Session 5: Data Link Control

Total Page:16

File Type:pdf, Size:1020Kb

Session 5: Data Link Control Data Communications & Networks Session 4 – Main Theme Data Link Control Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from course textbook resources Computer Networking: A Top-Down Approach, 6/E Copyright 1996-2013 J.F. Kurose and K.W. Ross, All Rights Reserved 1 Agenda 1 Session Overview 2 Data Link Control 3 Summary and Conclusion 2 What is the class about? .Course description and syllabus: »http://www.nyu.edu/classes/jcf/csci-ga.2262-001/ »http://cs.nyu.edu/courses/Fall13/CSCI-GA.2262- 001/index.html .Textbooks: » Computer Networking: A Top-Down Approach (6th Edition) James F. Kurose, Keith W. Ross Addison Wesley ISBN-10: 0132856204, ISBN-13: 978-0132856201, 6th Edition (02/24/12) 3 Course Overview . Computer Networks and the Internet . Application Layer . Fundamental Data Structures: queues, ring buffers, finite state machines . Data Encoding and Transmission . Local Area Networks and Data Link Control . Wireless Communications . Packet Switching . OSI and Internet Protocol Architecture . Congestion Control and Flow Control Methods . Internet Protocols (IP, ARP, UDP, TCP) . Network (packet) Routing Algorithms (OSPF, Distance Vector) . IP Multicast . Sockets 4 Course Approach . Introduction to Basic Networking Concepts (Network Stack) . Origins of Naming, Addressing, and Routing (TCP, IP, DNS) . Physical Communication Layer . MAC Layer (Ethernet, Bridging) . Routing Protocols (Link State, Distance Vector) . Internet Routing (BGP, OSPF, Programmable Routers) . TCP Basics (Reliable/Unreliable) . Congestion Control . QoS, Fair Queuing, and Queuing Theory . Network Services – Multicast and Unicast . Extensions to Internet Architecture (NATs, IPv6, Proxies) . Network Hardware and Software (How to Build Networks, Routers) . Overlay Networks and Services (How to Implement Network Services) . Network Firewalls, Network Security, and Enterprise Networks 5 Data Link Control Session in Brief . Principles Behind Data Link Layer Services: . Error Detection and Correction . Sharing a Broadcast Channel Multiple Access . Link-Layer Addressing . Reliable Data Transfer and Flow Control . Instantiation and implementation of various link layer technologies: . Ethernet . Link-layer switches . PPP . Link virtualization: MPLS . A day in the life of a web request 6 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 77 Agenda 1 Session Overview 2 Data Link Control 3 Summary and Conclusion 8 Data Link Control - Roadmap 2 Data Link Control Introduction and Services Error Detection and Correction Multiple Access Protocols Link Layer Addressing Ethernet Additional Topics 9 Link Layer: Introduction Some terminology: . hosts and routers are nodes . communication channels that connect adjacent nodes along communication path are links » wired links » wireless links » LANs . layer-2 packet is a frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node to adjacent node over a link 10 Link layer: context . datagram transferred by transportation analogy different link protocols . trip from Princeton to Lausanne over different links: » limo: Princeton to JFK » plane: JFK to Geneva » e.g., Ethernet on first link, frame relay on intermediate » train: Geneva to Lausanne links, 802.11 on last link . tourist = datagram . each link protocol . transport segment = provides different services communication link » e.g., may or may not provide . transportation mode = link rdt over link layer protocol . travel agent = routing algorithm 11 Link Layer Services (1/2) Framing, link access Encapsulate datagram into frame, adding header, trailer Channel access if shared medium “MAC” addresses used in frame headers to identify source, dest Different from IP address! Reliable delivery between adjacent nodes We briefly discussed how to do this already! Seldom used on low bit error link (fiber, some twisted pair) Wireless links: high error rates Q: why both link-level and end-end reliability? 12 Link Layer Services (2/2) Flow Control Pacing between adjacent sending and receiving nodes Error Detection Errors caused by signal attenuation, noise. Receiver detects presence of errors Signals sender for retransmission or drops frame Error Correction Receiver identifies and corrects bit error(s) without resorting to retransmission Half-duplex and full-duplex With half duplex, nodes at both ends of link can transmit, but not at same time 13 Where is the link layer implemented? . in each and every host host schematic . link layer implemented in application “adaptor” (aka network transport network cpu memory interface card NIC) link » Ethernet card, PCMCI card, host 802.11 card bus controller (e.g., PCI) » implements link, physical link physical layer physical transmission . attaches into host’s system buses network adapter card . combination of hardware, software, firmware 14 Adaptors Communicating datagram datagram controller controller sending host receiving host datagram frame . sending side: . receiving side » encapsulates datagram in » looks for errors, rdt, flow frame control, etc » adds error checking bits, » extracts datagram, passes rdt, flow control, etc. to upper layer at receiving side 15 Encoding Information Frames Typical Fields in a Frame Start Destination Source Frame Frame Data Check Address Address Control Delimiter sum 16 DLL Operation Sender Receiver NL correct and ordered Retransmit CRC ACK if DLL if timeout Frame correct ACK PL CRC 17 Data Link Control - Roadmap 2 Data Link Control Introduction and Services Error Detection and Correction Multiple Access Protocols Link Layer Addressing Ethernet Additional Topics 18 Error Detection EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields • Error detection not 100% reliable! • protocol may miss some errors, but rarely • larger EDC field yields better detection and correction otherwise 19 Error Detection Additional bits added by transmitter for error detection code Parity Value of parity bit is such that character has even (even parity) or odd (odd parity) number of ones Even number of bit errors goes undetected Checksum can be a simple XOR operation of bits to be checked DL protocols use more sophisticated methods, like Cyclic Redundancy Check (CRC) 20 Parity Checking Single Bit Parity: Two Dimensional Bit Parity: Detect single bit errors Detect and correct single bit errors 0 0 21 Internet Checksum Goal: detect “errors” (e.g., flipped bits) in transmitted segment (note: used at transport layer only) Sender: Receiver: Treat segment contents as Compute checksum of sequence of 16-bit integers received segment Checksum: addition (1’s Check if computed complement sum) of checksum equals segment contents checksum field value: Sender puts checksum value NO - error detected into UDP checksum field YES - no error detected. But maybe errors nonetheless? More later …. 22 Checksuming: Cyclic Redundancy Check View data bits, D, as a binary number Choose r+1 bit pattern (generator), G Goal: choose r CRC bits, R, such that <D,R> exactly divisible by G (modulo 2) Receiver knows G, divides <D,R> by G. If non-zero remainder: error detected! Can detect all burst errors less than r+1 bits Widely used in practice (ATM, HDLC) 23 CRC Example Want r D.2 XOR R = nG Equivalently r D.2 = nG XOR R Equivalently: if we divide D.2r by G, want remainder R D.2r R = remainder[ ] G 24 Example of G(x) Polynomials CRC-12 12 11 3 2 X + X + X + X + X + 1 CRC-16 16 15 2 X + X + X + 1 CRC-CCITT 16 15 5 X + X + X + 1 CRC-32 32 26 23 22 16 12 11 10 X + X + X + X + X + X + X + X + X8 + X7 + X5 + X4 + X2 + X + 1 CRC’s Are Implemented in Shift registers 25 Data Link Control - Roadmap 2 Data Link Control Introduction and Services Error Detection and Correction Multiple Access Protocols Link Layer Addressing Ethernet Additional Topics 26 Multiple Access Links and Protocols (1/2) Two types of “links” Point-to-point PPP for dial-up access Point-to-point link between Ethernet switch and host Broadcast (shared wire or medium) Old-fashioned Ethernet Upstream HFC 802.11 wireless LAN 27 Multiple Access Protocols (2/2) Single shared broadcast channel Two or more simultaneous transmissions by nodes: interference Collision if node receives two or more signals at the same time Multiple access protocol Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit Communication about channel sharing must use channel itself! 28 Ideal Multiple Access Protocols Broadcast channel of rate R bps 1. When one node wants to transmit, it can send at rate R. 2. When M nodes want to transmit, each can send at average rate R/M 3. Fully decentralized: . No special node to coordinate transmissions . No synchronization of clocks, slots 4. Simple 29 MAC Protocols: A Taxonomy Three broad classes: Channel Partitioning Divide channel into smaller “pieces” (time slots, frequency, code) Allocate piece to node for exclusive use Random Access Channel not divided, allow collisions “recover” from collisions “Taking turns” Nodes take turns, but nodes with more to send can take longer turns 30 Channel Partitioning MAC Protocols: TDMA TDMA: time division multiple access Access to channel in "rounds“ Each station gets fixed length slot (length = pkt trans time) in each round Unused slots go idle Example: 6-station LAN, 1,3,4 have pkt, slots
Recommended publications
  • Ipv6 … a Simplified Explanation
    IPv6 … A Simplified Explanation Presented by Bryan Crisler Senior Network Engineer Time Warner Cable Housekeeping • Take this time to locate: – Emergency Exits – Bathrooms – Breakroom/Water Fountain – Note taking utensils • Put your Phones on Vibrate – If you need to take a call, feel free to step out of the room. About your Speaker • Bryan Crisler – Started in Cable @ Charter Communications, Riverside, CA in June 2005 – Currently a Senior Network Engineer at Time Warner Cable About your Speaker • Held following positions: – Broadband Technician I-IV (Charter) – Network Operations Specialist (Charter) – Network Technician (Charter) – Network Engineer (Charter & TWC) – SR Network Engineer (TWC) About your Speaker • Email: [email protected] • LinkedIn: linkedin.com/in/bcrisler Today’s Lesson Plan • Session 1: So What About IPv6? • Session 2: Every Day IPv6 and You So What About IPv6? Session 1 Basic History of IP • IP – Internet Protocol • Defined in RFC 791, dated 1981, written by Information Sciences Institute @ USC • Written for DARPA (Defense Advanced Research Projects Agency) Basic History of IP • “… Internet Protocol is designed for use in interconnected systems of packet-switched computer communication networks…provides for transmitting blocks of data called datagrams from sources to destinations… identified by fixed length addresses.” (RFC 791, section 1.1) Versions of IP • IPv0 – 3: Experimental Only • IPv4: Defined in 1981 by RFC 760 & 791. First version to implemented publically. Still in use today. • IPv5: Also experimental, called Internet Stream Protocol. • IPv6: Also called IP Next Generation (IPng), Defined in 1998 by RFC 2460-2467 IP Addressing • Layer 3 (Network) form of Addressing • Two different forms of IP Address: – IPv4 • Uses Dotted Decimal (192.168.0.1) • Has 4,294,967,296 total address (public & private) • 32 bit address – IPv6 • Uses Hexadecimal Notation (FE80::1) • Has 3.4×1038 total address (public & private) • 128 bit address IP Addressing – cont.
    [Show full text]
  • Remote Collaborative Real-Time Multimedia Experience Over The
    Remote C ollaborative Real-Time Multimedia Experience over the Future Internet ROMEO Grant Agreement Number: 287896 D4.2 Report on streaming/broadcast techniques for 3D multi-view video and spatial audio ROMEO WP4 Page 1/50 Document description Name of document Report on streaming/broadcast techniques for 3D multi-view video and spatial audio Abstract This document provides a detailed description of the packetization schemes in ROMEO and specifies high level syntax elements of the media formats in order to perform efficient transport and synchronization of the 3D audio and multiview video streams. Adaptation mechanisms and error concealment methods are also proposed in the context of degraded network conditions. Document identifier D4.2 Document class Deliverable Version 1.0 Author(s) N.Tizon, D. Nicholson (VITEC) H. Weigold, H. Ibl, J. Lauterjung (R&S) K. Birkos, A. Kordelas, A. Lykourgiotis, I. Politis (UPAT) Xiyu Shi (MulSys) M.Laabs (IRT) E. Ekmekcioglu (UNIS) A. Akman, S. O. Pelvan, S. Çiftçi, E. Çimen Öztürk (TTA) QAT team D. Doyen (TEC) F. Pascual Blanco (TID) H. Marques (IT) Date of creation 24-Jul-2012 Date of last modification 21-Dec-2012 Status Final Destination European Commission WP number WP4 Dissemination Level Public Deliverable Nature Report ROMEO WP4 Page 2/50 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................. 3 LIST OF FIGURES.....................................................................................................................
    [Show full text]
  • Communications
    The Essentials of Datalink Communications The origins and course of Air-to-Ground Messaging The Essentials of Datalink Communications Contents international Trip Support | international Trip The Technology that HR Created 02 Inmarsat Satellite 06 Growing into an Operational Necessity 03 Iridium Satellite 07 UAS Communications Mechanisms 04 Upcoming Regulations 10 VHF Radio 05 The Future of ACARS 11 © Copyright 2016 Page 1/12 The Technology that HR Created t one time in the not-so-distant past, pilots and other ARINC’s solution was an automated system, called the A flight crew members were paid different rates for the ARINC Communications Addressing and Reporting System, time they were airborne versus the time they were performing or ACARS for short, which sent short text data from the ground operations. Events like aircraft pushback, taxi, takeoff, avionics of the aircraft directly to the ground-based entities landing, and gate arrival were transmitted via voice over radio through Very High Frequency (VHF) radio frequencies frequencies to operators who would relay this information back without any crewmember involvement. The aircraft was to the airlines. The pilots were responsible for self-reporting programmed to take advantage of switches and automation their own times and movements. Understanding that people points on the aircraft, resulting in the creation of a set of can sometimes be forgetful, or worse, willfully manipulative, messages referred to as the OOOI report. An OOOI report is the major airlines began searching for a solution that tracked any of four messages: Out, Off, On and In. Still in wide-scale crewmember pay in a more structured and accurate way.
    [Show full text]
  • Data Networks
    Second Ed ition Data Networks DIMITRI BERTSEKAS Massachusetts Institute of Technology ROBERT GALLAGER Massachusetts Institute ofTechnology PRENTICE HALL, Englewood Cliffs, New Jersey 07632 2 Node A Node B Time at B --------- Packet 0 Point-to-Point Protocols and Links 2.1 INTRODUCTION This chapter first provides an introduction to the physical communication links that constitute the building blocks of data networks. The major focus of the chapter is then data link control (i.e., the point-to-point protocols needed to control the passage of data over a communication link). Finally, a number of point-to-point protocols at the network, transport, and physical layers are discussed. There are many similarities between the point-to-point protocols at these different layers, and it is desirable to discuss them together before addressing the more complex network-wide protocols for routing, flow control, and multiaccess control. The treatment of physical links in Section 2.2 is a brief introduction to a very large topic. The reason for the brevity is not that the subject lacks importance or inherent interest, but rather, that a thorough understanding requires a background in linear system theory, random processes, and modem communication theory. In this section we pro­ vide a sufficient overview for those lacking this background and provide a review and perspective for those with more background. 37 38 Point-to-Point Protocols and Links Chap. 2 In dealing with the physical layer in Section 2.2, we discuss both the actual com­ munication channels used by the network and whatever interface modules are required at the ends of the channels to transmit and receive digital data (see Fig 2.1).
    [Show full text]
  • Application Protocol Data Unit Meaning
    Application Protocol Data Unit Meaning Oracular and self Walter ponces her prunelle amity enshrined and clubbings jauntily. Uniformed and flattering Wait often uniting some instinct up-country or allows injuriously. Pixilated and trichitic Stanleigh always strum hurtlessly and unstepping his extensity. NXP SE05x T1 Over I2C Specification NXP Semiconductors. The session layer provides the mechanism for opening closing and managing a session between end-user application processes ie a semi-permanent dialogue. Uses MAC addresses to connect devices and define permissions to leather and commit data 1. What are Layer 7 in networking? What eating the application protocols? Application Level Protocols Department of Computer Science. The present invention pertains to the convert of Protocol Data Unit PDU session. Network protocols often stay to transport large chunks of physician which are layer in. The term packet denotes an information unit whose box and tranquil is remote network-layer entity. What is application level security? What does APDU stand or Hop sound to rot the meaning of APDU The Acronym AbbreviationSlang APDU means application-layer protocol data system by. In the context of smart cards an application protocol data unit APDU is the communication unit or a bin card reader and a smart all The structure of the APDU is defined by ISOIEC 716-4 Organization. Application level security is also known target end-to-end security or message level security. PDU Protocol Data Unit Definition TechTerms. TCPIP vs OSI What's the Difference Between his Two Models. The OSI Model Cengage. As an APDU Application Protocol Data Unit which omit the communication unit advance a.
    [Show full text]
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • The Internet in Transition: the State of the Transition to Ipv6 in Today's
    Please cite this paper as: OECD (2014-04-03), “The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4”, OECD Digital Economy Papers, No. 234, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jz5sq5d7cq2-en OECD Digital Economy Papers No. 234 The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4 OECD FOREWORD This report was presented to the OECD Working Party on Communication, Infrastructures and Services Policy (CISP) in June 2013. The Committee for Information, Computer and Communications Policy (ICCP) approved this report in December 2013 and recommended that it be made available to the general public. It was prepared by Geoff Huston, Chief Scientist at the Asia Pacific Network Information Centre (APNIC). The report is published on the responsibility of the Secretary-General of the OECD. Note to Delegations: This document is also available on OLIS under reference code: DSTI/ICCP/CISP(2012)8/FINAL © OECD 2014 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 .......................... 4
    [Show full text]
  • Global Operational Data Link Document (GOLD)
    Global Operational Data Link Document (GOLD) This edition has been issued by the GOLD ad hoc Working Group for the Asia/Pacific Air Navigation Planning and Implementation Regional Group (APANPIRG), the North Atlantic Systems Planning Group (NAT SPG), the European Air Navigation Planning Group (EANPG), the South American Region Implementation Group (SAM/IG) and the African-Indian Ocean Planning and Implementation Regional Group (APIRG). Second Edition — 26 April 2013 International Civil Aviation Organization GOLD (1) Second Edition — 26 April 2013 This document is available by accessing any of the following ICAO regional websites. Asia and Pacific (APAC) Office http://www.icao.int/apac Eastern and Southern African (ESAF) Office www.icao.int/esaf European and North Atlantic (EUR/NAT) Office http://www.paris.icao.int Middle East (MID) Office www.icao.int/mid North American, Central American and Caribbean (NACC) Office http://www.mexico.icao.int South American (SAM) Office http://www.lima.icao.int Western and Central African (WACAF) Office http://www.icao.int/wacaf For more information, contact the ICAO regional office. Global Operational Data Link Document (GOLD) This edition has been issued by the GOLD ad hoc Working Group for the Asia/Pacific Air Navigation Planning and Implementation Regional Group (APANPIRG), the North Atlantic Systems Planning Group (NAT SPG), the European Air Navigation Planning Group (EANPG), the South American Region Implementation Group (SAM/IG) and the African-Indian Ocean Planning and Implementation Regional Group (APIRG). Second Edition — 26 April 2013 International Civil Aviation Organization GOLD (i) Second Edition — 26 April 2013 (ii) Global Operational Data Link Document (GOLD) AMENDMENTS The issue of amendments is announced by the ICAO Regional Offices concerned, which holders of this publication should consult.
    [Show full text]
  • Br-Asi01 Br-Asx01
    BR-ASI01 BR-ASX01 Data Comm for Business, Inc. 807 Pioneer Street Champaign, IL 61820 217-352-3207 Rev. Date: October 17, 1996 This manual applies to both the “I” and “X” router models. The “I” model (BR-ASI01) is single protocol TCP/IP only. The “X” model (BR-ASX01) is a multi-protocol router that routes TCP/IP, IPX, DECnet, and Appletalk. When using this manual with “I” model router, ignore the manual sections pertaining to protocols other than TCP/IP. CHAPTER 1 - INTRODUCTION 7 ABOUT THE BR ROUTER 7 Getting Started 7 Hardware Installation 7 RouterView Software Installation 8 Command Line Preparation 8 Quickstart Configuration 8 Appendices and Index 8 CHAPTER 2 - GETTING STARTED 9 A FEW NOTES 9 Please Read The Manuals 9 Warranty and Service 9 Getting Help With the BR Router 9 WHAT YOU WILL NEED TO GET STARTED 9 Supplied with the BR Router 9 Needed For Installation 10 Ethernet Connection Requirements 10 Thick Ethernet 10 Thin Ethernet 10 10Base-T Twisted-Pair Ethernet 10 Telco Line Connection Requirements 11 RS-232 Port 11 CHAPTER 3 - HARDWARE INSTALLATION 13 Mounting the Router 13 Connecting the Router to the Ethernet 14 Connecting to Thick Ethernet 14 Connecting to Thin Ethernet 14 Connecting to Twisted-Pair Ethernet 14 Connecting a Line Device to the BR Router 14 Connecting Devices to the RS-232C Port 15 Connecting an Out-of-Band Management Console 15 Powering Up the Router 15 CHAPTER 4 - ROUTERVIEW SOFTWARE INSTALLATION 17 RouterView for Windows 17 System Requirements 17 Installing and Running RouterView for Windows 17 RouterView
    [Show full text]
  • Discussion Chapter#9 Services of Data-Link
    The Islamic University of Gaza ECOM 4314: Data Communication Faculty of Engineering Instructor: Dr. Aiman Abu Samra Department of Computer Engineering T.A.: Eng. Alaa O. Shama Discussion Chapter#9 The data-link layer of a node (host or router) is responsible for delivering a datagram to the next node in the path. The data-link layer is located between the physical and the network layers. The datalink layer provides services to the network layer; it receives services from the physical layer. data-link layer of the source host needs only to encapsulate the datagram received from the network in a frame, the data-link layer of the destination host needs to decapsulate the datagram from the frame, but each intermediate node needs to both encapsulate and decapsulate, because each link may be using a different protocol with a different frame format. Even if one link and the next are using the same protocol, encapsulation and decapsulation are needed because the link-layer addresses are normally different. Services of Data-Link: 1. Framing The data-link layer at each node needs to encapsulate the datagram (packet received from the network layer) in a frame before sending it to the next node. The node also needs to decapsulate the datagram from the frame received on the logical channel. 2. Flow control If the rate of produced frames is higher than the rate of consumed frames, frames at the receiving end need to be buffered while waiting to be consumed (processed). Definitely, we cannot have an unlimited buffer size at the receiving side.
    [Show full text]
  • Army Packet Radio Network Protocol Study
    FTD-RL29 742 ARMY PACKET RAHDIO NETWORK PROTOCOL STUDY(U) SRI / I INTERNATIONAL MENLO PARK CA D E RUBIN NOY 77 I SRI-TR-2325-i43-i DRHCi5-73-C-8i87 p UCLASSIFIED F/G 07/2. 1 L '44 .25I MICROCOPY RESOLUTION TFST CHART NAT ONAL BUREAU Cf STINDRES 1% l A I " S2 5 0 0 S _S S S ARMY PACKET RADIO NETWORK PROTOCOL STUDY CA Technical Report 2325-143-1 e November1977 By: Darryl E. Rubin Prepared for: U,S. Army Electronics Command Fort Monmouth, New Jersey 07703 Attn: Mi. Charles Graff, DRDCO-COM-RF-4 Contract DAHC 1 5-73-C-01 87 SRI Project 2325 * 0. The views and conclusions contained in this document are those of author and should not be Interpreted as necessarily representing th Cofficial policies, either expressed or implied, of the U.S. Army or the .LJ United States Government. -. *m 333 Ravenswood Ave. * Menlo Park, California 94025 0 (415) 326-6200 eCable: STANRES, Menlo Park * TWX: 910-373-1246 83 06 '03 . 4qUNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1 REPORT NUMBER 2. GOVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER [" 2~~1325-143-1 / )r -. : i'/ - 4. TITLE Subtitle) 5-.and TYPE OF REPORT & PERIOD COVERED Army Packet Radio Network Protocol Study Technical Report 6. PERFORMING ORG. REPORT NUMBER 7 AUTHOR(s) A 8 CONTRACT OR GRANT NUMBER(s) Darrvl E. Rubin DAHCI5-73C-0187 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA & WORK UNIT NUMBERS SRI International Program Code N.
    [Show full text]
  • Data Links Functions, Attributes and Latency
    Nichols, Ryan, Mumm, Lonstein, & Carter Chapter 13: Data Links Functions, Attributes and Latency Student Learning Objectives The student will learn about the data-link function of the UAS which allows for bi-directional communication and data transmissions between UAV and its ground station. The Data Link is a vital component of an UAS. The student will learn the respective functions of each component part and considerations are necessary and how to evaluate their importance when developing a UAS. While the focus of the lesson will be on military applications, the considerations will be equally important for those designing and deploying UAS for civilian purposes. While the design of the Datalink must have requisite attributes that allow the system to function as intended in various environments globally, it must be able to do so securely and effectively. Issues such as Data Link security, interception, deception and signal latency are all attributes that must be balanced to achieve fast and secure data communications between the components of the UAS. What are the Types of UAV’s and how are they Categorized? UAV’s are most often divided into four categories based upon their mission duration and operational radius. High Altitude, Long Endurance (“HALE”) most often deployed for reconnaissance, interception or attack; Medium altitude, moderate range most often used for reconnaissance and combat effect assessment; Low cost, short range small UAV’s. (See Figure 13-1.) Components of the UAS Data-Link and their functions The UAV and Ground Control Station There are four essential communication and data processing operations the UAS must be able to efficiently and effectively carry out.
    [Show full text]