret, Moshe Yaniv, 7075-7082 Activation of the Human Papillomavirus Type 18 Early and Frangoise Thierry Promoter PCR-Based Analysis of Herpes Simplex Virus Type 1 Ramesh Ramakrishnan, Myron 7083-7091 Latency in the Rat Trigeminal Ganglion Established with a Levine, and David J. Fink Ribonucleotide Reductase-Deficient Mutant Long-Term Promoter Activity during Herpes Simplex Virus J. R. Lokensgard, D. C. Bloom, 7148-7158 Latency A. T. Dobson, and L. T. Feldman The Transcriptional Regulator YY1 Binds to the Mikio Momoeda, Masako Kawase, 7159-7168 5'-Terminal Region of B19 Parvovirus and Regulates P6 Stephen M. Jane, Koichi Promoter Activity Miyamura, Neal S. Young, and Sachiko Kajigaya A Small Yeast RNA Selectively Inhibits Internal Initiation of Saumitra Das, Peter Coward, and 7200-7211 Translation Programmed by Poliovirus RNA: Specific Asim Dasgupta Interaction with Cellular Proteins That Bind to the Viral 5'-Untranslated Region Host Range and Cell Cycle Activation Properties of Robert Freund, Paul H. Bauer, 7227-7234 Polyomavirus Large T-Antigen Mutants Defective in pRB Harry A. Crissman, E. Morton Binding Bradbury, and Thomas L. Benjamin Interaction of Papillomaviruses with the Cell Surface Richard B. S. Roden, Reinhard 7260-7266 Kirnbauer, A. Bennett Jenson, Douglas R. Lowy, and John T. Schiller Serum Response Factor Has Functional Roles both in Masahiro Fujii, Haruo Tsuchiya, 7275-7283 Indirect Binding to the CArG Box and in the Tatsuya Chuhjo, Tomoyoshi Transcriptional Activation Function of Human T-Cell Minamino, Ken-Ichi Miyamoto, Leukemia Virus Type I Tax and Motoharu Seiki Effect of CD4 Gene Expression on Adenovirus Replication J. Hotta, L. Shi,
Recommended publications
  • A Historical Analysis of Herpes Simplex Virus Promoter Activation in Vivo Reveals Distinct Populations of Latently Infected Neurones
    Journal of General Virology (2008), 89, 2965–2974 DOI 10.1099/vir.0.2008/005066-0 A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones Joa˜o T. Proenc¸a,1 Heather M. Coleman,1 Viv Connor,1 Douglas J. Winton2 and Stacey Efstathiou1 Correspondence 1Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, S. Efstathiou Cambridge CB2 1QP, UK [email protected] 2Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Herpes simplex virus type 1 (HSV-1) has the capacity to establish a life-long latent infection in sensory neurones and also to periodically reactivate from these cells. Since mutant viruses defective for immediate-early (IE) expression retain the capacity for latency establishment it is widely assumed that latency is the consequence of a block in IE gene expression. However, it is not clear whether viral gene expression can precede latency establishment following wild-type virus infection. In order to address this question we have utilized a reporter mouse model system to facilitate a historical analysis of viral promoter activation in vivo. This system utilizes recombinant viruses expressing Cre recombinase under the control of different viral promoters and the Cre reporter mouse strain ROSA26R. In this model, viral promoter-driven Cre recombinase mediates a permanent genetic change, resulting in reporter gene activation and permanent marking of latently infected cells. The analyses of HSV-1 recombinants containing human cytomegalovirus major immediate-early, ICP0, gC or latency-associated transcript Received 20 June 2008 promoters linked to Cre recombinase in this system have revealed the existence of a population of Accepted 4 September 2008 neurones that have experienced IE promoter activation prior to the establishment of latency.
    [Show full text]
  • Metagenomic Analysis Indicates That Stressors Induce Production of Herpes-Like Viruses in the Coral Porites Compressa
    Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa Rebecca L. Vega Thurbera,b,1, Katie L. Barotta, Dana Halla, Hong Liua, Beltran Rodriguez-Muellera, Christelle Desnuesa,c, Robert A. Edwardsa,d,e,f, Matthew Haynesa, Florent E. Anglya, Linda Wegleya, and Forest L. Rohwera,e aDepartment of Biology, dComputational Sciences Research Center, and eCenter for Microbial Sciences, San Diego State University, San Diego, CA 92182; bDepartment of Biological Sciences, Florida International University, 3000 North East 151st, North Miami, FL 33181; cUnite´des Rickettsies, Unite Mixte de Recherche, Centre National de la Recherche Scientifique 6020. Faculte´deMe´ decine de la Timone, 13385 Marseille, France; and fMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 Communicated by Baruch S. Blumberg, Fox Chase Cancer Center, Philadelphia, PA, September 11, 2008 (received for review April 25, 2008) During the last several decades corals have been in decline and at least established, an increase in viral particles within dinoflagellates has one-third of all coral species are now threatened with extinction. been hypothesized to be responsible for symbiont loss during Coral disease has been a major contributor to this threat, but little is bleaching (25–27). VLPs also have been identified visually on known about the responsible pathogens. To date most research has several species of scleractinian corals, specifically: Acropora muri- focused on bacterial and fungal diseases; however, viruses may also cata, Porites lobata, Porites lutea, and Porites australiensis (28). Based be important for coral health. Using a combination of empirical viral on morphological characteristics, these VLPs belong to several viral metagenomics and real-time PCR, we show that Porites compressa families including: tailed phages, large filamentous, and small corals contain a suite of eukaryotic viruses, many related to the (30–80 nm) to large (Ͼ100 nm) polyhedral viruses (29).
    [Show full text]
  • On the Biological Success of Viruses
    MI67CH25-Turner ARI 19 June 2013 8:14 V I E E W R S Review in Advance first posted online on June 28, 2013. (Changes may still occur before final publication E online and in print.) I N C N A D V A On the Biological Success of Viruses Brian R. Wasik and Paul E. Turner Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106; email: [email protected], [email protected] Annu. Rev. Microbiol. 2013. 67:519–41 Keywords The Annual Review of Microbiology is online at adaptation, biodiversity, environmental change, evolvability, extinction, micro.annualreviews.org robustness This article’s doi: 10.1146/annurev-micro-090110-102833 Abstract Copyright c 2013 by Annual Reviews. Are viruses more biologically successful than cellular life? Here we exam- All rights reserved ine many ways of gauging biological success, including numerical abun- dance, environmental tolerance, type biodiversity, reproductive potential, and widespread impact on other organisms. We especially focus on suc- cessful ability to evolutionarily adapt in the face of environmental change. Viruses are often challenged by dynamic environments, such as host immune function and evolved resistance as well as abiotic fluctuations in temperature, moisture, and other stressors that reduce virion stability. Despite these chal- lenges, our experimental evolution studies show that viruses can often readily adapt, and novel virus emergence in humans and other hosts is increasingly problematic. We additionally consider whether viruses are advantaged in evolvability—the capacity to evolve—and in avoidance of extinction. On the basis of these different ways of gauging biological success, we conclude that viruses are the most successful inhabitants of the biosphere.
    [Show full text]
  • The Complete Genome of an Endogenous Nimavirus (Nimav-1 Lva) from the Pacific Whiteleg Shrimp Penaeus (Litopenaeus) Vannamei
    G C A T T A C G G C A T genes Article The Complete Genome of an Endogenous Nimavirus (Nimav-1_LVa) From the Pacific Whiteleg Shrimp Penaeus (Litopenaeus) Vannamei Weidong Bao 1,* , Kathy F. J. Tang 2 and Acacia Alcivar-Warren 3,4,* 1 Genetic Information Research Institute, 20380 Town Center Lane, Suite 240, Cupertino, CA 95014, USA 2 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China; [email protected] 3 Fundación para la Conservation de la Biodiversidad Acuática y Terrestre (FUCOBI), Quito EC1701, Ecuador 4 Environmental Genomics Inc., ONE HEALTH Epigenomics Educational Initiative, P.O. Box 196, Southborough, MA 01772, USA * Correspondence: [email protected] (W.B.); [email protected] (A.A.-W.) Received: 17 December 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: White spot syndrome virus (WSSV), the lone virus of the genus Whispovirus under the family Nimaviridae, is one of the most devastating viruses affecting the shrimp farming industry. Knowledge about this virus, in particular, its evolution history, has been limited, partly due to its large genome and the lack of other closely related free-living viruses for comparative studies. In this study, we reconstructed a full-length endogenous nimavirus consensus genome, Nimav-1_LVa (279,905 bp), in the genome sequence of Penaeus (Litopenaeus) vannamei breed Kehai No. 1 (ASM378908v1). This endogenous virus seemed to insert exclusively into the telomeric pentanucleotide microsatellite (TAACC/GGTTA)n. It encoded 117 putative genes, with some containing introns, such as g012 (inhibitor of apoptosis, IAP), g046 (crustacean hyperglycemic hormone, CHH), g155 (innexin), g158 (Bax inhibitor 1 like).
    [Show full text]
  • JOURNAL of VIROLOGY VOLUME 57 * MARCH 1986 * NUMBER 3 Arnold J
    JOURNAL OF VIROLOGY VOLUME 57 * MARCH 1986 * NUMBER 3 Arnold J. Levine, Editor in Chief Michael B. A. Oldstone, Editor (1988) (1989) Scripps Clinic & Research Foundation Princeton University La Jolla, Calif. Princeton, N.J. Thomas E. Shenk, Editor (1989) David T. Denhardt, Editor (1987) Princeton University University of Western Ontario Princeton, N.J. London, Ontario, Canada Anna Marie Skalka, Editor (1989) Bernard N. Fields, Editor (1988) Hoffmann-La Roche Inc. Harvard Medical School Nutley, N.J. Boston, Mass. Robert A. Weisberg, Editor (1988) Robert M. Krug, Editor (1987) National Institute of Child Health Sloan-Kettering Institute and Human Development New York, N.Y. Bethesda, Md. EDITORIAL BOARD James Alwine (1988) Hidesaburo Hanafusa (1986) Lois K. Miller (1988) Priscilla A. Schaffer (1987) David Baltimore (1987) William S. Hayward (1987) Peter Model (1986) Sondra Schlesinger (1986) Tamar Ben-Porat (1987) Roger Hendrix (1987) Bernard Moss (1986) Manfred Schubert (1988) Kenneth I. Berns (1988) Martin Hirsch (1986) Fred Murphy (1986) June R. Scott (1986) Michael Botchan (1986) John J. Holland (1987) Opendra Narayan (1988) Bart Sefton (1988) Thomas J. Braciale (1988) Ian H. Holmes (1986) Joseph R. Nevins (1988) Charles J. Sherr (1987) Joan Brugge (1988) Robert W. Honess (1986) Nancy G. Nossal (1987) Saul J. Silverstein Barrie J. Carter (1987) Nancy Hopkins (1986) Abner Notkins (1986) (1988) John M. Coffin (1986) Peter M. Howley (1987) J. Thomas Parsons (1986) Patricia G. Spear (1987) Geoffrey M. Cooper (1987) Alice S. Huang (1987) Ulf G. Pettersson (1986) Nat Sternberg (1986) Donald Court (1987) Steve Hughes (1988) Lennart Philipson (1987) Bruce Stillman (1988) Richard Courtney (1986) Tony Hunter (1986) Lewis I.
    [Show full text]
  • A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus Fabarum: Genomic Structure, Prevalence, and Transmission
    viruses Article A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus fabarum: Genomic Structure, Prevalence, and Transmission 1,2, , 1,2 1,2, Martina N. Lüthi * y , Christoph Vorburger and Alice B. Dennis z 1 Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; [email protected] (C.V.); [email protected] (A.B.D.) 2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland * Correspondence: [email protected] Current address: Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland. y Current address: Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse z 24–25, 14476 Potsdam, Germany. Received: 17 November 2019; Accepted: 31 December 2019; Published: 3 January 2020 Abstract: We report on a novel RNA virus infecting the wasp Lysiphlebus fabarum, a parasitoid of aphids. This virus, tentatively named “Lysiphlebus fabarum virus” (LysV), was discovered in transcriptome sequences of wasps from an experimental evolution study in which the parasitoids were allowed to adapt to aphid hosts (Aphis fabae) with or without resistance-conferring endosymbionts. Based on phylogenetic analyses of the viral RNA-dependent RNA polymerase (RdRp), LysV belongs to the Iflaviridae family in the order of the Picornavirales, with the closest known relatives all being parasitoid wasp-infecting viruses. We developed an endpoint PCR and a more sensitive qPCR assay to screen for LysV in field samples and laboratory lines. These screens verified the occurrence of LysV in wild parasitoids and identified the likely wild-source population for lab infections in Western Switzerland. Three viral haplotypes could be distinguished in wild populations, of which two were found in the laboratory.
    [Show full text]
  • Monoclonal Antibodies to Herpes Simplex Virus Type 2
    INIS-mf—8650 MONOCLONAL ANTIBODIES TO HERPES SIMPLEX VIRUS TYPE 2 C.S.McLean-Piaper .-.- i Promotor: dr. A. van Kannen hoogleraar in de moleculaire biologie Co-promotor: dr. A.C. Minson hoogleraar in de virologie aan de University of Cambridge, Cambridge, Engeland C.S. McLean-Pieper MONOCLONAL ANTIBODIES TO HERPES SIMPLEX VIRUS TYPE 2 Proefschrift ter verkrijging van de graad van doctor in de landbouwwetenschappen, op gezag van de rector magnificus, dr. C.C. Oosterlee, hoogleraar in de veeteeltwetenschap in het openbaar te verdedigen op vrijdag 3 september 1982 des namiddags te vier uur in de aula van de landbouwhogeschool te Wageningen. ACKNOWLEDGEMENTS. I would like to thank the following people for their help during the various stages of the work described in this thesis. Without them it would never have been written. First of all, Tony Minson, whose support and encouragement as my supervisor have been invaluable. He was always available to give advice and practical help when problems, arose. I have learned much form his critical supervision, both in the practical work and in the writing of this thesis. Ab van Kammen, especially for his help and comments during the writing. Tony Nash, for his invaluable help with the animal experiments, and for his discussion and comments on many aspects of the work. David Hancock, for his excellent technical assistance during the later stages of the project. Anne Buckmaster, who provided the data involving the antibodies AP7 and AP12, and was always available for friendly discussion. Professor P. Wildy, who made it possible for me to work in the department of pathology.
    [Show full text]
  • ICP8 Self Interactions Are Essential for HSV-1 Replication Compartment Formation Anthar Darwish University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2018 ICP8 Self Interactions are Essential for HSV-1 Replication Compartment Formation Anthar Darwish University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Darwish, Anthar, "ICP8 Self Interactions are Essential for HSV-1 Replication Compartment Formation" (2018). Doctoral Dissertations. 1940. https://opencommons.uconn.edu/dissertations/1940 ICP8 Self Interactions are Essential for HSV-1 Replication Compartment Formation Anthar S. Darwish, PhD University of Connecticut, 2018 ABSTRACT The objective of this thesis was to understand the ICP8 protein interactions involved during the formation of HSV-1 replication compartments. We focused our efforts on mapping the ICP8-ICP8 self-interactions that are involved in the formation of DNA independent filaments. We report here that the FNF motif (F1142, N1143 and F1144) and the FW motif (F843 and W844) are essential for ICP8 filament formation. Furthermore we observed a positive correlation between ICP8 filamentation and the formation of replication compartments. Mammalian expression plasmids bearing mutations in these motifs (FNF and FW) were unable to complement an ICP8 null virus for growth and replication compartment formation. We propose that filaments or other higher order structures of ICP8 may provide a scaffold onto which other proteins are recruited to form prereplicative sites and replication compartments. In an attempt to broaden our understanding of ICP8 self-interactions and its interactions with other essential viral proteins we searched for potential protein interaction sites on the surface of ICP8. Using the structural information of ICP8 and sequence comparison with homologous proteins, we identified conserved residues in the shoulder region (R262, H266, D270, E271, E274, Q706 and F707) of ICP8 that might function as protein interaction sites.
    [Show full text]
  • MINUTES of the SIXTH MEETING of the ICTV, SENDAI, 5Th SEPTEMBER 1984
    MINUTES OF THE SIXTH MEETING OF THE ICTV, SENDAI, 5th SEPTEMBER 1984 6/1 - NUMBER OF MEMBERS PRESENT: 19 6/2 - ELECTION OF OFFICERS The following were elected or re-elected: President: F. BROWN Vice-President: H.W. ACKERMANN Committee: B.M. GORMAN Australia D.PETERS Holland J.VLAK Holland Life Member: J.L. MELNICK U.S.A. 6/3 - THE FOLLOWING TAXONOMIC PROPOSALS WERE MADE AND APPROVED FROM THE BACTERIAL VIRUS SUB-COMMITTEE Taxonomic proposal no. 1 The group of bacteriophages with long non-contractile tails should be named Siphoviridae. FROM THE VERTEBRATE VIRUS SUB-COMMITTEE Taxonomic proposal no. 2 The designation of two species a and b of the Influenzavirus genus. Taxonomic proposal no. 3 Creation of the Flaviviridae, a new family of enveloped RNA viruses, based on the present genus Flavivirus. Taxonomic proposal no. 4 That yellow fever virus, strain Asibi, should be the type species of the Flavivirus genus. Taxonomic proposal no. 5 That a genus Arterivirus belonging to the family Togaviridae should be created. Taxonomic proposal no. 6 That equine arteritis virus should be the type species of the genus Arterivirus. Taxonomic proposal no. 7 That a genus Simplexvirus, subfamily Alphaherpesvirinae family Herpesviridae, should be formed. Taxonomic proposal no. 8 That the type species of the Simplexvirus genus should be human herpes simplex virus 1. Taxonomic proposal no. 9 That human herpesvirus 1 and 2 and bovine herpesvirus 2 are recognized members of Simplexvirus genus and that cercopithecine herpesvirus 1 and 2 be candidate species. Taxonomic proposal no. 10 1 That the type species of the Poikilovirus (This name has not been approved and remains unofficial) genus is suid herpesvirus 1 (pseudorabies virus).
    [Show full text]
  • Genetically Modified Plants for Food Use
    September 1998 Ref: 1/98 (summary) 2/98 (full report) GENETICALLY MODIFIED PLANTS FOR FOOD USE Contents Page Summary 1 Introduction 4 Outline 4 1. What is genetic modification? 5 2. Is genetic modification regulated? 6 3. Will genes transfer from GM plants? 7 3.1 Transfer of genes from GM crop plants to wild plant species 7 3.2 Transfer of genes from GM crops to non-GM crops 8 3.3 Ways to minimise or prevent gene transfer 9 3.4 Uptake of genes via the food chain 10 3.5 Antibiotic resistance genes in GM food 11 4. Will GM crops harm the environment? 12 4.1 Insect tolerant crops 12 4.1.1 Effects on non-target species 12 4.1.2 Pest resistance to insect tolerant GM crops 13 4.2 Herbicide tolerant crops 14 4.2.1 Transfer of genes to wild relatives 14 4.2.2 Transfer of genes to non-GM crops 15 4.2.3 Will use of the herbicide affect other plants and animals?16 4.3 Virus resistant crops 16 5. Specific issues related to GM plants for food use 17 5.1 Labelling and segregation 17 5.2 Toxic and allergenic effects as a result of the inserted gene 18 5.3 GM crops containing non-food genes 19 5.4 Phenotypic/genotypic stability of GM crops 19 5.5 Pleiotropic effects of genes 20 Summary of recommendations 20 Annex I - Historical developments of plant breeding Annex II - Membership of Advisory Committee on Genetic Modification Annex III - Membership of Advisory Committee on Releases to the Environment Annex IV - Membership of Advisory Committee on Novel Foods and Processes Annex V - Membership of Food Advisory Committee Annex VI - Segregation and Labelling Summary 1.
    [Show full text]
  • Genome-Wide Engineering of an Infectious Clone of Herpes Simplex
    Genome-wide engineering of an infectious clone of PNAS PLUS herpes simplex virus type 1 using synthetic genomics assembly methods Lauren M. Oldfielda,1, Peter Grzesikb,1, Alexander A. Voorhiesc, Nina Alperovicha, Derek MacMathb, Claudia D. Najeraa, Diya Sabrina Chandrab, Sanjana Prasadb, Vladimir N. Noskova, Michael G. Montaguea,2, Robert M. Friedmand, Prashant J. Desaib,3, and Sanjay Vasheea,3 aDepartment of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850; bDepartment of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231; cDepartment of Infectious Diseases, J. Craig Venter Institute, Rockville, MD 20850; and dPolicy Center, J. Craig Venter Institute, La Jolla, CA 92037 Edited by Jef D. Boeke, New York University Langone Medical Center, New York, NY, and approved August 25, 2017 (received for review January 11, 2017) Here, we present a transformational approach to genome engineer- single modification with the BAC-based system takes weeks to ing of herpes simplex virus type 1 (HSV-1), which has a large DNA complete. If multiple changes in the genome are desired, each genome, using synthetic genomics tools. We believe this method will must be made sequentially, greatly increasing the timeframe of enable more rapid and complex modifications of HSV-1 and other making mutant viruses. large DNA viruses than previous technologies, facilitating many The synthetic genomics assembly method described herein has useful applications. Yeast transformation-associated recombination many potential advantages over the BAC-based system (9). It is an was used to clone 11 fragments comprising the HSV-1 strain KOS application of existing tools to engineer large virus genomes and 152 kb genome.
    [Show full text]
  • Production, Purification and Evaluation of Insect Cell-Expressed Proteins with Diagnostic Potential
    JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 192 Patrik Michel Production, Purification and Evaluation of Insect Cell-expressed Proteins with Diagnostic Potential JYVÄSKYLÄN YLIOPISTO JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 192 Patrik Michel Production, Purification and Evaluation of Insect Cell-expressed Proteins with Diagnostic Potential Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Ambiotica-rakennuksen salissa YAA303 lokakuun 17. päivänä 2008 kello 12. Academic dissertation to be publicly discussed, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, in the Building Ambiotica, Auditorium YAA303, on October 17, 2008 at 12 o'clock noon. UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2008 Production, Purification and Evaluation of Insect Cell-expressed Proteins with Diagnostic Potential JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 192 Patrik Michel Production, Purification and Evaluation of Insect Cell-expressed Proteins with Diagnostic Potential UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2008 Editors Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Pekka Olsbo, Marja-Leena Tynkkynen Publishing Unit, University Library of Jyväskylä Jyväskylä Studies in Biological and Environmental Science Editorial Board Jari Haimi, Anssi Lensu, Timo Marjomäki, Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä URN:ISBN:978-951-39-3365-4
    [Show full text]